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ABSTRACT
A point-to-point process describes a dynamic network where a
set of edge events are observed, each of which is associated with
a time of occurrence and two vertices lying in their state spaces.
�is study intends to investigate one application of such processes,
using NYC Taxi and Limousine Commission dataset that reports
taxi trips between two locations at a certain time. Here a point-
to-point process is formed with edge events being taxi trips and
the vertices adjacent to the edge events are pick-up and drop-o�
locations, described by latitude and longitude pairs. �e intensity of
an edge event can have a temporal dependence in addition to being
dependent on a latent, spatially-coherent community structure for
the vertices. To this end, we have developed a methodology that
estimates a spatially smoothed community structure and localizes
temporal changepoints for point-to-point processes. By applying
this to our dataset, we can explore the spatio-temporal dynamics
of the demand of taxi trips. More speci�cally, with reasonable as-
sumptions, the latent community structure is estimated by spectral
partitioning based on a low-rank reconstruction of aggregated taxi-
trip network; and the temporal changepoint localization can be
carried out by solving a matrix group fused LASSO program.
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1 INTRODUCTION
1.1 Taxi trip demand estimation
�e increasing prevalence of ride-sharing and car-sharing services,
and the advent of self-driving cars, necessitates the development
of statistical tools for trip demand estimation. We will analyze
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Figure 1: �ree records in theNYCTaxicabDataset, each con-
sists of a timestamp and two locations.

the NYC Taxi and Limousine Commission dataset (h�p://nyc.gov)
which reports taxi trips between two locations at a certain time
(see Figure 1 for a depiction of the dataset). We would like to
simultaneously explore the spatial and temporal e�ects on trip
frequencies. A trip consists of the pick-up and drop-o� location
for the ride and the departure time, and we will assume that a�er
conditioning on these e�ects the trip duration and other factors do
not have a signi�cant in�uence on the demand. Because we can
think of a trip as forming a directed edge between the two locations,
the trip dataset can be thought of as a dynamic network, because
edges occur at random times. Because these edges are counting
processes of trips from one point to another point, we will call this
a point-to-point process. We will focus on the demand estimation
procedures that provide compressed versions of the network, which
is an important feature for mobile applications.

As a preprocessing step we will aggregate the trips spatially
and temporally, using a �ne mesh, for example 1km x 1km regions
spatially and 1 hour temporally. So, we store the number of trips
between any two 1km2 grid squares within any given hour as a
tensor in memory. Consider the heatmap of trip counts leaving

http://nyc.gov


WMLG, August 2017, Halifax, Nova Scotia, Canada Li & Sharpnack

Figure 2: Heatmap of drop-o� locations for taxi trips orig-
inating in the Times Square (right �gure) and West Green-
wich Village (le� �gure) from 12pm-4pm on 15 Jan. 2015.

two di�erent locations in Figure 2 aggregated over a 4 hour time
period on 15 Jan. 2016 (a �ursday). Trips leaving Times Square
have a signi�cantly di�erent distribution than those leaving West
Greenwich Village. We expect that the nature of those locations
(tourist destination, place of work, residence, etc.) and the speci�c
time will interact to determine the trip demand. �us, the locations
are assumed to be members of communities of locations, i.e. the res-
idential blocks, tourist areas, nightlife destinations, etc. �is latent
membership model persists across time, since a location does not
stop being residential, but the demands between the communities
will certainly change.

In order to account for weekly periodicity in the dataset, we
further aggregate the trips by time from the beginning of the week.
�ere are obvious changes in demand over time. If we just look
at the overall number of trips over time of the week, we can see
that the trip counts peak during the middle of the day, and then die
down at night (see Figure 3). �is constitutes a base rate, which we
would like to account for separately in a semi-parametric fashion.

A�er the base rate has been removed, we would like to estimate
time points across which we see large changes in relative demand.
Because we are assuming that the intensities respect the community
structure, we would like to estimate separately the demand between
di�erent communities change over time. To this end, we want to
discover temporal changepoints, at which the relative demands
between the communities change appreciably.

A changepoint model has a few advantages. It allows for interpret-
able results, in that the predicted demand between the West Village
residential community and the Central Park museum community
depends only on whether you are during early morning rush hour,
a�ernoon on a weekend, etc. It is locally adaptive, in that if the
demand changes signi�cantly during a time interval, then there

Figure 3: Trip countswithin eachhour throughout theweek.

will be many changepoints, otherwise few changepoints will be de-
tected. It also allows compress-ability of the output, so that a server
might estimate the demand o�-line and then the results will be sent
to mobile devices by just relaying the temporal changepoints and
the demands between the communities.

