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ABSTRACT
Discovering the underlying structures present in large real world

graphs is a fundamental scienti�c problem. Recent work at the

intersection of formal language theory and graph theory has found

that a Hyperedge Replacement Grammar (HRG) can be extracted

from a tree decomposition of any graph. �is HRG can be used to

generate new graphs that share properties that are similar to the

original graph. Because the extracted HRG is directly dependent on

the shape and contents of the of tree decomposition, it is unlikely

that informative graph-processes are actually being captured with

the extraction algorithm. To address this problem, the current work

presents a new extraction algorithm called temporal HRG (tHRG)

that learns HRG production rules from a temporal tree decomposi-

tion of the graph. We observe problems with the assumptions that

are made in a temporal HRG model. In experiments on large real

world networks, we show and provide reasoning as to why tHRG

does not perform as well as HRG and other graph generators.
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1 INTRODUCTION
�e discovery and analysis of network pa�erns is central to the

scienti�c enterprise. �us, extracting the useful and interesting

building blocks of a network is critical to the advancement of many

scienti�c �elds. Indeed the most pivotal moments in the devel-

opment of a scienti�c �eld are centered on discoveries about the

structure of some phenomena [12]. For example, chemists have

found that many chemical interactions are the result of the under-

lying structural properties of interactions between elements [3].
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Biologists have agreed that tree structures are useful when orga-

nizing the evolutionary history of life [5, 9], sociologists �nd that

triadic closure underlies community development [7], and neuro-

scientists have found “small world” dynamics within the brain [2].

Unfortunately, current graph mining research deals with small pre-

de�ned pa�erns [10] or frequently reoccurring pa�erns [4, 8, 13],

even though interesting and useful information may be hidden in

unknown and non-frequent pa�erns.

Pertinent to this task are algorithms that learn the LEGO-like

building blocks of real world networks in order to gain insights

into the mechanisms that underlie network growth and evolution.

In pursuit of these goals, Aguinaga et al. recently discovered a

relationship between graph theory and formal language theory

that allows for a Hyperedge Replacement Grammar (HRG) to be

extracted from the tree decomposition of any graph [1]. Like a

context free grammar (CFG), but for graphs, the extracted HRG

contains the precise building blocks of the network as well as the

instructions by which these building blocks ought to be pieced

together. In addition, this framework is able to extract pa�erns of

the network’s structure from small samples of the graph in order

to generate networks that have properties that match those of the

original graph.

In their typical use-case, CFGs are used to represent and generate

pa�erns of strings through rewriting rules. A natural language

parser, for example, learns how sentences are recursively built from

smaller phrases and individual words. In this case, it is important

to note that the CFG production rules used by natural language

parsers encode the way in which sentences are logically constructed,

that is, the CFG contains descriptive information about how nouns

and verbs work together to build coherent sentences. CFGs can

therefore generate new sentences that are at least grammatically

correct. �is is not the case with HRGs.

On the contrary, the HRG is completely dependant on the graph’s

tree decomposition, otherwise known as the clique tree, junction

tree, or cluster tree, depending on the context. Unfortunately, there

are many ways to perform a tree decomposition on a given graph,

and even the optimal, i.e., minimal-width, tree decomposition is

not unique. As a result, the production rules in a standard HRG are

unlikely to represent the informative structural rules of a graph.

�e problem is clear: in order to deeply understand the growth and

evolution of a graph we need the tree decomposition to not only

represent the structures within a graph, but also encode how these

structures grow and evolve over time.

In the present work we address this problem through a temporal

HRG extraction algorithm (tHRG) that maintains the important

graph generation guarantees and properties of the original HRG

algorithm, while also creating production rules that encode how
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the graph evolves over time. �is is accomplished by preserving

a graph’s temporal changes within the structure of the tree de-

composition, so that the production rules of the extracted HRG

contain descriptive information about how the graph evolves. �is

solution also permits rule-history to be computed from the tree

decomposition.

