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ABSTRACT
Star sampling (SS) is a graph search mechanism wherein each sam-

ple consists of a vertex (the star center) and its one-hop neighbors

(the star points). We consider the use of star sampling to find any

vertex in a specified target set in a large graph, where the figure

of merit is the expected number of samples until a vertex in the

target set is encountered, either as a star center or as a star point.

We analyze this performance measure on three related star sam-

pling paradigms: SS with replacement (SS-R), SS without center

replacement (SS-C), and SS without star replacement (SS-S). Exact

expressions for the average number of samples under SS-R and SS-C

are easily obtained. Much of the paper is focused on deriving an

approximate expression for the performance of SS-S. Experiments

are run on both “synthetic” graphs, i.e., Erdős-Rényi (ER) graphs,

as well as three “real-world” graphs. The two contributions of the

paper are: i ) the analytical approximation for SS-S is seen to be

quite accurate for both types of graphs, ii ) we observe, perhaps
surprisingly, there is little performance difference across the three

sampling paradigms. This performance insensitivity of SS-R relative

to SS-S may be understood as the result of two competing factors:

removing stars reduces the number of vertices outside the target

set, but also removes the number of neighbors of the target set.
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1 INTRODUCTION
Large graphs, e.g., graphs of social networks, are often too large or

too dynamic to be held in local memory, and as such finding ver-

tices with a given property requires the searcher query the graph,

requesting either a random vertex (e.g., as in sampling) or a par-

ticular vertex (e.g., as in guided search). One query option, a star
sample (SS) in the context of a graph G = (V ,E), refers to a vertex

v ∈ V , which we henceforth term the star center, and its one-hop

neighbors Γ(v ), which are henceforth termed the star points. Star
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sampling arises naturally under the assumption that the property

of a vertex being sampled for is revealed whether the vertex or

a vertex in its neighborhood is sampled. As a means to find any

vertex in a target subset T ⊂ V , where T is those vertices holding

the property of interest, star sampling refers to a family of graph

search mechanisms wherein star centers are repeatedly picked from

the graph, a process which terminates if the star center or any of

the star points lies in T .
In our simulations we consider the specific graph search problem

of finding one or more vertices of a target degree. For example, in

the context of a social network graph one may want to identify an

individual with a large number of contacts. As we are searching for

a vertex with a particular degree, we make the assumption that the

graph query, say queryG (v ) returns i ) the labels of the neighbors of
v , and ii ) the degrees of each neighbor. We consider each query as

requiring unit (time or processing) cost, although it is also possible

and reasonable to consider a computation model wherein the cost

is linearly proportional to the degree.

We consider three related versions of star sampling:

• Star sampling with replacement (SS-R): the star center is selected
uniformly at random from V ;

• Star sampling without center replacement (SS-C): the star center is
selected uniformly at random from the set of remaining vertices,

and the star center (along with its adjacent edges) is removed

from the graph after the query;

• Star sampling without star replacement (SS-S): the star center is
selected uniformly at random from the set of remaining vertices,

and the entire star (center and points and all adjacent edges) are

removed from the graph after the query.

The natural performance measure of a search algorithm is the

(expected value of the) number of queries until a member of the

target set is found. Our motivation in considering these variants is

to understand their relative performance, in a manner similar to the

elementary case of sampling balls from an urn. When seeking any

one of k marked balls out of a total of n balls in an urn, sampling

with replacement requires on average n/k samples; this follows

immediately from the observation that the number of draws, say

N, is a geometric random variable (RV) with success probability

k/n, and expectation E[N] = n/k . In contrast, sampling without

replacement requires a random number of draws, N̄, with expec-

tation E[N̄] = (n + 1)/(k + 1). Thus, the performance ratio of

the expected number of samples with vs. without replacement is

E[N]/E[N̄] = (k + 1)/k , which shows sampling without replace-

ment improves the average search time by a factor of two, relative

to sampling with replacement, in the particular case of k = 1.

With this elementary example as motivation, we ask what per-

formance improvement is achieved by star sampling without re-

placement relative to star sampling with replacement? The two

primary contribution of this paper are:
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• Analytical approximations of the performance of the three star

sampling variants; comparisons of these approximations with

simulation results show the approximations to be quite accurate.

• The observation that the performance of the three star sampling

variants are more or less identical; this may be explained by

the fact that although SS-S has the benefit (relative to SS-R) of

reducing the number of vertices outside the target set, it also

has the cost of reducing the number of neighbors of the target

set. This benefit and cost apparently approximately cancel each

other out, at least in the graphs we have studied.

The rest of this paper is organized as follows. Basic notation and

definitions are given in §2. §3 shows by example that no ordering

on the performance of the three star sampling variants holds for all

graphs. An approximate evolution of the degree distribution in time,

as star samples are removed from the graph, is leveraged in the main

result of the paper, Prop. 4.6, which gives an approximation of the

number of samples required under SS-S. Numerical and simulation

results, for both synthetic and “real-world” graphs, are given in §5,

related work is discussed in §6, and a conclusion is offered in §7.

