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ABSTRACT
Fraud detection is facing more challenges when online fraudsters

invest more resources, including purchasing large pools of fake

user accounts and dedicated IPs, to make their attacks less obvi-

ous. Existing approaches such as average degree maximization in

adjacency matrices or tensors, that aimed at finding the connec-

tions of maximum average degree density suffer from the bias of

including more false positive nodes, resulting in lower accuracy

and increased need for manual verification. Therefore, we propose

HoloScope method to detect topology and spike suspiciousness

simultaneously. A novel “contrast suspiciousness” is introduced for

honoring contrast behaviors between fraudsters and normal users.

In terms of graph topology, it allows us to more accurately detect

fraudulent blocks, reducing the false positive nodes; In terms of

temporal spikes, HoloScope takes into account the bursts caused by

fraudsters’ attacking, and the sudden drops due to the poor attrac-

tiveness of fake objects. In addition, we provide theoretical bounds

for how much this increases the time cost needed for fraudsters

to conduct adversarial attacks. Additionally, from the perspective

of ratings, HoloScope incorporates the deviation of rating scores

in order to catch fraudsters more accurately. Moreover, the Holo-

Scope has a concise framework and sub-quadratic time complexity,

which make our algorithm reproducible and scalable. In the experi-

ments, HoloScope achieved significant accuracy improvements on

both synthetic and real data, compared with the state-of-the-art

baselines.
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1 INTRODUCTION
Online fraud has become an increasingly serious problem due to

the high profit it offers to fraudsters, which can be as much as

$5 million from 300 million fake “views” per day, according to a

report of Methbot [17] on Dec 2016. Meanwhile, to avoid detection,

fraudsters can manipulate their geolocation, internet providers, and

IP address, via large IP pools (852,992 dedicated IPs). Suppose a

fraudster has a accounts or IPs, and serves a customer who buys

200 ratings or clicks for each of his products. Since the fraudster has

to add 200 ratings to each product out of a possible a ratings, the

density of the fraudulent block created is 200/a. We thus see that

with enough user accounts or IPs, the fraudster can serve as many

products as he needs while keeping density low. This presents a

difficult challenge for most existing fraud detection methods.

Due to the lack of labeled data in fraud detection, unlike email

spam detection, many studies on fraud detection use unsupervised

approaches, i.e. dense block detection. Current dense block de-

tection methods [2, 20, 21] maximize the arithmetic or geometric

average degree. We use “fraudulent density” to indicate the edge

density that fraudsters create for target objects. However, those

methods have a bias of including more nodes than necessary, es-

pecially as the fraudulent density decreases, which we verified

empirically. This bias results in low precision, which then requires

intensive manual work to verify each user.

Accurately detecting fraudulent blocks of lower density requires

aggregating more sources of information. Consider the attribute

of the creation time of edges: fraudulent attacks tend to be con-

centrated in time, e.g., fraudsters may surge to retweet a message,

creating one or more sudden bursts of activity, followed by sudden

drops after the attack is complete. Sudden bursts and drops have

not been directly considered together in previous work.

Therefore, we propose HoloScope, an unsupervised approach,

which combines suspicious signals from graph topology, temporal

bursts and drops, and rating deviation. Our graph topology-based

weighting scheme dynamically reweights objects according to our

beliefs about which users are suspicious. Temporally, HoloScope

detects suspicious spikes of bursts and drops, which increases the

time cost needed for fraudsters to conduct an attack. In terms

of rating deviation, our approach takes into account how much

difference there is between an object’s ratings given by suspicious

users and non-suspicious users.

In summary, our contributions are:

• Novel suspiciousness metric: we propose a dynamic con-
trast suspiciousness metric, which emphasizes the contrast

behaviors between fraudsters and honest users in an unsu-

pervised way. At the same time, the contrast suspiciousness

provides a unified suspiciousness framework, which can

make holistic use of several signals including, but not lim-

ited to, connectivity (i.e., topology), temporal bursts and

drops, and rating deviation in a systematic way.

• Robustness and theoretical analysis of fraudsters’ ob-
struction: we show that if the fraudsters use less than a

theoretical bound of time for an attack, they will cause a sus-

picious drop or burst. In other words, HoloScope obstructs

fraudsters by increasing the time they need to perform an

attack. This theorem guarantees temporal robustness: no

matter how the fraudsters manipulate the creation time of

fraudulent links, they will be caught if the attack takes less

than a fixed amount of time.
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Figure 1: (a) and (b) show experimental results on BeerAdvocate dataset. The better methods are able to detect fraud with high accuracy,
even when fraudulent density (plotted on the horizontal axis) is low. HS-α and HS are both ourmethods, where the former only uses topology
information.We increase the # of injected fraudsters from200 to 2000 forHS-α , and to 20000 forHS, while the decreasing density of fraudulent
edges is shown on the horizontal axis from right to left. Comparing with HS-α , HS who makes holistic use of several signals achieves further
improvement. (c) shows accuracy (F measure of precision and recall) results on Sina Weibo, with ground truth labels.