�e present work shows negative results. In initial experiments

on 4 temporal networks, we show that the tHRG model makes

improper assumptions and is unable to model the growth of a tem-

poral graph. �e development of the tHRG model was a signi�cant

engineering e�ort, so we present these negative so that others need

not duplicate our e�orts.

1.1 Tree Decomposition
Before we describe our method, some background de�nitions are

needed. We begin with an arbitrary input hypergraph H = (V ,E),
where a hyperedge e ∈ E can connect multiple vertices. Common

graphs (e.g., social networks, Web graphs, information networks)

are a particular case of hypergraphs where each edge connects

exactly two vertices.

For convenience, all of the graphs in this paper will be simple,
connected and undirected, although these restrictions are not vital.

In the remainder of this section we refer mainly to previous devel-

opments in tree decomposition and their relationship to hyperedge

replacement grammars.

All graphs can be decomposed (though not uniquely) into a tree
decomposition. Within the data mining community, tree decomposi-

tions are best known for their role in exact inference in probabilistic

graphical models [11].

1.2 Hyperedge Replacement Grammars
HRGs are a graphical counterpart to CFGs used in compilers and

natural language processing [6]. Like in a CFG, an HRG contains

a set of production rules P, each of which contains a le� hand

side (LHS) A and a right hand side (RHS) R. In context free string

grammars, the LHS must be a nonterminal character, which can be

replaced by some set of nonterminal or terminal characters on the

RHS of the rule. In HRGs, nonterminals are graph-cliques and a

RHS can be any graph (or hypergraph) fragment.

Just as a CFG generates a string, an HRG can generate a graph

by repeatedly choosing a nonterminal A and rewriting it using a

production rule A→ R. �e replacement hypergraph fragment R
can itself have other nonterminal hyperedges, so this process is

repeated until there are no more nonterminals in the graph.

Tree decompositions and HRGs have been studied separately

for some time in discrete mathematics and graph theory litera-

ture. HRGs are conventionally used to generate graphs with very

speci�c structures, e.g., rings, trees, stars. A drawback of many

current applications of HRGs is that their production rules must

be manually de�ned. For example, the production rules that gener-

ate a ring-graph are distinct from those that generate a tree, and

de�ning even simple grammars by hand is di�cult or impossible.

Very recently, Kemp and Tenenbaum developed an inference algo-

rithm that learned probabilities of the HRG’s production rules from

real world graphs, but they still relied on a handful of rather basic

hand-drawn production rules (of a related formalism called vertex

a

b

c

d

e

f

g

38

40 32

1

2

11

12

14
24

27

Temporal Graph

a

b

c

d

e

f

g

t4

t4 t4

t1

t1

t2

t2

t2t3

t3

Size-�antized Temporal Graph

Figure 1: Temporal graph showing edge creation times (at
le�). Edge creation times are quantized into 4 equal-sized
bins (with arbitrary tiebreaking) and the timestamps are re-
assigned to their bin number (on right).

replacement grammar) to which probabilities were learned [10].

Kukluk, Holder and Cook were able to de�ne a grammar from

frequent subgraphs [4, 8, 13–15], but their methods have a coarse

resolution because frequent subgraphs only account for a small

portion of the overall graph topology.

In earlier work we showed that an HRG can be extracted from

a static graph and used to generate new graphs that maintained

the same global and local properties as the original graph. We also

proved under certain (impractical) circumstances that the HRG can

be used to generate an isomorphic copy of the original graph [1].

Prior work in HRGs extract their production rules directly from

a tree decomposition, but because the tree decomposition can vary

signi�cantly, the production rules may also vary signi�cantly. Al-

though good at generating new synthetic graphs that are similar to

the original graph, the production rules of HRGs do not describe the

growth process that created the graph. In this section we show how

to represent growth rules from temporal graphs in a tree decompo-

sition. �e temporal HRG (tHRG) extracted from the temporal tree

decomposition will therefore contain production rules that describe

the growth of the graph.