To summarize we want to model the trip demand by incorporat-
ing the following aspects described above:

(1) a location-based latent membership model dictates how
the location a�ects the demand,

(2) a base rate is accounted for either as an o�set or as a
preprocessing step,

(3) temporal changepoints determine the time dependence of
the trip demands.

For mobile applications, estimating the demand in this way has
the advantage of compressing the estimated demand. Both mod-
elling assumptions above lead to compressed demand functions.
A spatial membership model means that only the location mem-
bership and the between membership demands need to be stored
and transmi�ed. �e temporal changepoint model means that the
changepoint times and the change in demands across these times
is maintained. �e base rate is a scalar function, so it is assumed to
require minimal memory.

1.2 Point-to-point processes
A point-to-point process consists of triples (t , s0, s1) ∈ [0,∞)×X×X,
which indicates the two locations in the state space X between
which an interaction occurs and the time, t , at which this occurs.
For the trip demand estimation, the state space X ⊆ R2 which
corresponds to the latitude and longitude of the locations. �e basic
operation that de�nes our stochastic process is counting. Given
an interval of time (t0, t1] and measurable sets S0, S1 ⊆ X, we can
count the number of trips from any point within S0 to any point
within S1 between times t0 and t1. We will assume that this is
a Poisson process in that the number of such trips is a Poisson
random variable.
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Let Nt (S0, S1) denote the number of trips from a location within
the set S0 to the set S1 before and including time t . A point-to-point
process has independent spatial increments if for any measurable set
S ′ ⊆ X and disjoint sets, S0, S1, . . . , Sk ⊂ X, then {Nt (Si , S ′)}ki=1
are independent stochastic processes. It further has independent
temporal increments if for disjoint time intervals, [ti,0, ti,1] then
{Nti,1 − Nti,0 }i are independent random measures. For taxi trips,
we will assume that Nt is spatially and temporally inhomogeneous,
in that if we take a measurable set, S ⊂ X, and translate S (assuming
there is such a group action on X), then the distribution of the
process, Nt (S, ·), can change.

Let us discretize the continuous point-to-point process with
a �ne mesh to aggregate the taxi trips spatially and temporally.
Suppose the mesh results in a grid of MS rectangular sub-areas,
S1, S2, ..., SMS , partitioning a rectangular region X, and MT time
intervals (tq , tq + ∆t]MT

q=1 of equal-length, ∆t = T
MT

, partitioning
the time of interest, (0,T ]. Denote the observed counts within mesh
elements as A(q)i j = Ntq+∆t (Si , Sj ) −Ntq (Si , Sj ), which are assumed
to be independent Poisson random variables. �en denote the trip
intensity to be Λ

(q)
i j = EA

(q)
i j .

We can extend the stochastic block model [24] to this se�ing
by considering spatial block structure. We assume that there ex-
ists two di�erent coarse partitions of the spatial mesh, {B−k }

K
k=1,

{B+k }
K
k=1, which dictates the intensity of the point-to-point process.

Speci�cally, the point-to-point process is block structured if the
intensity function is only spatially dependent on which block the
mesh element is a member of, i.e.

Λ
(q)
i j = Λ

(q)
i′j′ , if i, i ′ ∈ B−k0

, j, j ′ ∈ B+k1

for some choice of departure block B−k0
and arrival block B+k1

. �e
temporal dependence will be modelled through a base rate compo-
nent that impacts all block pairs the same and a piecewise constant
component. �e base rate is a time-dependent scalar function, λ(q)0 ,
that accounts for the cumulative temporal trend. A�er dividing
by the base rate, we will assume that the intensity is piecewise
constant, in that there are changepoints, {τc }Cc=1 such that

Λ
(q)
i j

λ
(q)
0

=
Λ
(q′)
i j

λ
(q′)
0

, if τc−1 ≤ q ≤ q′ < τc .

While these assumptions may or may not be an accurate mod-
elling assumption, they will result in methodology that is produces
compressed and interpret-able demand functions.

1.3 Related work
Point processes have been used extensively for time-to-event data,
particularly in survival analysis, where the event in question is
typically death (see [1] for an introduction). In survival analysis,
censoring, or not observing the process for certain times, is a com-
mon factor and more sophisticated tools are used to work around
this issue, [3]. Here the Cox proportional hazards with multiplica-
tive factors is used to perform regression on survival data, where
an interesting tool, called the partial likelihood is commonplace. I
will not use this technique because I am interested in estimating

the intensity, and are not particularly interested in the regression
se�ing.