2 NOTATION, DEFINITIONS, SIMPLE FACTS
Let a ≡ b denote a and b are equal by definition. Let [n] denote

{1, . . . ,n} for n ∈ N. Random variables are denoted in a sans-serif

font, e.g., x,N, u, expectation is denoted E[·], and probability is

denoted P(·). If U is a set then u ∼ Uni(U ) denotes a random

member ofU selected uniformly at random. We use the following

graph notation:

• Order, size, edges. An undirected and simple graph of order n is

denoted G = (V ,E), with vertex set V = [n] and edge set E; size
is denoted bym ≡ |E |. An undirected edge is denoted ij or {i, j}.

• Neighborhoods. Let Γ(v ) be the (one hop) neighbors ofv , Γc (v ) ≡
Γ(v )∪{v} the extended neighborhood ofv , andN (v ) ≡ {uv ∈ E}
the edge neighborhood ofv , i.e., the edges adjacent tov . Observe
Γc (v ) is a star sample with star center v and star points Γ(v ).
For T ⊆ V , let Γ(T ) ≡

⋃
v ∈T Γ(v ) \T denote neighbors of T not

includingT ; let Γc (T ) ≡
⋃
v ∈T Γc (v ) denoteT and its neighbors.

• Degrees. Let d (v ) ≡ |Γ(v ) | be the degree of v , let d ≡ (d (v ),v ∈
V ) be the degree sequence of the graph, and D ≡

⋃
v ∈V d (v ) be

the set of degrees found in G, with ϕ ≡ maxD the maximum

degree. Partition V by D into (Vk ,k ∈ D), with Vk ≡ {v ∈ V :

d (v ) = k } the vertices of degree k , and nk ≡ |Vk | the number

of degree k vertices. Let n ≡ (nk ,k ∈ D) be the degree counts,
and let w ≡ (wk ,k ∈ D) be the vertex degree distribution, with
wk ≡ nk/n. Let µ ≡

∑
k ∈D kwk = E[d (v)] be the expected degree

of a randomly selected vertex, for v ∼ Uni(V ).
• Stubs. Viewing each edge e ∈ E as a pair of edge “stubs”, set

S = [2m] as the set of 2m stubs, and set ds as the degree of the
vertex for stub s . Let (ds , s ∈ S ) be the stub degree sequence of
the graph, and partition this set by D into (Sk ,k ∈ D), with Sk
the stubs tied to degree k vertices, andmk ≡ |Sk | the number

of such stubs. Let m ≡ (mk ,k ∈ D) be the stub degree counts,

and let q ≡ (qk ,k ∈ D) be the stub degree distribution, with

qk ≡ mk/(2m). Let ν ≡
∑
k ∈D kqk = E[ds] be the expected

degree of a randomly selected stub, i.e., s ∼ Uni(S ).

Fix the initial graph G0 = (V0,E0) and fix the target set T ⊆ V0.

Recalling §1, we consider three star sampling variants. Unadorned

notation denotes SS-R, a bar denotes SS-C, and a tilde denotes SS-S.

• Star sampling with replacement (SS-R): generate an iid sequence

(vt , t ∈ N) of RVs, with each vt ∼ Uni(V0).
• Star sampling without center replacement (SS-C): generate the

random sequence (v̄t , t ∈ N), and define the associated random

graph sequence (Ḡt , t ∈ N), with Ḡt = (V̄t , Ēt ) the graph after

sample t . In particular, each star center is drawn uniformly at

random from the previous graph, i.e., v̄t ∼ Uni(V̄t−1), and the

graph is updated to reflect deletion of the center node: V̄t =
V̄t−1 \ v̄t and Ēt = Ēt−1 \ ¯Nt−1 (v̄t ).

• Star sampling without star replacement (SS-S): generate the ran-
dom sequence (ṽt , t ∈ N), and define the associated random

graph sequence (G̃t , t ∈ N), with G̃t = (Ṽt , Ẽt ) the graph after

sample t . In particular, each star center is drawn uniformly at

random from the previous graph, i.e., ṽt ∼ Uni(Ṽt−1), and the

graph is updated to reflect deletion of the star:

Ṽt = Ṽt−1 \ Γ̃
c
t−1

(ṽt ), Ẽt = Ẽt−1 \
⋃

v ∈Γ̃t−1 (ṽt )

˜Nt−1 (v ). (1)

That is, the new edge set Ẽt is obtained by removing the edge

neighborhood
˜Nt−1 (v ) for each neighbor v ∈ Γ̃t−1 (ṽt ) of ṽt .

The performance measures for the three variants are defined below.

Definition 2.1. Performance of the three SS variants is defined as

the expected number of samples until a star, either the star center

or one of the star points, intersects the target setT , i.e., E[N], E[N̄],

and E[Ñ], respectively, where

SS-R: N ≡ min{t : Γct−1
(vt ) ∩T , ∅}

SS-C: N̄ ≡ min{t : Γ̄ct−1
(v̄t ) ∩T , ∅}

SS-S: Ñ ≡ min{t : Γ̃ct−1
(ṽt ) ∩T , ∅}

. (2)

Recall Γc
0
(T ) contains T and its neighbors in G0. Observe the

equivalence: a star sample Γc
0
(v ) intersects T if and only iff v ∈

Γc
0
(T ). This observation yields the performance of SS-R and SS-C.