�e tHRGs framework is divided into two phases: 1) temporal

tree decomposition, i.e., the temporal rule extraction phrase, and 2)

a graph generation phase, where the extracted rules are applied to

generate a new graph.

2 TEMPORAL HYPEREDGE REPLACEMENT
GRAMMARS

We represent temporal graphs as an edgelist, where an edge e(i)

represents the interaction of a set of nodes at some particular time.

We iterate through this edgelist in order from earliest time t (0) to

latest time t (n), adding edges and vertices as needed. As in most

graph datasets, we assume that once an edge or vertex is created

it is never deleted; under this assumption, temporal graphs are

sometimes referred to as cumulative graphs.

2.1 Size�antization
In most graph datasets, edges are added one at a time with a times-

tamp with millisecond precision. Although it may be important to
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understand �ne-grained edge creation in some cases, in the present

work we coarsen the time precision in order to resolve the evolution

of more complex structures rather than a single edge at a time. We

create β edge-bins and reassign each edge’s time to its bin number.

We considered two types of binning approaches: equally sized

bins or equally timed bins. In the present work we use size-quantization

because it breaks up the computational e�ort into equal-sized

chunks. Figure 1 illustrates a temporal graph (at le�) and as a

size-quantized temporal graph where β=4 (on right).

2.2 Graph De-Evolution
�e focus of the present work is to extract an HRG with produc-

tion rules that represent the structural events that occur within

a growing graph. Because the HRG directly depends on a tree

decomposition of a graph, it is necessary to �rst create a tree de-

composition based on the the structural changes that are found in

the growth of the graph. �is section presents an algorithm that cre-

ates a temporal tree decomposition for the purposes of extracting a

tHRG, with an example to follow.

Algorithm 1 Constructing Temporal HRGs

1: function TemporalTreeDecomposition(H = {V ,E})
2: N ,T ← []
3: for e(i) ← tn to t0 do
4: H (i) ← InducedSubgraph(H , e(i))
5: while C(i) ←MaxCliqe(H (i)) do // [17]

6: T .AddNode(η(i) ←AsTerminal(C(i)))

7: H (i) ← H (i) \C(i)x
8: H ← H \C(i)x
9: v ← Vη(i ) \ E // orphans

10: if v , {∅} then
11: for each η in T s.t. v ∈ η ∧ η not marked do
12: η′ ←Merge(η,η′)
13: end for
14: η′ ← η′ \v // external nodes of η(i)

15: if η′ = {∅} then
16: η′ ← S // S is the starting nonterminal

17: end if
18: T .AddNode(η′ ←AsNonterminal(Vη′ ))
19: V = V \v
20: else
21: T .AddNode(η′ ←AsNonterminal(Vη(i ) ))
22: end if
23: T .AddEdge(η′ → η(i))
24: Mark(η(i))
25: end while
26: end for
27: return T
28: end function

We build the tree decomposition from the bo�om-up using a

process that reverses the growth of the graph, and extracts the

tree decomposition along the way. Pseudo-code for this process

is shown in Alg. 1. We take, as input, any graph or hypergraph

H = {V ,E}, and initialize an empty tree decompositionT and set of

non-terminals N . �e process begins by selecting only those edges

e(i) that appeared in timestep i , starting from the most recent time

tn . With those edges we �nd the induced subgraph from H called

H (i), which represents the graphical structures that were added

in ith timestep. We iteratively extract the largest clique from H (i)

labeled C
(i)
x [17]. �e edges in the maximal clique are labeled as

terminal edges and a tree decomposition node η
(i)
x is added to T .

�e edges in C
(i)
x are then removed from H and H (i) in lines 7 and

8 respectively.

