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Neural Embeddings of Graphs in Hyperbolic Space
Anonymous Author(s)

ABSTRACT
Neural embeddings have been used with great success in Natural
Language Processing (NLP). They provide compact representations
that encapsulate word similarity and attain state-of-the-art per-
formance in a range of linguistic tasks. The success of neural
embeddings has prompted signi�cant amounts of research into
applications in domains other than language. One such domain is
graph-structured data, where embeddings of vertices can be learned
that encapsulate vertex similarity and improve performance on
tasks including edge prediction and vertex labelling. For both NLP
and graph based tasks, embeddings have been learned in high-
dimensional Euclidean spaces. However, recent work has shown
that the appropriate isometric space for embedding complex net-
works is not the �at Euclidean space, but negatively curved, hyper-
bolic space. We present a new concept that exploits these recent
insights and propose learning neural embeddings of graphs in hy-
perbolic space. We provide experimental evidence that embedding
graphs in their natural geometry signi�cantly improves perfor-
mance on downstream tasks for several real-world public datasets.
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1 INTRODUCTION
Embedding (or vector space) methods �nd a lower-dimensional
continuous space in which to represent high-dimensional complex
data [4, 26]. The distance between objects in the lower-dimensional
space gives a measure of their similarity. This is usually achieved
by �rst postulating a low-dimensional vector space and then op-
timising an objective function of the vectors in that space. Vector
space representations provide three principle bene�ts over sparse
schemes: (1) They encapsulate similarity, (2) they are compact, (3)
they perform better as inputs to machine learning models [27]. This
is true of graph structured data where the native data format is
the adjacency matrix, a typically large, sparse matrix of connection
weights.

Neural embedding models are a �avour of embedding scheme
where the vector space corresponds to a subset of the network
weights, which are learned through backpropagation. Neural em-
bedding models have been shown to improve performance in a
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large number of downstream tasks across multiple domains. These
include word analogies [18, 20], machine translation [28], docu-
ment comparison [16], missing edge prediction [12], vertex at-
tribution [24], product recommendations [2, 10], customer value
prediction [6, 14] and item categorisation [3]. In all cases the em-
beddings are learned without labels (unsupervised) from a sequence
of entities.

To the best of our knowledge, all previous work on neural embed-
ding models either explicitly or implicitly (by using the Euclidean
dot product) assumes that the vector space is Euclidean. Recent
work from the �eld of complex networks has found that many in-
teresting networks, such as the Internet [5] or academic citations
[7, 8] can be well described by a framework with an underlying
non-Euclidean hyperbolic geometry. Hyperbolic geometry pro-
vides a continuous analogue of tree-like graphs, and even in�nite
trees have nearly isometric embeddings in hyperbolic space [11].
Additionally, the de�ning features of complex networks, such as
power-law degree distributions, strong clustering and hierarchical
community structure, emerge naturally when random graphs are
embedded in hyperbolic space [15].

The starting point for our model is the celebrated word2vec Skip-
gram architecture, which is shown in Figure 3 [18, 19]. Skipgram
is a shallow neural network with three layers: (1) An input pro-
jection layer that maps from a one-hot-encoded to a distributed
representation, (2) a hidden layer, and (3) an output softmax layer.
The network is necessarily simple for tractability as there are a very
large number of output states (every word in a language). Skipgram
is trained on a sequence of words that is decomposed into (input
word, context word)-pairs. The model employs two separate vector
representations, one for the input words and another for the con-
text words, with the input representation comprising the learned
embedding. The word pairs are generated by taking a sequence of
words and running a sliding window (the context) over them. As
an example the word sequence “chance favours the prepared mind”
with a context window of size three would generate the following
training data: (chance, favours), (chance, the), (favours, chance), ...
}. Words are initially randomly allocated to vectors within the two
vector spaces. Then, for each training pair, the vector representa-
tions of the observed input and context words are pushed towards
each other and away from all other words (see Figure 2).

The concept can be extended from words to network structured
data using random walks to create sequences of vertices. The
vertices are then treated exactly analogously to words in the NLP
formulation. This was originally proposed as DeepWalk [24]. Exten-
sions varying the nature of the random walks have been explored
in LINE [29] and Node2vec [12].