Fact 1 (Performance of star sampling with replacement

(SS-R)). The RV N ∼ geo( |Γc
0
(T ) |/n) in (2) is a geometric RV with

success probability p ≡ |Γc
0
(T ) |/n, and expectation E[N] = n/|Γc

0
(T ) |.

Fact 2 (Performance of star sampling without center

replacement (SS-C)). The RV N̄ has E[N̄] = (n + 1)/( |Γc
0
(T ) | + 1).

Proof. Observe SS-C with target set T on a graph of order n is

equivalent to sampling without replacement from an urn with n
balls of which k = |Γc

0
(T ) | are marked. □

Fact 3 (SS-C outperforms SS-R). The expected number of star
samples with replacement (SS-R) exceeds the expected number of star
samples without center replacement (SS-C): E[N] ≥ E[N̄].

Proof. This follows immediately from Fact 1 and Fact 2. A more

intuitive proof, however, is as follows. Let (p̄t , t ∈ N) denote the
probability of success under SS-C in trial t , where p̄t = |Γ

c (T ) |/(n−
t + 1) on account of one vertex fromV \ Γc (T ) being removed after

each failed star sample. Then p̄t ≥ p (recall Fact 1), which implies

E[N] ≥ E[N̄]. □



Star sampling with and without replacement KDD MLG Workshop 2017, Aug. 2017, Halifax, Nova Scotia

3 ORDERING THE THREE VARIANTS
The purpose of this section is to provide examples demonstrating

that, in contrast with SS-C and SS-R (c.f., Fact 3), there is no guar-

anteed ordering of SS-C and SS-S, or SS-R and SS-S. We provide

examples demonstrating these facts.
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Figure 1: Left: graph G (1) , for which SS-C outperforms SS-S.
Right: G (2) , for which SS-R outperforms SS-S.
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Figure 2: Left: outcome tree for SS − C on G (1) . Center: out-
come tree for SS − S on G (1) . Right: outcome tree for SS − S
on G (2) . White blocks are terminating states.

3.1 SS-C may outperform SS-S
The expected performance under SS-C and SS-S on a given graph

may be analyzed by making outcome trees, as illustrated in Fig. 2

for the graphs in Fig. 1. Each level of the tree corresponds to a

time instant t ∈ Z+, with the root node, corresponding to t = 0,

the initial graph G0 = (V0,E0). Each vertex in the tree at level t
corresponds to a particular graph possible at time t , say Ḡt for SS-C

and G̃t for SS-S. Each labeled edge in the tree, connecting a graph at

time t with a graph at time t + 1, corresponds to a choice of the star

center at sample t ∈ N. For each vertexv in the tree, corresponding

to, say, a graph G (v ) = (V (v ),E (v )), there is a collection of edges

in the tree, emanating from v , one edge for each vertex in G (v ),
corresponding to the possible star centers that may be chosen from

G (v ). Each of these edges has a probability of 1/|V (v ) |, as each
vertex in V (v ) is equally likely to be selected.

Leaf vertices in the tree are terminating states, representing the

fact that the target setT has been hit for the first time. Let
¯L and

˜L

denote the leaves in the outcome trees for a given graph under SS-C

and SS-S, respectively. Each leaf has a unique path to the root node,

and the probability of the leaf is the product of the probabilities

assigned to the edges comprising that path. Define P̄ ≡ (P̄L ,L ∈ ¯L)

and P̃ ≡ (P̃L ,L ∈ ˜L) as the probability distributions on the leaves

of the outcome trees under SS-C and SS-S, respectively. Finally,

observe each leaf L has a depth, denoted N̄L , ÑL ∈ N, i.e., a length

of the path from the root, and this corresponds to the number of

samples until the target set was hit. It follows that

E[N̄] =
∑
L∈ ¯L

N̄LP̄L , E[Ñ] =
∑
L∈ ˜L

ÑLP̃L . (3)

Fact 4 (SS-C may outperform SS-S). There exist graphs for
which star sampling without replacement of center outperforms star
sampling without replacement of star, i.e., E[N̄] < E[Ñ].

Proof. Fix G (1)
in Fig. 1 and fix the target set T = {1}. The

outcome tree shown in the left figure in Fig. 2, corresponding to

running SS-C on G (1)
, has

M̄L N̄L P̄L M̄LN̄LP̄L
2 1 1/4 1/2

4 2 1/12 2/3

4 3 1/24 1/2

(4)

where M̄L is the number of leaf vertices of type (N̄L , P̄L ). Adding
up the right column gives E[N̄] = 5/3. The outcome tree shown in

the middle figure in Fig. 2, corresponding to running SS-S on G (1)
,

has

M̃L ÑL P̃L M̃LÑLP̃L
2 1 1/4 1/2

2 2 1/8 1/2

2 3 1/8 3/4

(5)

Summation gives E[Ñ] = 7

4
. Thus

5

3
= E[N̄] < E[Ñ] = 7

4
. □

3.2 SS-R may outperform SS-S
Fact 5 (SS-R may outperform SS-S). There exist graphs for

which star sampling with replacement outperforms star sampling
without replacement of star, i.e., E[N] < E[Ñ].