Recall that our temporal graph representation relied speci�cally

on the creation of edges. A side e�ect of that representation is

that nodes can only appear when they are �rst connected to the

graph. �erefore, the edges added in the current timestamp, and

consequently deleted in lines 7 and 8, may represent the addition of

a node, which needs to be accounted for in the model. Because of

the edge removal, those nodesv ∈ C(i)x may now be orphanedv < E,

i.e., they are no longer incident to any edges. In the case where

no nodes are orphaned by the removal of edges, we add a tuple

〈AsNonterminal(V
η(i )x

), η
(i)
x 〉 consisting of a new nonterminal edge

containing the vertices in η
(i)
x and the η

(i)
x -node itself in line 27. In

this case, η
(i)
x can only contain terminal edges and must therefore

be a leaf node in T .

In the case where the removal of edges creates orphaned nodes,

we iterate through all of the orphans in line 11. Although these

orphan nodes are no longer incident to any edges in E, i.e., terminal

edges, they may still be incident to several nonterminal edges in

N . In order to ensure that the running intersection property of

tree decompositions is maintained, it is important to encode these

instances inT . Fortunately, by virtue of the cumulative, i.e., growth-

only, assumption of our graphs, the now orphaned node v cannot

contain any connections from a previous timestep. �is allows

us to include the non-terminals incident to the orphan v into its

tree-node η
(i)
x in line 15. Because N stores a tuple of the incident

nonterminal and its referenced tree-node η′, we must add an edge

between η
(i)
x and η′ in T .

To create the parent nonterminal of η
(i)
x we need to �nd its

external vertices u by removing the orphaned vertex (aka the inner

vertices) from η
(i)
x . If there are not external vertices, then η

(i)
x has

no parent, so we use the special starting nonterminal S instead.

Each tree decomposition can only have one starting nonterminal

and it will always be the at the root of the tree. We add the external

vertices as a nonterminal edge to N along with a pointer to η
(i)
x

for future reference. Finally we remove the nonterminal edges

extracted in this iteration from N and remove the orphaned vertex

from the graph.

2.3 Example Temporal Tree Decomposition
For an intuitive example of how this algorithm works, we will

demonstrate Alg. 1 using the example graph illustrated in Fig 1.

�is graph has 7 nodes (a-g) and 10 edges across 4 time-quantized

bins; this example graph was chosen because it exhibits all of the

necessary boundary conditions needed to fully describe the extrac-

tion algorithm.
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Figure 2: Example of hyperedge replacement grammar rule
creation from an interior vertex of the tree decomposition
in timestamp 4. Note that lowercase letters inside vertices
are for explanatory purposes only; only the numeric labels
outside external vertices are actually part of the rule.

Beginning with the edges added in the latest timestep, t4, we

induce a subgraph (line 4) and �nd its maximal clique, i.e., the three

node triangleC
(i)
x =(a,e,g) (line 5), and add it as a nonterminal 〈a,e,g〉

toN (line 6). We also add the edges of the (a,e,g)-triangle as terminal-

edges in a new tree decomposition node, η
(4)
1

, which is added to T
(line 7). Removing the (a,e,g)-triangle’s edges from the graph (lines

8 and 9) reveals a new orphan-vertex (g) (line 7). �e orphaned

node, v , is incident only to the original nonterminal C = C
(4)
1

(line

14), so no new nonterminals are added to η
(4)
1

. �e orphaned node

(g) is subtracted from the (a,e,g) leaving only (a,e) as the external

nodesu (line 17). �e external nodes form a nonterminal tuple 〈a,e〉
and a new node η′ that is added to T (line 21) as the parent of the

(a,e,g)-triangle (line 22). Finally, the 〈a,e〉 nonterminal is added to

the set of nonterminals (line 23), the nonterminal-clique 〈a,e,g〉 is

removed from N (line 24), and the orphaned node is removed from

the graph (line 25).

Figure 2 illustrates the iteration through timestamp t4 with the

tree decomposition linking the new η′ containing the external 〈a,e〉
nodes with the (a,e,g)-triangle in η

(4)
1

. From the edge that is created

between η′ and any η
(i)
x an HRG production rule can be extracted

using the method described by Aguinaga et al [1]. For this example

the production rule is illustrated in the right-half of Fig 2.