• Effectiveness: we achieved higher accuracy than the base-

lines on semi-real and real datasets. In fact, HoloScope using

only topology information (HS-α ) outperformed the graph-

based baselines (see Fig. 1a), while HoloScope (HS) using all

signals achieved further improvement, and outperformed

the tensor-based baselines (see Fig. 1b and 1c). The dynamic

weighting on object nodes by contrast suspiciousness makes

both HS-α and HS resistant to fraudsters’ camouflage and

achieve better detection accuracy.

• Scalability: HoloScope runs in subquadratic time in the

number of nodes, under reasonable assumptions.

In addition, in Microblog, Sina Weibo
1
data, HoloScope achieved

higher F-measure than the baselines in detecting the ground truth

labels, with high precision and recall. The code of HoloScope is

open-sourced for reproducibility
2
.

2 RELATEDWORKS
Most existing works study fraud detection in an unsupervised way

due to the limited labels, which are based on the density of blocks

within adjacency matrices [9, 18], or multi-way tensors [20, 21].

Taking into account the suspiciousness of each edge or node in a

real life graph potentially allows for more accurate detection. Frau-

dar [8] proposed to weight edges’ suspiciousness by the inverse

logarithm of objects’ indegrees, to discount popular objects. [1]

found that the degrees in a large community follow a power law dis-

tribution, forming hyperbolic structures. This suggests penalizing

high degree objects to avoid unnecessarily detecting the dense core

of hyperbolic community. Deep neural network methods are used

for anomaly detection [11, 13], but these are black-box approaches

that provide little interpretability about the detected output.

In addition to topological density, EdgeCentric [19] studied the

distribution of rating scores to find the anomaly. A recent work,

Sleep Beauty (SB) [10] more intuitively defined the awakening

1
The largest Microblog service in China, http://www.weibo.com

2
https://github.com/xxxx/HoloScope

time for a paper’s citation burst for burst period. Meanwhile, [6,

7] modeled the time stamped rating scores with Bayesian model

and autoregression model respectively for anomalous behavior

detection. Even though [4, 12, 23] have used bursty patterns to

detect review spam, a sudden drop in temporal spikes has not been

considered yet.

To consider temporal information, it is nontrivial to divide time

into discrete bins. The problem of choosing bin widths for his-

tograms was studied by Sturges [22] assuming an approximately

normal distribution, and Freedman-Diaconis [5] based on statistical

dispersion. However, the binning approaches were proposed for

the time series of a single object, which is not clear for different

kinds of objects in a real life graph, namely, popular products and

unpopular products should use different bin sizes.

Aggregating suspiciousness signals from different attributes is

challenging for unsupervised learning. [3] proposed RRF (Recipro-

cal Rank Fusion) scores for combining different rank lists in infor-

mation retrieval. However, RRF applies to ranks, not suspiciousness

scores.

Therefore, with a novel suspiciousness metric, HoloScope consid-

ers temporal spikes (sudden bursts and drops, and multiple bursts)

and hyperbolic topology in a unified suspiciousness framework.

3 PROPOSED APPROACH
The definition of our problem is as follows.

Problem 1 (informal definition). Given quadruplets (user ,
object , timestamp, #stars ), where timestamp is the time that a user
rates an object , and #stars is the categorical rating scores.

- Find a group of suspicious users, and suspicious objects or its
rank list with suspiciousness scores,

- to optimize the metric under the common knowledge of sus-
piciousness from topology, rating time and scores.

To make the problem more general, timestamp and #stars are
optional. For example, in Twitter, we have (user ,object , timestamp)
triples, where user retweets a message object at timestamp. In a

2
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static following network, we have pairs (user ,object ), with user
following object .

Thus we will show in the following sections, that our proposed

metric can make holistic use of several signals, namely topology,

temporal spikes, and rating deviation, to locate suspicious users

and objects. That is the reason we name our method as HoloScope

(HS).

3.1 Proposed HoloScope metric
To give a formal definition of our metric, we describe the quadru-

plets (user , object , timestamp, #stars) as a bipartite and directed

graph G = {U ,V ,E}, whichU is the source node set, V is the sink

node set, and connections E is the directed edges fromU toV . Gen-

erally, graph G is a multigraph, i.e., multiple edges can be present

between two nodes. Multiple edges mean that a user can repeat-

edly comment or rate on the same product at a different time, as

common in practice. Users can also retweet message multiple times

in the Microblog Sina Weibo. Each edge can be associated with

rating scores (#stars), and timestamp, for which the data structure

is introduced in Subsection 3.1.2.