�e point process model was extended to recurrent events and
the equivalent counting process model is well understood math-
ematically [2, 13, 23], via �ltrations, predictable processes, and
martingales. Some early works introduced non-parametric and
semi-parametric estimation, [14, 22], and simulation tools, [29], for
temporal point processes. Previously, IP tra�c has been modelled
with point processes, [21]. Event-history data typically takes the
form of a point process in time, but events may have a spatial coordi-
nate as well. �e general framework of a point process as a random
measure over some measurable space easily accommodates space-
time processes. Space-time point processes have been extensively
analyzed and e�cient methods can be found in [17, 32, 35].

Point processes may also be multivariate, which means that
there are multiple point processes with possibly interdependent
intensities. �e lasso has been proposed to estimation the intensity
for multivariate point processes [20]. Furthermore, multivariate
Hawkes models have seen a surge in interest because multivariate
point processes can be used to uncover a latent network of interac-
tions (see [19]). Recent mathematical developments in understand-
ing multivariate Hawkes processes can be found in [5, 15, 41]. �e
network structure estimation from Hawkes processes has applica-
tions to functional connectivity in neuroscience, [31], clustering
document streams, [15], high-frequency trading, [6], crime data
analysis, [25], and information di�usion, [41]. �is se�ing should
not be confused with the point-to-point process, where a network
is observed, as opposed to being a latent structure that determines
the intensity of a multivariate point process.

Classical network models such as the Erdös-Rényi random graph,
see [9], were explored mostly out of mathematical curiosity. It was
found that many of the known properties of these preliminary
models inadequately modelled real-world phenomena. New net-
work models, such as the preferential a�achment model, [8, 27], the
small world model, [39], and exponential random graph models [18],
were proposed because they reproduced macroscopic properties
observed in many real-world networks.

More recently stochastic block models were proposed as a way to
incorporate a latent community structure into the network model.
[24] introduced the stochastic block model and proposed spectral
clustering for recovering block structure. Spectral clustering is
based on the idea that the underlying structure of the network can
be uncovered by the eigenvectors of certain graph-based matrices
(see [37] for a tutorial). Moreover, various clustering algorithms can
be used in order to recover latent community structure; one can see
various incarnations in [7, 28, 34]. Spectral clustering poses various
interesting theoretical questions, most notable, what signal-to-noise
ratios are needed to detect community structure with spectrum-
based methods. �is has been addressed in [4, 11, 16, 26, 36], with
a particular emphasis on the information theoretic limits of such
problems.

Spatio-temporal networks can have di�erent dynamic compo-
nents. Vertices may appear and disappear, edges may appear and
disappear, and any values or labels may change over time. A time
series of graph model was introduced in [38] for detecting anom-
alies, which is similar to our se�ing. In another related work to
this proposal, latent space models have been proposed for dynamic
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networks, [33]. A dynamic stochastic block model was proposed in
[40], and an extended Kalman �lter was proposed. As mentioned,
an incarnation of the point-to-point process model has been intro-
duced in [30], but not in the generality and to the extent considered
here. [10] introduced a dynamic network model with continuous
time edge events in which the jump times are modelled as expo-
nential random variables but is not analyzed in the context of point
processes.

2 METHODOLOGY
�e simultaneous estimation of the block structure and the tem-
poral changepoint structure poses several challenges. For massive
datasets, storing the tensor A(q)i j in memory is typically impossible,
so any optimization algorithms that operate on the full dataset
will require distributed implementations. Computational issues
aside, it is not at all obvious how one would jointly estimate the
changepoints and block model. We propose below a two stage pro-
cedure that estimates the community structure from a temporally
aggregated network, and then with this block model estimating the
temporal changepoints. Furthermore, we will use the Frobenius
norm as a approximation for the point-to-point process likelihood.
�e square error loss has been used as a pseudo-likelihood for
point processes in [20]. �e point-to-point process assumptions,
speci�cally independent increments, is critical to the proposed
methodology. In future work, we plan to explore the use of the true
likelihood to form the optimization objectives.

2.1 Community detection
�is block model assumption means that there is a low rank struc-
ture on Λ(q), speci�cally, that each can be expressed as a linear
combination of the matrices,

1B−k1
1TB+k2
, k1,k2 = 1, . . . ,K ,

where 1B is the indicator vector over B. �is implies that any
linear combination of Λ(q) can likewise be decomposed as a linear
combination of these matrices. Using this fact we will use one
speci�c linear combination, the sum of these matrices, to recover
the latent community structure.