Contribution. In this paper, we introduce the new concept of neu-
ral embeddings in hyperbolic space. We formulate backpropagation
in hyperbolic space and show that using the natural geometry of
complex networks improves performance in vertex classi�cation
tasks across multiple networks.
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(a) “Circle Limit 1” by
M.C. Escher illustrates the
Poincaré disc model of
hyperbolic space. Each
tile is of constant area
in hyperbolic space, but
vanishes in Euclidean
space at the boundary.

(b) A set of straight lines in
the Poincare disk that all
pass through a given point
and are all parallel to the
blue (thicker) line.

Figure 1: Illustrations of properties of hyperbolic space. a
Tiles of constant area b Parallel lines.

2 HYPERBOLIC GEOMETRY
Hyperbolic geometry emerges from relaxing Euclid’s �fth postulate
(the parallel postulate) of geometry. In hyperbolic space there is not
just one, but an in�nite number of parallel lines that pass through
a single point. This is illustrated in Figure 1b where every line
is parallel to the bold, blue line and all pass through the same
point. Hyperbolic space is one of only three types of isotropic
spaces that can be de�ned entirely by their curvature. The most
familiar is Euclidean, which is �at, having zero curvature. Space
with uniform positive curvature has an elliptic geometry (e.g. the
surface of a sphere), and space with uniform negative curvature
is called hyperbolic, which is analogous to a saddle-like surface.
As, unlike Euclidean space, in hyperbolic space even in�nite trees
have nearly isometric embeddings, it has been successfully used to
model complex networks with hierarchical structure, power-law
degree distributions and high clustering [15].

One of the de�ning characteristics of hyperbolic space is that it
is in some sense larger than the more familiar Euclidean space; the
area of a circle or volume of a sphere grows exponentially with its ra-
dius, rather than polynomially. This suggests that low-dimensional
hyperbolic spaces may provide e�ective representations of data in
ways that low-dimensional Euclidean spaces cannot. However this
makes hyperbolic space hard to visualise as even the 2D hyperbolic
plane can not be isometrically embedded into Euclidean space of
any dimension,(unlike elliptic geometry where a 2-sphere can be
embedded into 3D Euclidean space). For this reason there are many
di�erent ways of representing hyperbolic space, with each rep-
resentation conserving some geometric properties, but distorting
others. In the remainder of the paper we use the Poincaré disk
model of hyperbolic space.

2.1 Poincaré Disk Model
The Poincaré disk models two-dimensional hyperbolic space where
the in�nite plane is represented as a unit disk. We work with

the two-dimensional disk, but it is easily generalised to the d-
dimensional Poincaré ball, where hyperbolic space is represented
as a unit d-ball.

In this model hyperbolic distances grow exponentially towards
the edge of the disk. The circle’s boundary represents in�nitely
distant points as the in�nite hyperbolic plane is squashed inside the
�nite disk. This property is illustrated in Figure 1a where each tile
is of constant area in hyperbolic space, but the tiles rapidly shrink
to zero area in Euclidean space. Although volumes and distances
are warped, the Poincaré disk model is conformal, meaning that
Euclidean and hyperbolic angles between lines are equal. Straight
lines in hyperbolic space intersect the boundary of the disk or-
thogonally and appear either as diameters of the disk, or arcs of a
circle. Figure 1b shows a collection of straight hyperbolic lines in
the Poincaré disk. Just as in spherical geometry, the shortest path
from one place to another is a straight line, but appears as a curve
on a �at map. Similarly, these straight lines show the shortest path
(in terms of distance in the underlying hyperbolic space) from one
point on the disk to another, but they appear curved. This is because
it is quicker to move close to the centre of the disk, where distances
are shorter, than nearer the edge. In our proposed approach, we
will exploit both the conformal property and the circular symmetry
of the Poincaré disk.

Overall, the geometric intuition motivating our approach is that
vertices embedded near the middle of the disk can have more close
neighbours than they could in Euclidean space, whilst vertices
nearer the edge of the disk can still be very far from each other.