Proof. Fix G (2)
in Fig. 1 and fix the target set T = {1}. Note

|Γc (T ) | = 4 and n = 7, and thus the performance under SS-R is, by

Fact 1, E[N] = 7/4. The outcome tree shown in the right figure in

Fig. 2, corresponding to running SS-S on G (2)
, has

M̃L ÑL P̃L M̃LÑLP̃L
4 1 1/7 4/7

3 2 1/21 5/21

6 3 1/42 3/7

6 4 1/42 4/7

(6)

Summation gives E[Ñ] = 38

21
. Thus

7

4
= E[N] < E[Ñ] = 38

21
. □

Remark 1. In both examples above we see the performance of SS-S
to be worse than SS-C and SS-R, respectively. These results may be
counter-intuitive, as one might expect SS-S to outperform both SS-
C and SS-R, on account of the fact that SS-S removes more vertices
outside the target set than the other two. However, as these examples
show, these vertices outside the target set include the neighbors of
the target set, and removing them may, as in these examples, hurt
the expected performance, as the target set is harder to “hit” with a
randomly selected star when it has fewer neighbors.

4 SS-S PERFORMANCE ANALYSIS
Fix the (initial) graph G0 = (V0,E0) and pick a target set T ⊂ V .
Recall from §2 that Γ0 (T ) denotes neighbors of T in G0 not in T ,
while Γc

0
(T ) denotes T and its neighbors. The objective in this
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section is to derive an approximation for the performance under

SS-S, E[Ñ] (c.f. Def. 2.1), given in Prop. 4.6.

4.1 Degree l 1-neighbors of a degree k vertex
Our starting point in deriving approximations to the degree evolu-

tion is to assume an arbitrary graph for which we have knowledge

only of the degree set D and the “stub” counts m = (mk ,k ∈ D).

For any graphG = (V ,E), define the RV h(1)l |k ≡ |Vl ∩Γ(v) |, where

v ∼ Uni(Vk ), i.e., h
(1)
l |k is the number of degree l one-hop neighbors

of a degree k vertex, when that vertex is selected uniformly at

random from all degree k vertices in the graph.

Given limited knowledge of G, we define an approximation for

the distribution of h(1)l |k by assuming all edges are wired uniformly

at random, subject to the constraints imposed by the degree count

n. We employed a similar approximation in our recent work [30].

Definition 4.1. The approximate distribution of h(1)l |k is defined as

P(h(1)l |k = h) ≈ p
(1)
l |k (h) ≡

(ml
h

) (
2m−ml
k−h

)(
2m
k

) , h ∈ {0, . . . ,min{k,ml }}.

(7)

We emphasize that we define this approximation; we do not

prove it to be accurate. The approximation is justified only in so

far as it leads to estimators of the degree evolution under SS-S

that appear to align well with simulation results. The intuition

behind Def. 4.1 is from balls in an urn, i.e., (7) is the probability

that a random k-sample from an urn containing 2m balls, of which

ml are marked, contains h marked balls. Under the approximate

distribution in Def. 4.1, the expected number of degree l neighbors
of a randomly selected degree k vertex is:

E[h(1)l |k ] ≈ E
(1)
l |k ≡

min{k,ml }∑
h=0

h p
(1)
l |k (h). (8)

We have the following result for the case when the number of

degree l stubs,ml , exceeds k , the degree of the center vertex.

Proposition 4.2. Ifml ≥ k then E
(1)
l |k = kql .

Proof sketch, whenml ≥ k , the expected fraction of neighbors

of degree l (E
(1)
l |k/k) equals the fraction of degree l edge stubs (ql =

ml /(2m)), as is intuitive under the assumptions.

4.2 Degree l 2-neighbors of a degree k vertex
For any graph G = (V ,E), define the RV h(2)l |k ≡ |Vl ∩ Γ(Γ(v)) |,
where v ∼ Uni(Vk ). Note Γ(Γ(v)) is the set of two-hop neighbors of
v, and thus h(2)l |k is the number of degree l two-hop neighbors of a

degree k vertex, when that vertex is selected uniformly at random

from all degree k vertices in the graph. We define the following

approximation:

Definition 4.3. The approximate expectation of h(2)l |k is defined as

E[h(2)l |k ] ≈ E
(2)
l |k ≡

∑
j ∈D

E
(1)
l |j E

(1)
j |k . (9)

This approximation asserts that the expected number of degree l
two-hop neighbors is found from the expected number of one-hop

neighbors by decomposing all one-hop neighbors by their degree.

The approximation is quite crude in that it ignores the double

counting that results when a given two-hop neighbor is adjacent

to multiple one-hop neighbors. Again, we provide no analytical

proof of the validity of this approximation, other than to show that

it leads to estimators of the degree evolution under SS-S that align

well with our simulation results. The intuition behind (9) is that

the E
(1)
j |k degree j one-hop neighbors of the center node k will each

connect with E
(1)
l |j degree l neighbors. Recall ν ≡

∑
j ∈D jqj is the

average degree of a randomly selected stub. The following holds.

Fact 6. Ifmj ≥ j for each j ∈ D then E
(2)
l |k = kqlν .