Our HoloScope metric detects fraud from three perspectives:

topology connection, timestamp, and rating score. To easily un-

derstand the framework, we first introduce the HoloScope in a

perspective of topology connection. Afterwards, we show how we

aggregate the other two perspectives into the HoloScope. We first

view G as a weighted adjacency matrix M, with the number of

multiple edges (i.e., edge frequency) as matrix elements.

Our goal is to find lockstep behavior of a group of suspicious

source nodes A ⊂ U who act on a group of sink nodes B ⊂ V . The

total engagement of source nodesA to sink nodes B can be basically

measured via density measures. There are many density measures,

such as arithmetic and geometric average degree. Our HoloScope

metric allows for any such measure. However, as the average degree

metrics have a bias toward including too many nodes, we use a

measure denoted by D (A,B) as the basis of the HoloScope, defined
as:

D (A,B) =

∑
vi ∈B fA (vi )

|A| + |B |
(1)

where fA (vi ) is the total edge frequency from source nodes A to a

sink node vi . fA (vi ) can also be viewed as an engagement from A
to vi , or A’s lockstep on vi , which is defined as

fA (vi ) =
∑

(uj ,vi )∈E∧uj ∈A

σji · eji (2)

where constant σ ji are the global suspiciousness on an edge, and

eji is the element of adjacency matrixM, i.e., the edge frequency

between a node pair (uj ,vi ). The edge frequency eji becomes a

binary in a simple graph. The global suspiciousness as a prior can

come from the degree, and the extra knowledge on fraudsters, such

as duplicated review sentences and unusual behaving time.

To maximize D (A,B), the suspicious source nodes A and the

suspicious sink nodes B are mutually dependent. Therefore, we

introduce contrast suspiciousness in an informal definition:

Definition 3.1 (contrast suspiciousness). The contrast suspicious-
ness denoted as P (vi ∈ B |A) is defined as the conditional likelihood

of a sink node vi that belongs to B (the suspicious object set), given

the suspicious source nodes A.

The intuitive idea behind contrast suspiciousness is that in the

most case, we need to judge the suspiciousness of objects by cur-

rently chosen suspicious users A, e.g., an object is more suspicious

if very few users not in A are connected to it; the sudden burst

of an object is mainly caused by A; or the rating scores from A
to an object are quite different from other users. Therefore, such

suspiciousness makes use of the contrasts between users in A and

users not in A or the whole set.

Finally, instead of maximizing D (A,B), we maximize the follow-

ing expectation of suspiciousness D (A,B) over the probabilities

P (vi ∈ B |A):

max

A
HS (A) := E [D (A,B)]

=
1

|A| +
∑
k ∈V

P (vk |A)

∑
i ∈V

fA (vi )P (vi |A) (3)

where for simplicity we write P (vi |A) to mean P (vi ∈ B |A). 1 −
P (vi |A) is the probability of vi being a normal sink node. We dy-

namically calculate the contrast suspiciousness for all the objects,

after every choice of source nodes A.
We next show how to define contrast suspiciousness P (vi |A) in a

way that takes into account various edge attributes. This will allow

greater accuracy particularly for detecting low-density blocks.

3.1.1 HS-α : Less involvement from others. A sink node should be

more suspicious if it only attracts connections from the suspicious

source nodes A, and less from other nodes. Mathematically, we

capture this by defining

P (vi |A) ∝ q(αi ), where αi =
fA (vi )

fU (vi )
(4)

where fU (vi ) is the weighted indegree of sink node vi . Similar to

fA (vi ), the edges are weighted by global suspiciousness. αi mea-

sures the involvement ratio ofA in the activity of sink node vi . The
scaling function q(·) is our belief about how this ratio relates to

suspiciousness, and we choose the exponential form q(x ) = bx−1,
where base b > 1.

As previous work showed, large communities form hyperbolic

structures, which is generated in our synthetic data (see the lower-

right block in Fig. 2a), and also exists in real BeerAdvocate data

(see Fig. 2b). For clarity, our HoloScope method are denoted as

HS-α when it is only applied on a connection graph. The results

of the synthetic data show that HS-α detected the exact dense

rectangular block (b = 128), while the other methods included

a lot of non-suspicious nodes from the core part of hyperbolic

community resulting in low accuracy. In the beer review data from

the BeerAdvocate website, testing on different fraudulent density

(see Fig. 1a), our HS-α remained at high accuracy, while the other

methods’ accuracy drops quickly when the density drops below

70%.