�e cumulative observed adjacency matrix A(0,T ] :=
MT∑
q=1

A(q), is

a matrix of independent Poisson random variables with cumulative

intensity Λ(0,T ] :=
MT∑
q=1

Λ(q). �e matrix A(0,T ] can be constructed

in a distributed fashion, and is a simple database query. We will
use adjacency-based spectral clustering on A(0,T ], which has the
advantage of relying on a singular value decomposition, which
has fast iterative implementations. It is not obvious under which
conditions this methodology is statistically sub-optimal, and we
reserve a theoretical analysis of this method and possible extensions
for future work.

With cumulative observed adjacency matrixA(0,T ], and a chosen
K , we can perform spectral clustering described as follows to detect
communities:

(1) Apply singular value decomposition (SVD) on matrixA(0,T ]
to obtain its best rank-K approximation:

A(0,T ] ≈ UKDKV
T
K = Ũ Ṽ

T ,where Ũ = UKD
1
2
K , Ṽ = VKD

1
2
K .

(2) Perform K-means on rows of Ũ and Ṽ to get block assign-
ment functions c(·) and d(·):

c(i) = k if Si ∈ B−k ; d(j) = k if Sj ∈ B+k .
In this way, separate clusterings of the pickup locations and dropo�
locations are discovered. �is will be the main vehicle for spatial
parameter estimation, so henceforth, we will focus on temporal
trends.

2.2 Temporal changepoint estimation
We begin by estimating the base rate λ(q)0 as

λ̂
(q)
0 =

1
M2
S

MS∑
i, j=1

A
(q)
i j .

�roughout the temporal estimation portion, we will divide the
counts by this estimated baserate. With the block assignment func-
tions, we can de�ne U and V so that

Uik =

{ 1√
Ck

if Si ∈ B−k , i.e. c(i) = k,
0 otherwise.

(1)

Vjk =

{ 1√
Dk

if Sj ∈ B+k , i.e. d(j) = k,
0 otherwise.

(2)

Ck : the number of sub-areas in the k-th block in B−k , k = 1, 2, ...,K .
Dk : the number of sub-areas in the k-th block in B+k , k = 1, 2, ...,K .
Notice thatU andV have orthonormal columns, and can be used to
reconstruct a low-rank version of each observed adjacency matrix
A(q):

A(q) ≈ Ã(q) = λ̂
(q)
0 UΨ(q)VT , (3)

i.e. Ã(q)i j = λ̂
(q)
0

Ψ
(q)
k1,k2√

Ck1Dk2

, where c(i) = k1,d(j) = k2 (4)

it can be shown that the best approximating matrix Ã(q) has corre-
sponding

λ̂
(q)
0 Ψ

(q)
(k1,k2)

=
1√

Ck1Dk2

MS∑
i, j=1

1c(i)=k1,d (j)=k2A
(q)
i j

⇔ λ̂
(q)
0 Ψ(q) = UTA(q)V

Assuming our estimation of communities U and V are indeed
the latent communities, i.e.

Λ(q) = λ
(q)
0 UΨ(q)V>,

our objective function to be minimized could be a group fused
LASSO based on the squared error loss on {Ψ(q)}:

F ({Ψ(q)}MT
q=1) =

MT∑
q=1
‖Ψ(q)−Φ(q)‖2F +α

MT −1∑
q=1
‖Φ(q+1)−Φ(q)‖F . (5)

Here α is a penalty parameter that enforces penalization on change
in consecutive Φ(q)’s, and such an objective function will encourage
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consecutive Φ(q)’s to be either the same or all elements are di�erent.
�e larger α is, we expect less change in Φ(q).

To solve this optimization program, observe that (5) is equivalent
to the following problem:

min
Φ(q),Z (q)

MT∑
q=1
‖Ψ(q) − Φ(q)‖2F + α

MT −1∑
q=1
‖Z (q)‖F , (6)

subject to Z (q) = Φ(q+1) − Φ(q) (7)

by introducing a new variable, Z (q), to capture the di�erence be-
tween successive Φ’s.

With this formulation we will apply the Alternating Direction
Method of Multipliers (ADMM) procedure to solve the problem. �e
advantages of this procedure are that ADMM and other augmented
Lagrangian based algorithm makes the transformed primal more
well-conditioned thus yields be�er convergence conditions [12],
and the updates for the variables can be carried out in a parallel
fashion.

We can look at the solution Z (q) given by the procedure to
determine if tq+1 is a changepoint. With these changepoints, we
re-estimate the demand matrix to remove additional bias due to the
fusion penalty. We use

Λ̂(q) =
λ̂
(q)
0

q2 − q1

q2∑
q′=q1

UU>A(q
′)VV>,

where τq1 ,τq2 are two consecutive changepoints and tq is contained
in between.