Proof. Under the assumption we may leverage Prop. 4.2:

E
(2)
l |k =

∑
j ∈D

(jql ) (kqj ) = kql
∑
j ∈D

jqj = kqlν . (10)

□

4.3 Change in number of degree l vertices
Consider an arbitrary graphG = (V ,E) from which a star sample is

drawn with star center of degree k . Under SS-S, we remove the star

center and the star points. The approximate change in expected

number of degree l vertices when a degree k vertex is removed

uniformly at random from G is, by Def. 4.1 and equation (8):

F
(1)
l |k ≡




−E
(1)
l |k , l , k

−E
(1)
k |k − 1, else

(11)

Observe E
(1)
k |k + 1 is the approximate expected number of degree k

vertices in a star sample with star center of degree k . Define

F
(2)
l |k ≡ E

(2)
l+1 |k − E

(2)
l |k . (12)

Observe F
(2)
l |k is the approximate expected change in the number of

degree l vertices that are two-hop neighbors of a randomly selected

degree k vertex, say v, when the star-sample centered at that vertex

is removed, assuming each such vertex has a single connection to

Γ(v). In particular: two-hop neighbors of degree l+1 become degree

l vertices and those of degree l become become degree l −1 vertices.

Combining (11) and (12) leads to the following approximation:

Fl |k ≡ F
(2)
l |k + F

(1)
l |k

=




E
(2)
l+1 |k − E

(2)
l |k − E

(1)
l |k , l , k

E
(2)
k+1 |k − E

(2)
k |k − E

(1)
k |k − 1, else

(13)

The unconditioned approximate expected change in the number of

degree l vertices after removing a randomly selected star sample is:

Fl ≡
∑
k ∈D

Fl |kwk . (14)

We have the following result.

Proposition 4.4. Ifml ≥ k for each k ∈ D then the approximate
expected change in the number of degree l vertices from removing a
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star sample with star center of degree k is

Fl |k =




kν (ql+1
− ql (1 + 1/ν )), l , k, l < ϕ

kν (qk+1
− qk (1 + 1/ν )) − 1, l = k, l < ϕ

−kνql (1 + 1/ν ), l , k, l = ϕ
−kνqk (1 + 1/ν ) − 1, l = k, l = ϕ

(15)

and the (unconditioned) approximate expected change in the number
of degree l vertices after removing a randomly selected star sample is:

Fl =

{
µν (ql+1

− ql (1 + 1/ν )) −wl , l < ϕ
−µνql (1 + 1/ν ) −wl , l = ϕ

(16)

Finally,
∑
l ∈D Fl ≈ −(µ + 1).

The proof follows fromProp. 4.2 and Fact 6. Observe that

∑
l ∈D Fl

is the approximate expected change in the number of vertices after

removing a randomly selected star sample. As is intuitive, this ap-

proximation equals negative one minus the average vertex degree.

4.4 Temporal degree evolution under SS-S
Recall that SS-S induces a sequence of random graphs, (G̃t , t ∈ N),
with G̃t+1 induced from G̃t (and G̃1 induced from the initial graph

G0) by removing the star, with the star center selected uniformly at

random from Ṽt . Define the RV w̃l,t ≡ |Ṽl,t |/|Ṽt |, i.e., the fraction
of degree l vertices in Ṽt , and the RV µ̃t ≡

∑
k ∈D̃t

kw̃k,t , i.e., the

average degree in G̃t .

Proposition 4.5. The approximate expected fraction of vertices of
degree l in graph G̃t is, with F̃l,t given in Prop. 4.4 or equation (13),

E[w̃l,t ] ≈ w̃l,t ≡
nl,0 +

∑t−1

t ′=1
F̃l,t ′

n0 +
∑t−1

t ′=1
µ̃t ′
, (17)

and the approximate expected vertex degree in random graph G̃t is

E[µ̃t ] ≈ µ̃t ≡
∑
k ∈D̃t

kw̃k,t . (18)

Proof. Define the sequences of RVs ((ñl,t , ñt , F̃l,t , F̃t ), t ∈ N):
• ñl,t ≡ |Ṽl,t | is the number of degree l vertices in G̃t ;

• ñt ≡ |Ṽt | is the number of vertices in G̃t ;

• F̃l,t ≡ |Ṽl,t | − |Ṽl,t−1
| is the change in the number of degree l

vertices between G̃t−1 and G̃t ;

• F̃t ≡ |Ṽt |−|Ṽt−1 | is the change in the number of vertices between

G̃t−1 and G̃t ;

Observe the recurrences ñl,t = ñl,t−1
+ F̃l,t and ñt = ñt−1 + F̃t

with initial condition ñl,0 = nl,0 and ñ0 = n0 have solution

ñl,t = nl,0 +
t−1∑
t ′=1

F̃l,t ′ , ñt = n0 +

t−1∑
t ′=1

F̃t ′ (19)

and thus, by linearity of expectation,

E[ñl,t ] = nl,0 +
t−1∑
t ′=1

E[F̃l,t ′] = nl,0 +
t−1∑
t ′=1

F̃l,t ′

E[ñt ] = n0 +

t−1∑
t ′=1

E[F̃t ′] = n0 +

t−1∑
t ′=1

F̃t ′ (20)

Approximating the expectation of a ratio as a ratio of expectations:

E[w̃l,t ] ≡ E


|Ṽl,t |

|Ṽt |


= E

[
ñl,t
ñt

]
≈
E[ñl,t ]

E[ñt ]

= w̃l,t . (21)

□

Notice, the recurrences in (17) and (18) are well defined in that

F̃l,t ′ is expressible in terms of F̃l,t ′−1
if w0 and n0 are given.