2.2 Inner Product, Angles, and Distances
The mathematics is considerably simpli�ed if we exploit the sym-
metries of the model and describe points in the Poincaré disk using
polar coordinates, x = (re ,θ ), with re ∈ [0, 1) and θ ∈ [0, 2π ). To
de�ne similarities and distances, we require an inner product. In
the Poincaré disk, the inner product of two vectors x = (rx ,θx ) and
y = (ry ,θy ) is given by

〈x ,y〉 = ‖x ‖‖y‖ cos(θx − θy ) (1)
= 4 arctanh rx arctanh ry cos(θx − θy ) (2)

The distance of x = (re ,θ ) from the origin of the hyperbolic co-
ordinate system is given by rh = 2 arctanh re and the circumference
of a circle of hyperbolic radius R is C = 2π sinhR.

3 NEURAL EMBEDDING IN HYPERBOLIC
SPACE

We adopt the original notation of [18] whereby the input vertex
is wI and the output is wO . Their corresponding vector represen-
tations are vwI and v ′wO

, which are elements of the two vector
spaces shown in Figure 3, W and W′ respectively. Skipgram has a
geometric interpretation, which we visualise in Figure 2 for vectors
in W′. Updates to v ′w j

are performed by simply adding (if w j is
the observed output vertex) or subtracting (otherwise) an error-
weighted portion of the input vector. Similar, though slightly more
complicated, update rules apply to the vectors in W. Given this
interpretation, it is natural to look for alternative geometries in
which to perform these updates.
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v′(old)
v
′(new)
wO

v
′(new)
wj

η
∑

c ec,j

η
∑

c ec,O

vI

Figure 2: Geometric interpretation of the update equations
in the Skipgram model. The vector representation of the
output vertex v

′(new)
wO is moved closer (blue) to the vector

representation of the input vertex vI , while all other vec-
tors v ′(new)w j move further away (red). The magnitude of the
change is proportional to the prediction error.

To embed a graph in hyperbolic space we replace Skipgram’s
two Euclidean vector spaces (W and W′ in Figure 3) with two
Poincaré disks. We learn embeddings by optimising an objective
function that predicts output/context vertices from an input vertex,
but we replace the Euclidean dot products used in Skipgram with
hyperbolic inner products. A softmax function is used for the
conditional predictive distribution

p(wO |wI ) =
exp(〈v ′wO

,vwI 〉)∑V
i=1 exp(〈v ′wi ,vwI 〉)

, (3)

where vwi is the vector representation of the ith vertex, primed
indicates members of the output vector space (See Figure 3) and
〈·, ·〉 is the hyperbolic inner product. Directly optimising (3) is
computationally demanding as the sum in the denominator extends
over every vertex in the graph. Two commonly used techniques to
make word2vec more e�cient are (a) replacing the softmax with
a hierarchical softmax [18, 21] and (b) negative sampling [20, 22].
We use negative sampling as it is faster.

3.1 Negative Sampling
Negative sampling is a form of Noise Contrastive Estimation (NCE) [13].
NCE is an estimation technique that is based on the assumption
that a good model should be able to separate signal from noise
using only logistic regression.

As we only care about generating good embeddings, the objec-
tive function does not need to produce a well-speci�ed probability
distribution. The negative log likelihood using negative sampling
is

E = − logσ (〈v ′wO
,vwI 〉) −

∑
w j ∈Wneд

logσ (−〈v ′w j
,vwI 〉) (4)

= − logσ (uO ) −
K∑
j=1
Ew j∼Pn [logσ (−uj )] (5)

where vwI , v ′wO
are the vector representation of the input and

output vertices, uj = 〈v ′w j
,vwI 〉, Wneg is a set of samples drawn

from the noise distribution, K is the number of samples and σ is the
sigmoid function. The �rst term represents the observed data and
the second term the negative samples. To drawWneg, we specify
the noise distribution Pn to be unigrams raised to 3

4 as in [18].