The main idea is that HS-α can do better because it dynamically

adjusts the weights for sink nodes, penalizing those sink nodes

that also have many connections from other source nodes not

in A. In contrast, although Fraudar proposed to penalize popular

sink nodes based their indegree, these penalties also scaled down

3
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the weights of suspicious edges. The Fraudar (green box) only

improved the unweighted “average degree” method (red box) by a

very limited amount. Moreover, with a heavier penalty, the “sqrt

weight” method (blue box) achieved better accuracy on source

nodes but worse accuracy on sink nodes, since those methods used

globally fixed weights, and the weights of suspicious were penalized

as well. Hence the hyperbolic structure pushes those methods to

include more nodes from its core part.

In summary, our HS-α using dynamic contrast suspiciousness

can improve the accuracy of fraud detection in ‘noisy’ graphs (con-

taining hyperbolic communities), even with low fraudulent density.

3.1.2 Temporal bursts and drops. Timestamps for edge creation

are commonly available in most real settings. If two subgroups of

Microblog users have the same number of retweets to a message,

can we say they have the same suspiciousness? As an example

shown in Fig. 3a, the red line is the time series (histogram of time

bins) of the total retweets of a message in Microblog, Sina Weibo.

The blue dotted line and green dashed line are the retweeting time

series respectively from user groupsA1 andA2. The two series have

the same area under the time series curves, i.e., the same number

of retweets. However, considering that fraudsters tend to surge to

retweet a message to reduce the time cost, the surge should create

one or more sudden bursts, along with sudden drops. Therefore,

the suspiciousness of user groupsA1 andA2 become quite different

even though they have the same number of retweets, which cannot

be detected solely based on connections in the graph. Thus we

include the temporal attribute into our HoloScope framework for

defining contrast suspiciousness.

Denote the list of timestamps of edges connected to a sink node

v as Tv . To simplify notation, we use T without subscript when

talking about a single given sink nodev . Let T ={(t0, c0), (t1, c1), · · · ,
(te , ce )} as the time series ofT , i.e., the histogram of T . The count ci
is the number of timestamps in the time bin [ti − ∆t/2, ti + ∆t/2),
with bin size ∆t . The bin size of histogram is calculated according to

the maximum of Sturges criteria and the robust Freedman-Diaconis’

criteria as mentioned in related works. It is worth noticing that the

HoloScope can tune different bin sizes for different sink nodes, e.g.,

popular objects need fine-grained bins to explore detailed patterns.

Hence, the HoloScope is more flexible than tensor based methods,

which use a globally fixed bin size. Moreover, the HoloScope can

update the time series at a low cost when T is increasing.

To consider the burst and drop patterns, we need to decide the

start point of a burst and the end point of a drop in time series

T . Let the burst point be (tm , cm ), having the maximum value cm .

According to the definition in previous work “Sleeping Beauty”, we

use an auxiliary straight line from the beginning to the burst point

to decide the start point, named the awakening point of the burst.
Fig. 3b shows the time series T (red polygonal line) of a message

from Sina Weibo, the auxiliary straight line l (black dotted line)

from the lower left point (t0, c0) to upper right point (tm , cm ), and

the awakening point for the maximum point (tm , cm ), which is

defined as the point along the time series T which maximizes the

distance to l . As the dotted line perpendicular to l suggests in this

figure, the awakening point (ta , ca ) satisfies

ta = argmax

(c,t )∈T ,t<tm

|(cm − c0)t − (tm − t0)c + tmc0 − cmt0 |√
(cm − c0)

2 + (tm − t0)
2

(5)

Finding the awakening point for one burst is not enough, as

multiple bursts may be present. Thus, sub-burst points and the

associated awakening points should be considered.We then propose

a recursive algorithmMultiBurst in Alg. 1 for such a purpose.

Algorithm 1MultiBurst algorithm.

Input Time series T of sink node v , beginning index i , end index j
Output A list of awakening-burst point pairs,

sam : slope of the line passing through each point pair,

∆c : altitude difference of each point pair.

If j − i < 2 then return
(tm, cm ) = point of maximum altitude between indices i and j .
(ta, ca ) = the awakening point as Eq (5) between indices i and j .
∆cam = cm − ca , and sam = ∆cam/(tm−ta )
Append {(ta, ca ), (tm, cm )}, sam , and ∆cam into the output.

MultiBurst (T , i, a − 1)
k = Find the first local min position from indicesm + 1 to j
Mult iBurst (T , k, j )

After finding awakening and burst points, the contrast suspi-

ciousness of burst awareness satisfies P (vi |A) ∝ q(φi ), where φi is
the involvement ratio of source nodes in A in multiple bursts. Let

the collection of timestamps from A to sink node vi be TA. Then,

φi =
Φ(TA )

Φ(TU )
, and Φ(T ) =

∑
(ta,tm )

∆cam · sam
∑
t ∈T

1(t ∈ [ta , tm])

(6)

where sam is the slope from the output of MultiBurst algorithm.