4.5 Simulation validation of degree evolution
We now present simulation results to evaluate the accuracy of

the various approximations used throughout this section. First,

Fig. 3 shows the temporal evolution of the degree distribution

under SS-S. In particular, it presents the degree distribution w̃k,t ,

i.e., the approximate fraction of vertices of degree k in G̃t from

Prop. 4.5 along with the Monte-Carlo approximation of E[w̃k,t ].

The simulations are averaged over 100 independent trials on each of

10 independent Erdős-Rényi (ER) random graphs, used as the initial

graphs, with parameters n = 100 (left) and n = 500 (right), and

edge probability 1/20. The plots show the approximation w̃k,t ≈

E[w̃k,t ] holds reasonably well for k ∈ {2, 5, 8} and t ∈ [30](left)

and t ∈ [55](right).
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Figure 3: Temporal degree distribution evolution under SS-S.

4.6 SS-S Performance estimates
We now leverage Prop. 4.5 to derive an approximation of the SS-S

performance, E[Ñ], in Def. 2.1, the main result of the paper.

Proposition 4.6. The approximate performance of SS-S is

E[Ñ] ≈ Ñ ≡
∑
t
tp̃t

t−1∏
t ′=1

(1 − p̃t ′ ) (22)

where, with F̃t in Prop. 4.4 or equation (14),

p̃t ≡
|T | + |Γ̃0 (T ) |

(
1 + 1

n0

∑t−1

t ′=1
F̃t ′
)

n0 +
∑t−1

t ′=1
F̃t ′

. (23)

Proof. Recall T is the target set. The random graph G̃t under

SS-S at time t produces the following RVs: i ) Γ̃t (T ) are neighbors
of T (not including T ); ii ) Γ̃ct (T ) = Γ̃t (T ) ∪ T ; iii ) Γ̃t (Γ̃t (T )) are

two-hop neighbors of T ; iv ) ñt ≡ |Ṽt | is the order of G̃t .

Observe the RV p̃t ≡
|T |+ |Γ̃t (T ) |

ñt
is the probability a random star

sample from G̃t will hit T , conditioned on the first t − 1 samples

missing T . Thus P̃t ≡ p̃t
∏t−1

t ′=1
(1 − p̃t ′ ) is the (unconditioned)

probability of a first hit at sample t , and SS-S performance is:

E[Ñ] =
∑
t
tE[P̃t ]. (24)

Defining p̃t ≡ E[p̃t ] and P̃t ≡ E[P̃t ], and approximating the RVs

(p̃t , t ∈ N) as independent, we obtain the approximation in (22).
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It remains to approximate p̃t . Approximate the expectation of the

ratio as the ratio of expectations and leverage Prop. 4.5:

p̃t ≡ E[p̃t ] = E

[
|T | + |Γ̃t (T ) |

ñt

]
≈
|T | + E[|Γ̃t (T ) |]

E[ñt ]

≈
|T | + E[|Γ̃t (T ) |]

n0 +
∑t−1

t ′=1
F̃t ′
. (25)

We approximate E[|Γ̃t (T ) |] also using Prop. 4.5, thinning F̃t ′ by the

ratio |Γ̃0 (T ) |/n0:

E[|Γ̃t (T ) |] ≈ |Γ̃0 (T ) | *
,
1 +

1

n0

t−1∑
t ′=1

F̃t ′+
-
. (26)

□

Assumingml ≥ k for each pair (k, l ) ∈ D and T = Vϕ where

|Vϕ | = 1, Alg. 1 recursively calculates F̃t,l given a graph of order n.
Let ŵ

0,l = Bin(k ;n−1, s ) for l ∈ [0,θ ] be the expected probability at

t = 0 of selecting a degree l node and n̂
0,l = nŵ0,l be the expected

number of degree l nodes. Compute µ0 =
∑ϕ
l=0

lŵ
0,l the expected

average degree, c0 =
∑ϕ
l=0

l2n̂
0,l the numerator of ν0 =

c0

n0µ0

the

expected average stub degree, and let q̂
0,l =

ln
0,l

n0µ0

for l ∈ [0,ϕ]. If

ml ≱ k for some pair (k, l ) ∈ D a similar algorithm can compute

F̃l,t using equation (14). The complexity of Alg. 1 is O (2nϕ).

Algorithm 1 Calculate F̂t,l given T = Vϕ and |Vϕ | = 1

1: require: F̂ = (F̂t,l ) ∈ R
n×n

, n̂0, ŵ0, q̂0, ϕ, µ0, c0, n̂0 = n, t = 0

2: while n̂t > ϕ + 1 do
3: if t , 0 then
4: µt = 0, ct = 0, ŵt ∈ R

n
, n̂t ∈ Rn , q̂t ∈ Rn ▷ init. state

5: n̂t = n̂t−1 − (µt−1 + 1) ▷ update no. of nodes

6: for l ∈ [0,ϕ] do
7: n̂t,l = n̂t−1,l + F̂t−1,l ▷ update no. of deg. l nodes

8: ŵt,l =
n̂t,l
n̂t

▷ update deg. l node prob. dist.