�e next-latest edge is from timestep t3. As illustrated in Fig. 3,

we induce a subgraph and select the maximal clique. In this case

there are two equally maximal cliques: the edges (d,f) and (c,f). We

chose the (c,f)-edge at random, add it as a terminal edge to a new

tree decomposition node η
(3)
2

, and remove it from H and H (i). �e

removal of (c,f) does not reveal any orphans, so we simply add a

new nonterminal 〈c,f〉 as η′ to T as the parent of η
(3)
2

.

Next we choose (d,f) because it is the only remaining clique from

t3. Like before we add the clique edges as terminal edges to T as

a new node η
(3)
3

. �e removal of (d,f) from the graph results in an

orphan-node f, which already exists in the unmarked parent of η
(3)
2

.

So we merge these tree decomposition nodes, remove f from the

graph and add a nonterminal between external nodes d and c.

�is process continues likewise for the timestep 2. �en �nishes

with timestep 1, which contains two cliques (illustrated on the

following page).
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a

b

c

d

e

N

t2

t2

t2

N

bd

η′

bd

η
(2)
4

d

1

b

2

N b

2

d

1

a

b

c

d

e

N

t2

t2

N

N

c

d

η′

c

d

η
(2)
5

d

1

c

2

N

c

2

d

1

a

b

c

d

e

N

t2

N

N

N

c

b

a

η′

d

e

c

b

a

η
(2)
6

a

1

b

2

c 3

N

a

1

b

2

c

3

d

e

N

N

N

N

Figure 4: Example grammar creation of timestep 2

�is example will create the tree decomposition found in Fig. 6.

�ere are several critical observations that can be made from this

tree decomposition. First, this result is very di�erent from an opti-

mal or near-optimal tree decomposition of the same static graph.

�is observation is important and expected because we hope to

learn HRG rules from the growth of the graph, rather than learning

from its static representation.
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Unfortunately, this graph does not look like how we expect a tree

decomposition to look like in general. �e width of the tree is 4 (i.e.,
the size of largest tree-node |(a,b,c,e,d)| - 1 = 4), which is twice the

width of the optimal static tree decomposition. Finally, although

Fig. 6 is a mathematically proper tree decomposition (i.e., its HRG

will reconstruct an isomorphic copy of the original graph), it does

not “look” like a the tree decompositions that we are accustomed

to seeing. For example, the largest nodes are almost always seen

at the top of the tree, rather than in the middle and towards the

leaves.

2.4 Problems Caused by Late Bridges
A�er lengthy study, we found that the reason for the oddness of the

trees created by our temporal tree decomposition algorithm is due

to the the existence of “late bridges” that occur in many temporal

graphs. In the conventional way of thinking, late bridges are those

edges that connect disparate nodes late in the growth of the graph.

For example, a late bridge in a social network may be a pair of

new co-workers that have become friends through work, but are

otherwise highly separated in the network.

Observe that the depth of the tree decomposition node corre-

sponds to the time from which the node was extracted. Late-stage

connections (e.g., timestamp 3 and 4) can be found at the bo�om

of the tree decomposition, and early-stage connections (e.g., times-

tamp 1 and 2) can be found towards the top of the tree decomposi-

tion. Because of the running intersection property and because our

temporal tree decomposition algorithm works backwards in time,

we have to carry late bridge connections through the entire tree

decomposition until their link is resolved – like tracing how distant

relatives are related in a family tree. As a result, the width of the

tree decomposition increases signi�cantly with every late bridge.

Static graphs are immune to this problem because they are free to

optimize the tree decomposition unconstrained by the edge creation

time. Nevertheless, the grammars created by the tree decomposition

may still represent the growth pa�erns of the graph. To test this
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Figure 6: Example of hyperedge replacement grammar rule
creation from an interior vertex of the tree decomposition.
Note that lowercase letters inside vertices are for illustrative
purposes only.

hypothesis, we will use the temporal grammars to generate graphs

and compare the generated graphs with the original.