Here sam is used as a weight based on how steep the current burst

is. It is worth noticing that the MultiBurst algorithm only needs

to be executed once. With the preprocessed awakening and burst

points, the contrast suspiciousness of edges connected to v has

O (dv ) complexity, where dv is the degree of sink node v . Hence
the complexity for overall sink nodes are O ( |E |).

In fact, sudden drops are also a prominent pattern of fraudulent

behavior, since after creating the attack is complete, fraudsters

usually stop their activity sharply. To make use of the suspicious

pattern of a sudden drop, we define the dyinд point as the end

4
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of a drop. As Fig. 3b suggests, another auxiliary straight line is

drawn from the highest point (tm , cm ) to the last point (te , ce ). The
dying point (td , cd ) can be found by maximizing the distance to

this straight line. Thus we can discover the “sudden drop” by the

absolute slope value sbd=(cm − cd )/(td − tm ) between the burst point

and the dying point. Since there may be several drops in a fluctuated

time series T , we choose the drop with the maximum fall. To find

the maximum fall, we also need a recursive algorithm, similar to

Alg. 1:

1) Find a maximum point (tm , cm ), and the corresponding dying
point (td , cd ) by definition; 2) Calculate the current drop slope sbd ,
and the drop fall ∆cbd = cm − cd ; 3) Recursively find drop slope and
drop fall for the left and right parts of T , i.e., t < tm and t ≥ td
respectively.

As a result, the algorithm returns the maximum drop fall ∆cbd ,
and its drop slope sbd , which it has found recursively. Finally, we

use the weighted drop slope ∆cbd · sbd as a global suspiciousness

in equation (2), to measure the drop suspiciousness. Each edge con-

nected to the sink node v is assigned the same drop suspiciousness.

We use a logarithm scale for smoothing those edge weights.

With this approach to detect bursts and drops, we now show

that this provides a provable time obstruction for fraudsters.

Theorem 3.2. Let N be the number of edges that fraudsters want
to create for an object. If the fraudsters use time less than τ ≥√

2N∆t (S1+S1 )
S1 ·S1 , then they will be tracked by a suspicious burst or

drop, where ∆t is the size of time bins, and S1 and S2 are the slopes of
normal rise and decline respectively.

We also have the height of burst, cm ≥
√

2N∆tS1S2
S1+S2 . Thus, the

maximum height of time series T cannot be larger by far than that

of a normal sink node. That is the reason that we use the weighted

φi in equation (6) and weighted drop slope in equation (2).

3.1.3 Rating deviation and aggregation. We now consider edges

with categorical attributes such as rating scores, text contents, etc.

For each sink node vi , we use the KL-divergence κi between the

distributions separately from the suspicious source nodesA and the

other nodes, i.e., U \A. We use U \A for KL-divergence instead of

the whole source nodes U , in order to avoid the trivial case where

most of the rating scores are from A. The rating deviation κi is
scaled into [0, 1] by the maximum value before being passed into

functionq(·) to compute contrast suspiciousness. The neutral scores

can be ignored in the KL-divergence for the purpose of detecting

fraudulent boosting or defamation. Moreover, rating deviation is

meaningful when bothA andU \A have the comparable numbers of

ratings. Thus, we weighted κi by a balance factor, min{ fA (vi )/fU \A (vi ),
fU \A (vi )/fA (vi ) }.

To make holistic use of different signals, i.e., topology, temporal

spikes, and rating deviation, we need a way to aggregate those

signals together. We have tried to use RRF (Reciprocal Rank Fusion)

scores from Information Retrieval, and wrapped the scores with and

without scaling function q(x ). Compared to RRF score, we found

that a natural way of joint probability by multiplying those signals

together:

P (vi |A) = b
αi+φi+κi−3, (7)

was the most effective way to aggregate. In a joint probability,

we can consider the absolute suspicious value of each signal, as

opposite to the only use of ranking order. Moreover, being wrapped

with q(x ), the signal values cannot be canceled out by multiplying

a very small value from other signals. A concrete example is that

a suspicious spike can still keep a high suspiciousness score by

multiplying a very small score from low fraudulent density.

Moreover, HoloScope dynamically updates the contrast suspi-

ciousness P (vi |A). Thus the sink nodes being added with camou-

flage will have a very low contrast suspiciousness, with respect to

the suspicious source nodesA. This offers HoloScope the resistance
to camouflage.

