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ABSTRACT
Many systems can be represented as graphs where nodes represent
components or actors in the system and edges represent interactions
between said components and actors. Link Prediction refers to the
task of using the current graphical representation of a system to
suggest which interactions might not be captured by the system
or which interactions might occur in the future. In this position
paper, we present preliminary results on the usage of Gaussian
embeddings of nodes for the task of link prediction in directed
graphs.
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1 INTRODUCTION
Many social, biological, and physical phenomenon can be repre-
sented using graphs where a set of nodes - usually denoted V -
represent discrete components or actors and edges - usually de-
noted as E, where E ⊆ V ×V - represent interactions between said
components or actors. For example, social networks, such as Face-
book, can be represented as graphs where nodes represent users
and an edge between two users represents that said two users are
friends. These graphs can be directed or undirected, weighted or
unweighted, heterogeneous or homogeneous.

Given the representation of a system as a graph, we often wish to
predict the evolution of the graph, determine anomalies in the graph,
or impute missing edges between nodes. This task is known as link
prediction. Link prediction can be useful in many different contexts.
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In e-commerce systems, we can suggest products to customers [5].
In a social network, we can use link prediction to suggest potential
friends [2].

Much work has been done on link prediction in undirected
graphs [1], [8], [7], [3], [10]. In an undirected graph, if (u,v) ∈ E,
then (v,u) ∈ E.

However, in many systems, such as Twitter or scientific citation
networks, interactions are unidirectional. For example, in Twitter, if
useru follows userv ,v does not necessarily followu. Consequently,
such systems must be represented by directed graphs. Many meth-
ods for link prediction in undirected graphs tend to use features
that are symmetric. i.e., if f represents the method for extracting
features related to a pair of nodes, f (u,v) = f (v,u). This symmetry
might assist in determining whether an edge exists between two
nodes or not, but might not assist much in determining the direction
of the edge. For example, suppose that in some graph, G = (V ,E)
there is an edge going fromu tov . Suppose then, for notational pur-
poses, we say that (u,v) exists inG ((u,v) is a positive example), but
that (v,u) does not ((v,u) is a negative example). A classifier using
a symmetric feature might incorrectly indicate that both (u,v) and
(v,u) belong in the positive class when it ought to output that (u,v)
belongs in the positive class and (v,u) belongs in the negative class.
Consequently, the task of directed link prediction would benefit
from features that are asymmetric with respect to node pairs.

2 METHOD
Vilnis and McCallum [9] showed that embedding words from a cor-
pus in a space of multivariate Gaussian distributions might better
capture uncertainties and assist in tasks where asymmetric rela-
tionships between words might be important. Vilnis and McCallum
used an approach similar to that used to derive distributed repre-
sentations in word2vec [6]. In training the Gaussian embeddings,
Vilnis and McCallum optimized the negation of the KL divergence
between pairs of distributions as described in the equations:

E (u,v) = −DKL (Nu | |Nv ) (1)

DKL (Nu | |Nv ) =
1
2
(tr (Σ−1u Σv )+(µu + µv )T Σ−1u (µu + µv ) − d − loд

Σu
Σv

)
(2)

where u and v are words, tr is the trace of the matrix, Ni is the
Gaussian embedding for word i , µi is the mean vector of the Gauss-
ian embedding for word i , and Σi is the covariance matrix of the
Gaussian embedding for word i . Much like in word2vec [6] Vilnis
and McCallum used parameters to define the window size about a
word in the corpus for sampling and to define the dimensionality
of the learned Gaussian distributions.
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In addition, Grover and Leskovec [3] developed a method of
learning representations of nodes using alias sample-guided ran-
dom walks. In Grover and Leskovec’s [3] method, alias sampling
for the random walks was guided by a return parameter, p, that
biases the random walk to return to previously visited nodes, and
an inwards-outwards parameter, q, that mediates how far the walk
strays from its starting node. Using this approach Grover and
Leskovec’s method can interpolate between depth-first and breath-
first strategies for navigating the graph [3]. Using a defined walk
length and number of walks per starting node, these random walks
would generate a corpus that would then be used in a word2vec
[6] based approach of using stochastic gradient descent to learn
embeddings for the word within a real vector space of a specified
number of dimensions.

In our work, we used the random walk sampling approach de-
scribed by Grover and Leskovec [3] to generate a corpus where
nodes, linked to unique identifiers, behaved as words, and then
used the energy based learning method described by Vilnis and
McCallum [9] to train multivariate Gaussian embeddings. Using
these trained embeddings, we then constructed a feature vector as
follows:

f (u,v) = [DKL(Nu | |Nv ),DKL(Nv | |Nu )] (3)

where u and v are the nodes under consideration, and Ni is the
Gaussian embedding for node i . Since the KL divergence is asym-
metric, both elements of this feature vector would be different for
all pairs of nodes where u , v . These feature vectors are then used
as input to an appropriate classifier for link prediction. It should be
noted that once embeddings have been trained, the process of com-
puting the aforementioned feature vector can be easily parallelized.