3.2 Model Learning
We learn the model using backpropagation. To perform backpropa-
gation it is easiest to work in natural hyperbolic co-ordinates on the
disk and map back to Euclidean co-ordinates only at the end. In nat-
ural co-ordinates r ∈ (0,∞), θ ∈ (0, 2π ] and uj = r jrI cos(θI − θ j ).
The major drawback of this co-ordinate system is that it introduces
a singularity at the origin. To address the complexities that result
from radii that are less than or equal to zero, we initialise all vectors
to be in a patch of space that is small relative to its distance from
the origin.

The gradient of the negative log-likelihood in (5) w.r.t. uj is given
by

∂E

∂uj
=


σ (uj ) − 1, if w j = wO

σ (uj ), if w j =Wneд

0, otherwise
(6)

Taking the derivatives w.r.t. the components of vectors in W′ (in
natural polar hyperbolic co-ordinates) yields

∂E

∂(r ′j )k
=
∂E

∂uj

∂uj

∂(r ′j )k
=
∂E

∂uj
rI cos(θI − θ ′j ) (7)

∂E

∂(θ ′j )k
=
∂E

∂uj
r ′j rI sin(θI − θ

′
j ) . (8)

The Jacobian is then

∇rE =
∂E

∂r
r̂ +

1
sinh r

∂E

∂θ
θ̂ , (9)

which leads to

r
′new
j =

{
r
′old
j − ηϵjrI cos(θI − θ ′j ), if w j ∈ wO ∪Wneд

r
′old
j , otherwise

(10)

θ
′new
j =

{
θ
′old
j − ηϵj

rI r j
sinh r j sin(θI − θ

′
j ), if w j ∈ wO ∪Wneд

θ
′old
j , otherwise

(11)

where η is the learning rate and ϵj is the prediction error de�ned in
Equation (6). Calculating the derivatives w.r.t. the input embedding
follows the same pattern, and we obtain

∂E

∂rI
=

∑
j :w j ∈wO∪Wneд

∂E

∂uj

∂uj

∂rI
(12)

=
∑

j :w j ∈wO∪Wneд

∂E

∂uj
r ′j cos(θI − θ

′
j ) , (13)

∂E

∂θI
=

∑
j :w j ∈wO∪Wneд

∂E

∂uj

∂uj

∂θI
(14)

=
∑

j :w j ∈wO∪Wneд

− ∂E
∂uj

rI r
′
j sin(θI − θ

′
j ) . (15)
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N -dim hidden layer

V -dim input layer

WV×N

W′
N×V

C × V -dim output layer

xk

hi

[y1j , ..., yCj ]

y1j yCjy2j

Figure 3: The skipgram model predicts the context vertices from a single input vertex.

Table 1: Description of experimental datasets. ‘Largest class’
gives the fraction of the dataset composed by the largest
class and thereby provides the benchmark for random pre-
diction accuracy.

name |V| |E| |y| largest class Labels

karate 34 77 2 0.53 Factions
polbooks 105 441 3 0.46 A�liation
football 115 613 12 0.11 League
adjnoun 112 425 2 0.52 Part of Speech
polblogs 1,224 16,781 2 0.52 A�liation

The corresponding update equations are

rnewI = roldI − η
∑

j :w j ∈wO∪Wneд

ϵjr
′
j cos(θI − θ

′
j ) , (16)

θnewI = θoldI − η
∑

j :w j ∈wO∪Wneд

ϵj
rI r
′
j

sinh rI
sin(θI − θ ′j ) , (17)

where tj is an indicator variable s.t. tj = 1 if and only if w j = wO ,
and tj = 0 otherwise. On completion of backpropagation, the
vectors are mapped back to Euclidean co-ordinates on the Poincaré
disk through θh → θe and rh → tanh rh

2 .

4 EXPERIMENTAL EVALUATION
In this section, we assess the quality of hyperbolic embeddings and
compare them to embeddings in Euclidean spaces on a number
of public benchmark networks. We provide a TensorFlow imple-
mentation and datasets to replicate our experiments in our github
repository 1.

4.1 Datasets
We report results on �ve publicly available network datasets for
the problem of vertex attribution.
1https://github.com/anonymous/authors

(1) Karate: Zachary’s karate club contains 34 vertices divided into
two factions [30].