3.2 Proposed algorithm
Before designing the full algorithm for large scale datasets, we

firstly introduce the most important sub-procedureGreedyShavinд
in Alg. 2.

At the beginning, this greedy shaving procedure starts with an

initial set A0 ⊂ U as input. It then greedily deletes source nodes

from A, according to users’ scores S:

S (uj ∈ A) =
∑

vi :(uj ,vi )∈E

σ ji · eji · P (vi |A),

5



Algorithm 2 GreedyShavinд Procedure.

Given bipartite multigraph G (U , V , E ),
initial source nodes A0 ⊂ U .

Initialize:

A = A0

P= calculate contrast suspiciousness given A0

S = calculate suspiciousness scores of source nodes A.
MT = build priority tree of A with scores S.

while A is not empty do
u = pop the source node of the minimum score from MT .
A = A \ u , delete u from A.
Update P with respect to new source nodes A.
Update MT with respect to new P.

A∗ = source nodes A that has the best objective HS (A∗) so far.

end while
return A∗ and P (v |A∗), v ∈ V .

which can be interpreted as how many suspicious nodes that user

uj is involved in. So the user is less suspicious if he has a smaller

score, with respect to the current contrast suspiciousness P, where

we use P to denote a vector of contrast suspiciousness of all sink

nodes. We build a priority tree to help us efficiently find the user

with minimum score. The priority tree updates the users’ scores

and maintains the new minimum as the priorities change. With

removing source nodes A, the contrast suspiciousness P change,

in which we then update users’ scores S. The algorithm keeps

reducing A until it is empty. The best A∗ maximizing objective HS
and P (v |A∗) are returned at the end.

Since awakening and burst points have been already calculated

for each sink node as an initial step before the GreedyShavinд
procedure, the calculation of the contrast suspicious P (v |A) for a
sink node v only needs O ( |A|) time. With source node j as the j-th
one removed from A0 by theGreedyShavinд procedure, |A0 | =m0,

and the out degree as di , the complexity is∑
j=2, · · · ,m0

O (dj · (j − 1) · logm0) = O (m0 |E0 | logm0) (8)

where E0 is the set of edges connected to source nodes A0.

With theGreedyShavinд procedure, our scalable algorithm can

be designed so as to generate candidate suspicious source node sets.

In our implementation, we use singular vector decomposition (SVD)

for our algorithm. Each top singular vector gives a spectral view of

high connectivity communities. However, those singular vectors

are not associated with suspiciousness scores. Thus combined with

the top singular vectors, our fast greedy algorithm is given in Alg. 3.

Algorithm 3 FastGreedy Algorithm for Fraud detection.

Given bipartite multigraph G (U , V , E ).
L = get first several left singular vectors

for all L (k ) ∈ L do
Rank source nodes U decreasingly on L (k )

Ũ (k )
= truncate u ∈ U when L (k )

u ≤ 1√
|U |

GreedyShavinд with initial Ũ (k )
.

end for
return the best A∗ with maximized objective HS (A∗),

and the rank of v ∈ V by fA∗ (v ) · P (v |A∗).

Theorem 3.3 (Algorithm complexity). In the graph G (U ,V ,E),
given |V | = O ( |U |) and |E | = O ( |U |ϵ0 ), the complexity of FastGreedy
algorithm is subquadratic, i.e., o( |U |2) in little-o notation, if the size
of truncated user set |Ũ (k ) | ≤ |U |

1/ϵ , where ϵ > max{1.5, 2

3−ϵ0 }.

In real life graph, ϵ0 ≤ 1.6, so if ϵ > 1.5 the complexity of

FastGreedy algorithm is subquadratic. Therefore, without loss of

performance and efficiency, we can limit |Ũ (k ) | ≤ |U |
1/1.6

for trun-

cating an orderedU in the FastGreedy algorithm for a large dataset.

In FastGreedy algorithm for HS-α , SVD on adjacency matrixM
is used to generate initial blocks for the GreedyShavinд procedure.

Although we can still use SVD onM for HS with holistic attributes,

yet considering attributes of timestamps and rating scores may

bring more benefits. Observing that not every combination of # of

stars, timestamps and product ids has a value in a multi-way tenor

representation, we can only choose every existing triplets (object ,
timestamp, #stars) as one column, and user as rows, to form a new

matrix. The above transformation is called thematricization of a

tensor, which outputs a new matrix. With proper time bins, e.g.,

one hour or day, and re-clustering of #stars , the flattening matrix

becomes more dense and contains more attribute information. Thus

we use such a flattening matrix with each column weighted by the

sudden-drop suspiciousness for our FastGreedy algorithm.