2.3 Model selection
In our method, there are mainly two tuning parameters that need
to be selected, K , number of communities in community detection,
and α in the penalty to the change in intensities. We can either
choose these parameters under certain rough guidelines, or by
tuning on a validation set.

To choose K , we can look at variance explained in the observed
counting matrix A(0,T ] for di�erent values of K and choose a rea-
sonable one that satis�es the compression budget. Similarly, to
choose α , we can estimate the changepoints over a range of can-
didate values of α and choose the one that gives the appropriate
amount of changepoints ��ing the compression budgets.

Another method is to use a validation set, by selecting a portion
of trips to form a validation set while the remaining forms the
training set. With several candidate values of K and α , we can run
the analysis on the training set to get changepoints and estimated
intensities Λ̂(q). �en squared error loss can be used to select a best
combination of K and α . Because we can decompose the square
error loss into a component due to the community detection and
the changepoint estimation, we can use the following:

MT∑
q=1
| |Ψ(q)test − Φ

(q) | |2F (8)

to select the number of changepoints.

Figure 4: Departure blocks (le� �gure) and arrival blocks
(right �gure) estimated with number of blocks, K = 30.

3 EXPERIMENTAL RESULTS
To demonstrate the methods described in Section 2, we use the
yellow taxi trip records during January, 2015, consisting of over ten
million trips. �e trips are randomly divided equally to form the
training and test datasets.

�e choice of �ne mesh used in this section to aggregate the
trips spatially is to partition the region shown in Figure 2 into �e
�ne mesh that was used to aggregate trips as a preprocessing step
was composed of MS = 200×40 grid regions, making each sub-area
roughly the size of a city block (you can see these in Figure 2). �e
temporal resolution was such that the time of a week is divided
into MT = 24× 7 equal-length time intervals with ∆t = 12 minutes.

�e result of K-means for K = 30 is depicted in Figure 4, where
di�erent colors indicate di�erent cluster membership. Recall that
separate cluster models are ��ed for drop-o� locations and pick-up
locations. While the cluster memberships for departures and ar-
rivals have similarities, they are not identical, indicating that some
regions may have di�erent roles during a pick-up and a drop-o�.
�e detected communities are consistent with the neighborhood
structure of Manha�an. Separate communities can be seen for
Times Square, Broadway Ave. from Columbus circle to the Lincoln
Center, the east side of Central Park where there are many muse-
ums, the lower east side, West Greenwich village, etc. In fact, the
community structure seems to be more dependent on neighborhood
boundaries and not merely on geographic location.

Here we explore a set of tuning parameters: K = 30 or 50, α takes
one of 21 equidistant values from 0 to 100. With a combination of K
and α , suppose there are p changepoints detected, then the number
of parameters to be stored would be p · K2, apart from storing
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Figure 5: Squared error loss of the test set plotted against
number of changepoints to store a�er detecting change-
points. K = 30 (blue curve) and K = 50 (orange curve) are
considered.

the location of these changepoints. Figure 5 shows the number of

changepoints against squared error loss of the test set,
MT∑
q=1
| |A(q)train−

Λ̂(q) | |2F . It shows that with a relatively large compression budget or
transmission rate, the loss can be reduced with increased number of
changepoints. �is e�ect tails o� or even is reversed when number
of changepoints reaches a fairly large amount, which is due to
over��ing. With such a plot, users of our method are able to select
tuning parameters by balancing their compression needs and the
amount of a�ordable loss of accuracy.

4 DISCUSSION
Demand estimation and compression for large spatio-temporal net-
works poses many theoretical and practical challenges. We have
introduced a novel framework called the point-to-point process
which allows us to use point processes to model spatio-temporal
networks. By estimating a spatial block model and temporal change-
point model, we obtain a compressed estimate of the point-to-point
process intensity. For mobile applications this feature is of para-
mount importance, and we show that this is possible with a sub-
stantial compression ratio.

Applications of point-to-point process models are ubiquitous in
modern transactional databases. �is framework can be applied
to internet packet data, �nancial transaction records, and other
transportation networks. Several extensions of this work are pos-
sible, particularly using the likelihood instead of the square error
loss in this methodology. �e assumptions made in this work, the
independent increments and constant spatial community structure,
are speci�c to this application. Other applications will motivate var-
ious extensions, such as modelling temporal dependence, changing
community structure, and trend-�ltering of temporal structure.
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