2.5 Growing Graphs with tHRG
Here we describe how to use the tHRG to generate graphs. In larger

HRGs we usually �nd many production rules that are identical.

Rather than storing all rule-instances, we merge duplicates and

keep a count of the number of times that each distinct rule has been

seen. Duplicate merging creates a probabilistic HRG (pHRG) where

rule probabilities correspond to the number of times an rule has

been seen.

To generate a random graph H ′ from a probabilistic HRG, we

start with the special starting nonterminal H ′ = S . From this point,

a new graph H∗ can be generated as follows: (1) Pick any nonter-

minal A in H ′; (2) Find the set of rules associated with LHS A; (3)

Randomly choose one of these rules with probability proportional

to its count; (4) replace A in H ′ with the rule’s RHS to create H∗; (5)

Replace H ′ with H∗ and repeat until there are no more nonterminal

edges.

We �nd that although the generated graphs have the same mean

size as the original graph, the variance is much too high to be useful.

So we want to sample only graphs whose size is the same as the

original graph’s, or some other user-speci�ed size. Naively, we can

do this using rejection sampling: sample a graph, and if the size

is not right, reject the sample and try again. However, this would

be quite slow. Our implementation uses a dynamic programming

approach to do this exactly while using quadratic time and linear

space, or approximately while using linear time and space. We omit

the details of this algorithm here, but the source code is available

online at h�ps://github.com/nddsg/PHRG/.

2.6 Problems Caused by Chomsky Normal
Form

�e probabilistic algorithm used to generate exact-sized graphs

requires that the tHRG is in Chomsky Normal Form (CNF). CNF

https://github.com/nddsg/PHRG/
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requires 1) that each rule’s right-hand side has at most two non-

terminals and 2) that each rule’s right-hand side has at least one

internal vertex (i.e., a vertex in a node η that does not appear in its

parent).

Pruning. To ensure the tree decomposition is in CNF we use the

following scheme. Let η be a tree decomposition node with chil-

dren η1, . . . ,ηd and a parent η′. If η does not contain any internal

vertices, we remove η from the tree decomposition and rewire its

children (if any) to be children of η′.
Binarization. By the HRG induction methods presented in pervi-

ous work [1], the number of children of η determines the number

of nonterminals on the right-hand side of the resulting rule. �us,

to be in CNF it su�ces for the tree decomposition to have a branch-

ing factor of at most two. Although the branching factor of a tree

decomposition may be greater than two, it is always easy to bina-

rize it: For η where d > 2 (here d corresponds to the number of

children for a given parent node). Make a copy of η; call it ηa , and

letVηa = Vη . Let the children of η be η1 and ηa , and let the children

of ηa be η2, . . . ,ηd . �en, if ηa has more than two children, apply

this procedure recursively to ηa .

Unfortunately, due to the early bridges problem the largest nodes

in the tree decomposition are also the most likely to need binarized.

Each time we copy η in the binarization step we exacerbate the early

bridges problem and further complicate the model. To continue the

example from Fig. 6, a binarized tree decomposition is illustrated

in Fig. 7.

Figure 7 shows a the example tree decomposition from Fig. 6

that removes three tree decomposition nodes because they did not

have any internal vertices. No binarization steps were needed. As

a result of the CNF pruning, the rules created by η
(3)
2

, η
(2)
4

, and η
(3)
5

are removed and the rules in η
(3)
3

and η
(2)
6

are updated to re�ect the

changes.

3 EXPERIMENTS
We use a methodology similar to the static HRG experiments. Given

a (temporal) graph we generate a (temporal) tree decomposition

and extract temporal HRG rules (tHRG). Beginning with the special

starting nonterminal we apply the HRG grammar rules to gener-

ate a graph of size n, and compare the generated graph with the

original graph across several local and global graph metrics. We

also compare our graph generation results to temporal Exponential

Random Graph Models (tERGM), as well as the standard ERGM,

the Kronecker graph model, the Chung-Lu graph model, and the

Block Two-level Erdős-Rényi (BTER) model by treating the �nal

version of a temporal graph as a static graph.