4 EXPERIMENTS
In the experiments, we only consider the significant multiple bursts

for fluctuated time series of sink nodes. We keep those awakening-

burst point pairs with the altitude difference ∆c at least 50% of

the largest altitude difference in the time series. Table 1 gives the

statistics of our six datasets which are publicly available for aca-

demic research
3
. Our extensive experiments showed that the per-

formance was insensitive to scaling base b, and became very stable

when larger than 32. Hence we choose b = 32 in the following

experiments.

Table 1: Data Statistics

Data Name #nodes #edges time span

BeerAdvocate [15] 26.5K x 50.8K 1.07M Jan 08 - Nov 11

Yelp 686K x 85.3K 2.68M Oct 04 - Jul 16

Amazon Phone & Acc [14] 2.26M x 329K 3.45M Jan 07 - Jul 14

Amazon Electronics [14] 4.20M x 476K 7.82M Dec 98 - Jul 14

Amazon Grocery [14] 763K x 165K 1.29M Jan 07 - Jul 14

Amazon mix category [16] 1.08M x 726K 2.72M Jan 04 - Jun 06

4.1 Evaluation on different injection density
In the experiments, we mimic the fraudsters’ behaviors and ran-

domly choose 200 objects with no more than 100 indegree as the

fraudsters’ customers, since less popular objects are more suscepti-

ble to manipulation. On the other hand, the fraudulent accounts can

come from the hijacked user accounts. Thus we uniformly sample

out a number of users as fraudsters from the whole user set. To test

on different fraudulent density, the number of sampled fraudsters

ranges from 200 to 20,000. Those fraudsters as a whole randomly

create 200 fake edges to each of the 200 products. As a results, the

fraudulent density ranges from 1.0 to 0.01 for testing. The rating

time is generated for each fraudulent edge: first randomly choose a

3
Yelp dataset is from https://www.yelp.com/dataset_challenge
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Table 2: Experimental results on real data with injected labels

Data Name metrics*

source nodes sink nodes

M-Zoom D-Cube CrossSpot HS M-Zoom D-Cube CrossSpot HS

BeerAdvocate

auc 0.7280 0.7353 0.2259 0.9758 0.6221 0.6454 0.1295 0.9945
F≥90% 0.5000 0.5000 – 0.0333 0.5000 0.5000 – 0.0333

Yelp

auc 0.9019 0.9137 0.9916 0.9925 0.9709 0.8863 0.0415 0.9950
F≥90% 0.2500 0.2000 0.0200 0.0143 0.0250 1.0000 – 0.0100

Amazon auc 0.9246 0.8042 0.0169 0.9691 0.9279 0.8810 0.0515 0.9823
Phone & Acc F≥90% 0.1667 0.5000 – 0.0200† 0.1429 0.1000 – 0.0200†

Amazon auc 0.9141 0.9117 0.0009 0.9250 0.9142 0.7868 0.0301 0.9385
Electronics F≥90% 0.2000 0.1250 – 0.1000 0.1000 0.5000 – 0.1250

Amazon auc 0.8998 0.8428 0.0058 0.9250 0.8756 0.8241 0.0200 0.9621
Grocery F≥90% 0.1667 0.5000 – 0.1000 0.1250 0.2500 – 0.1000
Amazon auc 0.9001 0.8490 0.5747 0.9922 0.9937 0.9346 0.0157 0.9950
mix category F≥90% 0.2500 0.5000 0.2000

† 0.0167 0.0100 0.2000 – 0.0100
* we use the two metrics: the area under the curve (abbrev as low-case “auc”) of the accuracy curve as drawn in Fig. 1b, and the lowest detection
density that the method can detect in high accuracy (F measure ≥ 90%).

†
one of the above fraudulent density was not detected in high accuracy.

start time between the earliest and the latest creation time of the

existing edges; and then plus a randomly and biased time interval

sampled from intervals of the exiting creation time, to mimic the

surge of fraudsters’ attacks. Besides, a high rating score, e.g. 4 or

4.5, is randomly chosen for each fraudulent edge
4
. At the same

time, we also add camouflage to other product nodes with the same

number of fraudulent edges.

Fig. 1a shows the results of HS-α on the BeerAdvocate data. To

detect fraudsters of a low density is much harder than that of a

high density, so the better methods are able to detect fraudsters

of lower density with a high accuracy. Since HS-α only considers

the topology information in our novel contrast suspiciousness, we

compare HS-α with the baselines based on graph topology. When

the fraudulent density decreases from the right to the left along

the horizontal axis, HS-α can detect fraudulent density as low as

0.125 in a high F measure, better than 0.8 which is the best of the

baselines.