(2) Polbooks: A network of books about US politics published
around the time of the 2004 presidential election and sold by the
online bookseller Amazon.com. Edges between books represent
frequent co-purchasing of books by the same buyers.

(3) Football: A network of American football games between Divi-
sion IA colleges during regular season Fall 2000 [9].

(4) Adjnoun: Adjacency network of common adjectives and nouns
in the novel David Copper�eld by Charles Dickens [23].

(5) Polblogs: A network of hyperlinks between weblogs on US
politics, recorded in 2005 [1].

Statistics for these datasets are recorded in Table 1.

4.2 Visualising Embeddings
To illustrate the utility of hyperbolic embeddings we compare em-
beddings in the Poincaré disk to the two-dimensional deepwalk
embeddings for the 34-vertex karate network with two factions.
The results are shown in Figure 4. Both embeddings were generated
by running for �ve epochs on an intermediate dataset of 34, ten
step random walks, one originating at each vertex.

The �gure clearly shows that the hyperbolic embedding is able to
capture the community structure of the underlying network. When
embedded in hyperbolic space, the two factions (black and white
discs) of the underlying graph are linearly separable, while the
Deepwalk embedding does not exhibit such an obvious structure.

4.3 Vertex Attribute Prediction
We evaluate the success of neural embeddings in hyperbolic space
by using the learned embeddings to predict held-out labels of ver-
tices in networks. In our experiments, we compare our embedding
to deepwalk [24] embeddings of dimensions 2, 4, 8, 16, 32, 64 and
128. To generate embeddings we �rst create an intermediate dataset
by taking a series of random walks over the networks. For each
network we use a ten-step random walk originating at each vertex.

https://github.com/anonymous/authors
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(a) Zachary’s karate network. The network is split into
two factions.
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(b) Two-dimensional hyperbolic embedding of the karate network
in the Poincaré disk.
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(c) Two dimensional Deepwalk embedding of the karate network.

Figure 4: The factions of the Zachary karate network are easily linearly separable when embedded in 2D hyperbolic space.
This is not true when embedding in Euclidean space. Both embeddings were run for 5 epochs on the same random walks

The embedding models are all trained using the same parameters
and intermediate random walk dataset. For deepwalk, we use the
gensim [25] python package, while our hyperbolic embeddings are
written in custom TensorFlow. In both cases, we use �ve training
epochs, a window size of �ve and do not prune any vertices.

The results of our experiments are shown in Figure 5. The graphs
show macro F1 scores against the percentage of labelled data used to
train a logistic regression classi�er. Here we follow the method for
generating F1 scores when each test case can have multiple labels
that is described in [17]. The error bars show one standard error
from the mean over ten repetitions. The blue lines show hyperbolic
embeddings while the red lines depict deepwalk embeddings at
various dimensions. It is apparent that in all datasets hyperbolic
embeddings signi�cantly outperform deepwalk.

5 CONCLUSION
We have introduced the concept of neural embeddings in hyper-
bolic space. To the best of our knowledge, all previous embeddings
models have assumed a �at Euclidean geometry. However, a �at
geometry is not the natural geometry of all data structures. A hy-
perbolic space has the property that power-law degree distributions,
strong clustering and hierarchical community structure emerge nat-
urally when random graphs are embedded in hyperbolic space. It is
therefore logical to exploit the structure of the hyperbolic space for
useful embeddings of complex networks. We have demonstrated
that when applied to the task of classifying vertices of complex
networks, hyperbolic space embeddings signi�cantly outperform
embeddings in Euclidean space.
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Figure 5: Macro F1 score (y-axis) against percentage of labelled vertices used for training (x-axis). In all cases hyperbolic
embeddings (blue) signi�cantly outperform Euclidean deepwalk embeddings (red). Error bars show standard error from the
mean over ten repetitions. The legend used in sub�gure (a) applies to all sub�gures. A consistent trend across the datasets
is that an embedding into a 2D hyperbolic space outperforms deepwalk architectures with embeddings ranging from 2D to
128D.
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