3.1 Datasets
We begin with four small, publicly available network datasets. �e

exact time of all node/edge arrivals is known in all network datasets.

Basic statistics for our four networks are shown in Table 1. Each

dataset represents interactions between people. �e Haggle dataset

indicates when covered cellphone users contact each other. �e

Infectious and Hypertext datasets show near-�eld-communication

interactions between conference badges at the 2009 INFECTIOUS

Conference and the 2009 HyperText Conference. �e Manufactur-

ing Company dataset are from email-traces from 2010 of a mid-sized

manufacturing company.

Table 1: Network Dataset

Dataset Name Type Nodes Edges T(days)
Haggle Cell Phone 274 2,124 4

Infectious Conference 410 2,765 0.33

Hypertext Conference 113 2,196 3

Mfg. Company Email 167 5,784 272

We consider each graph to be a cumulative network, where a

timestamped interaction adds an edge to an ever-growing network.

�is is an important assumption because if an interaction between

two individuals occurs more than once, then only the �rst interac-

tion is considered. �erefore, our graphs are temporal, cumulative,

undirected, and simple.

3.2 Methodology and Results
�e general goal of graph generation is to create synthetic graphs

that maintain several of the same properties as the original graph.

In the case of temporal graphs our goal is to learn how to generate

graphs by modelling the growth process directly.

HRG rules can hold a history of their ancestry from the tree

decomposition by including grandparent-nodes, great-grandparent-

nodes, etc. on the LHS of the production rule. If needed, during

the graph generation process, a tHRG rule can be matched to a

hyperedge in a growing graph as well as its history. Although

adding history to the model may increase model accuracy, it will

also increase the model complexity. For example, keeping a full

ancestry of each HRG rule is the same as keeping the entire tree

decomposition, which is as big as the original graph. Yet, by keeping

the full tree decomposition we are guaranteed an isomorphic copy

of the original graph. As a tradeo� between space complexity and

modelling accuracy we introduce a history parameter α , where α =

0 means no history is kept except the LHS and α = 1 requires that

one level of history be kept so that an application of an HRG rule

must match the current LHS and as well as the LHS’s parent in the

tree decomposition.

As in Fig. 1, the �rst step is to create bins from the raw times-

tamps. �ere is no clear way to do this, so we introduced a binning

parameter that creates equal sized bins of size β . For example, when

β = 100 the �rst 100 interactions are grouped into the �rst bin, the
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Figure 8: Example comparison of the cumulative degree dis-
tribution of two graphs. �e Earth Mover Distance (EMD)
is the cumulative di�erences between the two distributions
(highlighted in red).

second set of 100 non-redundant interactions are grouped into the

second bin, and so on.

Besides the creation of a synthetic graph, the tHRG method also

generates a hyperedge replacement grammar that the user may

inspect to understand how the of the graph evolved over time. We

are working on a way to evaluate the human interpretability of the

temporal graph grammar, but for now we will compare the results

of the �nal state of the original graph, with the graphs generated

by tHRG as well as the state of the art graph generators introduced

above.

�ere are dozens of ways to compare the generated graphs with

the accumulated �nal-state of the original temporal graph. Graphs

generated using tHRG, pHRG, Kronecker, Chung-Lu, BTER and

tERGM are analyzed by studying their fundamental network prop-

erties to assess how successful the model performs in generating

graphs from parameters and production rules learned from the

input graph. We look at degree distributions and the hopplot to

draw conclusions on these results.

Visually inspecting the results of these tests is challenging. We

observe that each plot is essentially a distribution of values. So

rather than visually inspecting the results of each possible distri-

bution we compare the cumulative distribution function (CDF) of

each metric with the CDF from the original graph.