Fig. 1b shows the results of HoloScope HS, which uses topology,

temporal and rating attributes. Comparing to those baselines on

the same kinds of attributes, HS can keep as high F measure as

more than 90% before reaching 0.033 in density, better by far than

the baseline methods (0.50 in density). In other words, to create

the same amount of fraudulent edges, HS can detect fraud with

high accuracy even when fraudsters use 6,000 source nodes (user

accounts). On the other hand, the best of the baselines detects in a

low accuracy (less than 50%) even when only 600 source nodes are

used, which is easier to detect. Besides, HS using several signals

further improves over HS-α with only topology signal (compared

with Fig. 1a) by decreasing density from 0.125 to 0.033 with high

detection accuracy.

In order to give a comparison on all six data sets with different

injection density, we propose to use the twometrics: a low-case “auc”

and the lowest detection density, described in the notes of Table 2.

The table reports the fraud detection results of our HoloScope (HS)

and the baselines on the six datasets. Since the accuracy curve stops

at 0.01 (the minimum testing density); and we add zero accuracy

4
the injection code is also open-sourced for reproducibility

at zero density, the ideal value of auc is 0.995. The auc on source

and sink nodes are reported separately. In terms of sink nodes,

HS outputs the rank list by suspiciousness scores, we use the area

under the curve of the AUC values along all testing density values

to measure the performance. As the table suggests, our HS achieved

the best auc among the baselines, and even reached the ideal auc

in two cases.

Furthermore, we compare the lowest detection density in Table 2.

The better a method is, the lower density it should be able to detect

well. As we can see, HS has the smallest detection density in most

cases, which can be as small as 200/14000= 0.0143 on source nodes,

and reached the minimum testing density of 0.01 on sink nodes.

That means we can detect fraudsters in high accuracy even when

they use 14 thousand accounts to create fake edges for each of 200

objects, due to the holistic use of signals in contrast suspiciousness

framework. The fraudulent objects can also be detected accurately.

4.2 Evaluation on Sina Weibo with real labels
We also did experiments on a large real dataset from Sina Weibo,

which has 2.75 million users, 8.08 million messages, and 50.1 million

edges in Dec 2013. The user names and ids, and message ids are

from the online system. Thus we can check their existence status

in the system to evaluate the experiments. If the messages or the

users were deleted from the system, we treat them as the basis for

identifying suspicious users and messages. Since it is impossible to

check all of the users and messages, we firstly collected a candidate

set, which is the union of the output sets from the HS and the

baseline methods. The real labels are from the candidate set by

checking the status whether they still exists in Sina Weibo (checked

in Feb. 2017). We used a program on the API service of Sina Weibo

to check the candidate user and message id lists, finally resulting

in 3957 labeled users and 1615 labeled messages.

The experimental results in Fig. 1c show that HS achieved high F-

measure on accuracy, which detected 3781 labeled users higher than

M-Zoom’s 1963 labeled users. The F-measure of HS improved about

30% and 60%, compared with M-Zoom and D-Cube respectively.

CrossSpot biased to include a large amount of users (> 500, 000) in
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Figure 4: HoloScope (HS) runs in near-linear time.

their detection results, which recalled less than 150 extra labeled

users, getting very low F-measure, less than 1.5%. In terms of mes-

sages, the HS achieved around 0.8 in AUC from the ranking list

of the results, while M-Zoom and D-Cube got lower recall, and

CrossSpot still suffered from very low F-measure with many false

positive messages. Therefore, our HoloScope outperformed the

baselines in real-labeled data as well.

4.3 Scalability
To verify the complexity, we choose two representative datasets:

BeerAdvocate data which has the highest volume density, and Ama-

zon Electronics which has the most edges. We truncated the two

datasets according to different time ranges, i.e., from the past 3

months, 6 months, or several years to the last day, so that the gen-

erated data size increases. Our algorithm is implemented in Python.

As shown in Fig. 4, the running time of our algorithm increases

almost linearly with the number of the edges.

5 CONCLUSION
In conclusion, we proposed a fraud detection method, HoloScope,

on a bipartite graph which can have timestamps and rating scores.

HoloScope has the following advantages: 1)Novel suspiciousness
metric:we propose a dynamic contrast suspiciousnessmetric, which

emphasizes the contrast in behavior between fraudsters and honest

users in terms of topology, temporal spikes, and rating deviation.

2)Robustness and theoretical analysis of fraudsters’ obstruc-
tion: Our HoloScope can obstruct fraudsters and increases their

time cost in a robust way. 3) Effectiveness: we achieved higher

accuracy on both semi-real and real datasets than the baselines

under the circumstance of camouflage. 4) Scalability: under rea-
sonable assumptions, the algorithm is sub-quadratic in the number

of nodes.
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