9: q̂t,l =
k n̂t,l
n̂t µt

▷ update deg. l stub prob. dist.

10: µt = µt + lŵt,l ▷ update ave. node deg.

11: ct = ct + l
2n̂t,l ▷ update num. of ave. stub deg.

12: νt =
ct

n̂t µt
▷ calc. ave. stub deg.

13: for l ∈ [0,ϕ] do
14: F̂t,l = Fl (µt ,νt , ŵt,l , q̂t,l ), def. in eqn. (16) ▷ calc. F̂t,l

15: t = t + 1

16: return F̂

Fig. 4 compares the empirical and analytical parameters com-

puted recursively for an ER graph under the assumptionml ≱ k
for some pair (l ,k ) ∈ D with n = 500, s = 0.02, and a unique

v∗ = {v : v ∈ Vϕ } over 500 sampling trials of SS − R, SS −C , and

SS − S . The left figure shows nt , the number of nodes in G̃t . The

middle figure shows the number of nodes that are in set Γc (T ), T
and the nodes neighboring T , conditioned on T being unsampled.

The right figure shows pt the probability of sampling a node in set

Γc (T ), conditioned on T being unsampled.

The parameter estimates for nt , |Γ
c (T ) |, and pt are accurate for

SS − R and SS −C . However under SS − S the estimates for nt and
|Γc (T ) | diverge for t large as ñt → ϕ + 1, see the left and middle

figures of Fig. 4. These divergences result in an underestimate of p̃t
for large t , see right figure of Fig. 4. Yet since P̃t ≈ p̃t

∏t−1

t ′=1
(1−p̃t ′ )

the weight of the terms of p̃t decrease as t becomes large and as

the underestimate in p̃t only occurs for t ≫ E[N ] ≥ E[Ñ ], the

estimate of E[Ñ ] remains fairly accurate, see §5.

5 NUMERICAL AND SIMULATION RESULTS
To evaluate the performance of the three star sampling variants

we present approximate and Monte-Carlo performance estimates

for initial graphs that are: i ) “synthetic” Erdős-Rényi (ER) random
graphs, and ii ) three different “real-world” graphs. In all cases we

set the target set to be the set of maximum degree vertices Vϕ .
Synethetic ER graphs. Fig. 5 shows approximate (Prop. 4.6) and

Monte-Carlo performance estimates for the three SS variants on

5 distinct ER initial graphs, 100 independent trials on each graph,

with ER edge probability 1/50 (left) and 5/n (right).

Real-world graphs. Fig. 6 shows approximate (Prop. 4.6) and

Monte-Carlo performance estimates for the three SS variants on

three different “real-world” graphs: i ) the High Energy Physics The-

ory (HepTh) collaboration graph from SNAP [22], ii ) the General
Relativity and Quantum Cosmology (GrQC) collaboration graph

from SNAP [22], and iii ) the Western States Power Grid of the

United States (Power) [34]. In all three cases 1000 independent sim-

ulations were run. The properties of the three graphs are listed

below, where n is order, m is size, µ is average degree, ϕ is the

maximum degree, and α is assortativity.

Graph n m µ α ϕ n/(ϕ + 1)

HepTh 9,877 25,973 5.26 0.268 65 ≈ 152

Power 4,941 6,594 2.67 0.003 19 ≈ 247

GrQc 5,242 14,484 5.5 0.659 81 ≈ 64

Table 1: Statistics of the three “real-world” graphs.

From Fact 1, we may approximate E[N] as n/|Γc (T ) |, see Table 1.
Recall T is the set of maximum degree vertices. If we assume that

there is a unique such vertex (c.f., [28]), then |Γc (T ) | = ϕ + 1. This

approximation is reasonably close for all three graphs in Fig. 6.

The findings in both the synthetic ER and the three “real-world”

graphs are the same: i ) there is little to no difference across the

three star sampling variants, and ii ) the analytical approximations

are seen to be very accurate. Thus, the simple expression n/|Γc (T ) |
appears to be a suitable approximation for the number of samples

required under all three star-sampling variants.

6 RELATEDWORK
Star sampling is presented as a special case of the more general

concept of snowball sampling in [17]. Snowball sampling was in-

troduced by Goodman [13] and studied by Frank [10]. Snowball
sampling appears in [20], [2], [14]. Star sampling is a snowball

sample where a sample consists of a center vertex v ∈ V and its

immediate neighbors Γ(v); Star sampling appears in [33].

This paper is an extension of our prior work [30], which also

focused on estimating the number of star samples required to find
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mance results for the three variants vs. the graph order n.
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a target vertex. In [30] we considered the slightly more general

problem of finding a degree k node or an edge with a degree l
endpoint. Moreover, we attempted to analyze the performance of

star sampling with replacement on a modified Erdős-Rényi (ER)

random graph construction, such that the estimator in Def. 4.1 is

exact. However, none of the analysis in this paper is present in [30].