Figure 8 shows an example cumulative degree distribution for the

original Hypertext graph and a randomly generated Wa�s-Strogatz

graph ��ed to the original graph. Visual inspection clearly shows

that these distributions are dissimilar, where their di�erences are

highlighted in red. We adapt the Earth Mover Distance (EMD) to

measure the area between these discrete CDFs. To avoid illustrating

all pairwise combinations, we compare various graphs metrics using

the EMD test instead. Lower is be�er.

For example, Fig. 9 shows how the EMD changes as β increases

from 50 to 500. Marks are the mean-rules of 50 trials from each

graph generator. �e 95% con�dence interval is also shown, but

the error bars too small to see in most cases. Recall that pHRG,

Kronecker, Chung-Lu and Erdos-Reyni graphs are static graphs and

therefore do not use the β binning parameter so any variation from

a �at line can be a�ributed to random noise in the averages.

�e Chung-Lu method, which directly models the degree dis-

tribution of a graph, is the winner in the degree tests in Fig. 9,
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Figure 9: EMD and con�dence intervals for degree distribu-
tions (lower is better)

followed closely by the static pHRG. Both variants of tHRG have

a reasonable performance, which tends to worsen as β increases.

Keeping a rule-history (i.e., when α=1) tends to perform be�er, but

not enough to justify a model size that is twice as large as the the

no-history variant.

We a�empted to �t ERGM and tERGM using the ERGM R-

package, but the models failed to converge.

Figure 10 shows a similar EMD on the hop plot distribution of

generated graphs. Again, we a�ribute any variation in the results

from static graph generators to randomness. �erefore, we interpret

the results in Fig. 10 to be inconclusive. �at is, each model creates

graphs with hop plots that are equally-similar to the original graph.

We performed similar tests on other global graph metrics such as

the sorted eigenvector centrality and the sorted local clustering

coe�cient. We found similar inconclusive results.

Rather than looking at the degree distribution and the hop plot,

there is mounting evidence which argues that the graphlet compar-

isons are the most complete way measure the similarity between

two graphs [16, 18]. �e graphlet distribution succinctly describes

the number of small, local substructures that compose the overall

graph and therefore more completely represents the details of what

a graph “looks like.” Furthermore, it is possible for two very dissim-

ilar graphs to have the same degree distributions, hop plots, etc.,

but it is di�cult for two dissimilar graphs to fool a comparison with

the graphlet distribution. We therefore employ the graphlet correla-

tion distance (GCD), which measures the frequency of the various

graphlets present in each graph, i.e., the number of edges, wedges,

triangles, squares, 4-cliques, etc., and compares the graphlet fre-

quencies between two graphs. Because the GCD is a distance metric,

lower values are be�er. �e GCD can range from [0,+∞], where

the GCD is 0 if the two graphs are isomorphic.
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Figure 10: EMD and con�dence intervals for hopplot distri-
butions (lower is better)

�e GCD is a single value, not a distribution. So we plot the

mean and 95% con�dence interval in Fig. 11. We �nd that the static

pHRG performs the best or close to the best across the dataset. �e

tHRG model performs poorly on the GCD metric indicating that the

tHRG method does not create graphs that “look like” the original

graph.

4 CONCLUSIONS
In the present work we expand on previous work in probabilistic

hyperedge replacement grammars (pHRG) to create a temporal

adaptation that learns rules from the growth of the temporal graph.

Our temporal adaptation is able to create a temporal tree decompo-

sition that can be translated into a temporal graph grammar. �is

temporal grammar has the ability to generate an isomorphic copy of

the original graph if the rules are applied in the correct (temporal)

order. If we throw out the ordering and instead apply rules proba-

bilistically, then we �nd that the generated graphs are not similar

to the original graph. We believe that the reason for these negative

results is because the temporal tree decomposition is constructed

in an unnatural way. �e result is a suboptimal tree decomposition

caused by edges that act as early bridges in the graph. �e existence

of early bridges combined with the running intersection property

results in tree decompositions with large widths and convoluted

grammar rules even on the small graphs tested here.
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