3 EXPERIMENTS
In addition to our KL-divergence vector feature representation
for nodes, we also evaluate the performance of several other fea-
ture representations: the Adamic-Adar Coefficient [1], Jaccard’s
coefficient [8], Resource Allocation Index [10], and the Hadamard
product of the learned node2vec distributed representations [3]. In
addition, we also evaluated the performance of the Hadamard prod-
uct node2vec representation augmented with our KL-divergence
featured representation; this is denoted as "node2vec Hadarmard +
KL divergence vector" in Tables 2, 3, and 4. All of these constructed
feature representations were used as inputs into logistic regression
classifiers.

Note that both Grover and Leskovec’s word2vec [3] and our
method use many of the same parameters. Consequently, we fixed
p to 0.5, q to 0.5, window size to 10, number of walks to 100, walk
length to 100 and the number of dimensions to 64 for both node2vec
and our method. In addition, our method, like Vilnis and McCal-
lum’s word2gauss [9] can also consider spherical and diagonal
covariances; we used diagonal covariances for all of our experi-
ments.

3.1 Datasets
To evaluate our methods, we used several datasets provided by the
Stanford Network Analysis Project [4]. These datasets and their
properties are described in Table 1.

Table 1: Description of Datasets

Dataset Number of Nodes Number of Edges

Wikivote 7115 103689

Wiki-Rfa 11217 188837

cit-HepTh 27770 352807

Table 2: Performance of Methods on Wikivote Dataset

Method microF1 AUC

Resource Allocation Index 0.62 0.74
Adamic-Adar Coefficient 0.66 0.75
Jaccard Coeffiecient 0.66 0.75
node2vec hadamard 0.74 0.88
KL divergence vector 0.82 0.90
node2vec hadamard + KL divergence vector 0.84 0.92

Table 3: Performance of Methods on Wiki-Rfa Dataset

Method microF1 AUC

Resource Allocation Index 0.65 0.76
Adamic-Adar Coefficient 0.68 0.76
Jaccard Coeffiecient 0.69 0.76
node2vec hadamard 0.90 0.96
KL divergence vector 0.78 0.87
node2vec hadamard + KL divergence vector 0.91 0.97

Table 4: Performance of Methods on cit-HepTh Dataset

Method microF1 AUC

Resource Allocation Index 0.76 0.81
Adamic-Adar Coefficient 0.77 0.81
Jaccard Coeffiecient 0.74 0.81
node2vec hadamard 0.73 0.83
KL divergence vector 0.80 0.88
node2vec hadamard + KL divergence vector 0.82 0.91

For each dataset, we randomly selected 50% of the edges (positive
examples) to use for training and 50% to use for testing. After
extracting the positive examples for both the training set and testing
set, we generated an equal number of negative examples, i.e., pairs
of nodes for which no directed edge exists in the original dataset,
such that there was no overlap of examples between the training
set and testing set for each dataset.

3.2 Results
After training each classifier using the training set, we evaluated
the performance on the appropriate testing set using microF1 and
AUC scores. These results can be seen in Tables 2, 3, and 4.

As can be seen in Tables 2, 3, and 4, the embedding basedmethods
(both ours and Grover and Leskovec’s) perform better than the
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heuristic score methods. Furthermore, the heuristic score methods
tended to have similar performance across all datasets. Moreover,
the "node2vec Hadamard + KL divergence vector" was the best
performing method across all datasets. Our KL divergence vector
method also outperformed Grover and Leskovec’s method on two
of the three datasets. Determining what features of the Wiki-Rfa
dataset that facilitated this would be an interesting avenue for future
work. Interestingly, despite the Hadamard product of the learned
node2vec embeddings being commutative, and as a consequence,
symmetric, Grover and Leskovec’s method performed fairly well
on these directed graph datasets, and as aforementioned, was the
second-best performing method for the Wiki-Rfa dataset.

4 DISCUSSION
In this paper, we motivated the usage of asymmetric features for
link prediction in directed graphs. In addition, proceeding in a
manner similar to Grover and Leskovec [3], we adapted a method
for embedding words in a corpus to function on graphs. We then
showed that our proposed KL divergence vector feature extraction
method can be useful for training a classifier for link prediction in
directed graphs.

Among the avenues for future work would be to explore reasons
for node2vec’s performance relative to our method’s performance
on theWiki-Rfa dataset. Furthermore, we plan to investigate further
applications of Gaussian embeddings in the space of graph mining
and learning. In addition, as noted by Vilnis and McCallum, the
space of a multimodal distribution might be an interesting target
for generating embeddings.
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