There has been a substantial amount of work on the problem

of sampling graphs. Classic graph exploration strategies include:

random sampling of vertices or edges, random walk sampling, and
random jump sampling, which alternates between a random walk
and random sampling. These graph exploration strategies are gen-

eral in the sense that they perform reasonably well in a broad range

of problems. However, the graph sampling literature itself is divided

between work i ) attempting to derive an unbiased or uniform esti-

mate of the vertices in a network, and ii ) attempting to find vertices

with particular properties, for instance maximum degree vertices.

We refer to the former problem as the graph sampling problem and

the latter as the graph search problem.

The graph sampling problem becamewidespreadwith the advent

of social media. In particular, one important question it addresses

is how to obtain a representative sample of social media users. To

solve this problem Leskovac introduced forest fire sampling for tem-

poral graphs where, similar to breadth-first search (BFS), a search

frontier is established. However, instead of expanding this frontier

to unexplored vertices as in BFS, each iteration there is a chance of

the frontier retreating to re-examine previously explored vertices

[21]. Riberio proposed and analyzed a related algorithm entitled

frontier sampling [26]. Avrachenkov [5] and Jin [16] have both pro-

posed random walk jump algorithms to obtain an unbiased sample

of vertices and Avin [3] has proposed a random walk biased toward

high degree unvisited vertices. Miaya has looked at the sampling

bias of degree biased random walks showing that expansion sampling
can be more effective means of exploring graphs [25]. Although

subsequently Voudigari has proposed a degree biased breadth-first
search algorithm for the graph sampling problem [32].

More sophisticated algorithms for solving the graph sampling

problem include Metropolized random walk with backtracking, pro-
posed by Stutzbach [31]. Although Lee has argued that Metropolis-

Hastings sampling algorithms should avoid backtracking [19]. Li

proposed a Rejection controlled Metropolis-Hastings algorithm and a

Non-backtracking generalized maximum-degree sampling algorithm

[23]. Gjorka found that Metropolis-Hasting random walk’s and Re-
weighted random walk’s both out perform a simple random walk in

returning a uniform sample of Facebook users [11]. While Kurant

[18] has shown that weighted random walks can be used to carry

out stratified sampling on graphs, and Chierichetti [7] gives bounds

on the number of steps required to return a uniform sample of a

network using rejection sampling, maximum-degree sampling, and
Metropolis-Hastings sampling.

The performance of a random walk in solving a graph search

problems depends on its performance in the graph cover problem,

the time it takes a random walk to visit every node v ∈ V , or every

node v ∈ T for T ⊂ V . This problem gained prominence with P2P

networks where the question was how to design P2P networks and

search algorithms which allowed users to efficiently locate files.

Ikeda has shown that given any undirected connected graphG of

order n the cover time and mean hitting time of a degree biased
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random walk is bounded byO (n2
logn) andO (n2) respectively [15].

Cooper has shown in sparse Erdős Rényi graphs G (n, s ) the cover
time of a random walk is asymptotically cn log

c
c−1

logn where

s =
c logn
n and c > 1 [8]. Cooper also shows that in power-law

graphs of ordernwith parameter c ≥ 3, finding all vertices of degree

na , or greater with a degree biased random walk for 0 ≤ a ≤ 1 and

bias coefficient b > 0 is Õ (n1−2ab (1−ϵ ) ) with high probability [9].

Cooper’s results match Adamic’s observation that the search

time of random walks and degree biased random walks scale sub-
linearly with the size of power-law graphs [1]. Similarly Lv [24]

has also shown that for the graph search problem, random walks

outperform network flooding in P2P networks; Gkantsidis [12] ex-

panded on this work and Brautbar [6] and Avrachenkov [4] have

both shown that random walk jump algorithms are effective in

finding the high degree nodes. Our prior work [29] proposed a self
avoiding degree biased random walk jump algorithm called SAWJ.

Random walks however are not the only approach to searching

a graph for vertices with particular properties. Avrachenkov has

introduced the Two-stage algorithm for finding high degree vertices

developed under the assumption that queries of the sampled graph

are limited [4]. Our own work on finding maximum degree vertices

has assumed that queries of the sampled graph are not a limiting

factor. Given this assumption we have shown that biased random
walks and star sampling can both be effective in finding vertices of

interest, c.f. our earlier work [27], [28].

7 CONCLUSION
Star sampling is a natural graph sampling paradigm, and as such

it is important to optimize its design. In this paper we study three

star sampling variants, involving various types of replacement, mo-

tivated by analogous sampling strategies of balls from an urn. Our

analytical and simulation results demonstrate that i ) our mathe-

matical approximations lead to reasonably accurate performance

estimators, and ii ) there is, perhaps surprisingly, no significant

difference between the three variants. Our intuitive explanation

for this is that star sampling without star replacement “helps” by

reducing the number of vertices outside the target set, but “hurts”

by reducing, on average, the number of neighbors of the target

set. This target set neighbor reduction makes it harder for a star

sample to “hit” a vertex in the target set. Our future work will

focus on more rigorous mathematical justifications for the various

approximations employed in deriving our estimators.
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