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ABSTRACT

This paper introduces CS-SRN, a general framework for
recovering sparse vectors representing specific features of
nodes/links in networks. We use compressive sampling (CS)
to construct a feasible measurement matrix under network
topological constraints which is motivated by network in-
ference. CS-SRN addresses the problem of monitoring the
network internal characteristics using indirect end-to-end
(aggregated) measurements. We evaluate the performance
of the proposed method by extensive simulations on both
synthetic and real-world networks under several configura-
tions. The experimental results indicate that this framework
outperforms the state-of-the-art compressive sensing-based
method and can be employed to efficiently and accurately
infer a wide range of networks.
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1 INTRODUCTION

A very wide range of real-world systems can be modeled
and structured by the means of networks (graphs), where
actors of the system are indicated by nodes (vertices), and
the existing connections between actors are demonstrated
by links (edges). The common examples of such networks
include technological and transportation infrastructures, com-
munication systems, biological systems, information systems,
and a variety of social interaction structures [17, 32]. Since
most of these networks are growing so fast and emerging
toward more decentralized management, the importance of
network monitoring (i.e. QoS measurement, troubleshoot-
ing, and service-level verification) has magnified in recent
years. Monitoring is one of the most challenging tasks in
most of the networks. The approaches that closely rely on
direct measurements or cooperation of individual nodes are
not always possible or economic due to several limitations,
such as protocols and/or topological constraints of networks.
Thus, the monitoring of network internal characteristics us-
ing indirect end-to-end (aggregated) measurements seems
an essential task in network inference, which is known as
Network tomography [6, 12, 18, 41].

Often, it is very beneficial to exploit the features of each
individual node/link with a total number of indirect aggre-
gated measurements much smaller than the number of all
nodes/links in the network. This is conceivable if we know
about the sparse nature of these features. For example in a
computer network, the number of congested links is small
relative to all links, in a biological network, the number
of infectious diseases hubs is much smaller than the set of
all nodes, or in a social network, the number of influential
spreaders and marketing targets is relatively small to all
nodes.

In this paper, we introduce “CS-SRN”, a compressive sam-
pling framework for efficiently recovering the sparse structures
in networks. Compressive sampling (CS) [5, 7, 9, 15, 16] is
a new research domain in signal processing and information
theory which would like to recover high-dimensional sparse
signals from a much smaller non-adaptive linear measure-
ments or incomplete observations. Its goal is to sample and
compress sparse signals, simultaneously. The preliminary idea
of CS [9] is that in a proper lower dimensional space, the
under-sampled representation of a signal covers the most
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significant information about that signal. The fundamental
challenge in CS is to correctly recover the data vectors up to
a certain sparsity percentage.

Compressive sampling is of great interest to various re-
search communities, such as communication theory [27, 28,
30], biological systems [21], sensor networks [31], and social
networks [26, 29]. One of the most important challenges in
applying CS on networks (graphs) is the construction of a fea-
sible measurement matrix which should satisfy two essential
constraints:

(1) In general CS applications, random Gaussian measure-
ment matrices usually used, but in networking, every
measurement should contain only non-negative inte-
gers.

(2) Most existing work in CS assumes that any subset of
vector entities can be aggregated together in the same
measurement [9, 15], but it is not a realistic assump-
tion in the network monitoring problem, because only
nodes/links in a connected sub-graph can be consid-
ered as one measurement. We call this limitation as
network topological constraints.

As a result, using compressive sampling in network infer-
ence needs entirely different assumptions in comparison with
other CS applications, so it is interesting in its own right.
There have been a few work for the construction of a feasible
measurement matrix in networks (graphs) [13, 20, 24, 26—
30, 37, 40]. In general, we can categorize these approaches
into either deterministic or random methods. The work in [40]
(RW) is one of the state-of-the-art CS-based algorithms for
sparse recovery in networks, which has three major draw-
backs: (1) relatively high number of required measurements,
(2) low accuracy in detecting the internal features vectors
of the network, and (3) significant linear bias towards high-
degree nodes for node selection in each measurement, which
make it inapplicable for many real-world networks. In other
words, this method can mostly recover sparse specifications of
nodes/links that are pointing to the neighbors of large degree
nodes. To tackle these problematic issues, in this paper, we
propose a general framework in the context of compressive
sampling for network inference by efficiently extracting the
link sparse specifications in the networks. We experimen-
tally evaluated the proposed method in several synthetic
and real datasets under various configurations. The results
demonstrate that our method has a significant improvement
compared to RW.

2 MODEL AND PROBLEM FORMULATION

We express a network by graph G = (V, E), where V =
{v1,v9,...,un} is the set of nodes (vertices) with cardinality
[Vl =n,and E = {e1,ez,...,e g} is the set of links (edges)
with cardinality | E|. Let deg(v) be the degree of a node v € V'
and NV (v) C V be the list of its neighbors. Suppose every link
¢ has a real value z;, and vector = = (z;,7 = 1,2,..., |E|) is
associated with the link set F. z is a k-sparse vector if and
only if ||z]|g = k, where ||.||g denotes the number of non-zero
elements in the support of x. Suppose we have m end-to-end
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Figure 1: A network with 9 nodes, 10 links, and 3 feasible
measurements

measurements over the network (m < |E|) and we would
like to identify specific links (i.e. congested links with large
delays) from these measurements. Note that the total delay
over a measurement is the sum of delays over the links in a
path or connected sub-graph.

Let z € RIFl be a non-negative vector whose p-th entry
corresponds to the value over link p, and y € R" denotes
the measurement vector whose g-th entry represents the
sum of values over the links of g-th measurement which is a
connected sub-graph in the network. Let A be an m x |E|
measurement matrix such that its ¢-th row corresponds to the
i-th measurement. A;; = 1 if and only if the i-th measurement
includes link j and zero otherwise. We can write:

Ymx1 = Amx|E|T|E|x1 (1)

For example network in Fig. 1 with |V| = 9 nodes, |E| = 10
links and m = 3 measurements, the feasible measurement
matrix A would be:

U1 v2 V3 V4 U5 Vg U7 U U9

mi /1 1 0 1 1 0 1 0 0
A=my [0 1 1 0 1 1 0 0 0] (2
ms\O 0O 0 0 1 0 1 1 1

The important question is how to estimate the link vector
x from the measurement vector y when we have an under-
determined system (m < |E|). This is possible if we know
that the vector x is sufficiently sparse (e.g. congested links
are much smaller than the set of all links), which is often a
reasonable assumption. As mentioned, many features of in-
terest on nodes/links in real-world networks are often sparse.
It is worth noting that sparse recovery over networks us-
ing compressive sampling has a closely related field called
graph constrained group testing [3, 10, 22, 35, 39]. They have
the same requirements for measurement matrix, but the dif-
ferences are in: (1) in group testing, z is a logical vector,
however, it is a real vector for the CS problem, and (2) the
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valid operations in each group testing measurement are the
logical “AND” and “OR”, in contrary to the additive linear
mixing of the real numbers in z in CS. [37] showed that
compressive sampling can perform better than group testing
in terms of the number of required measurements, so we have
chosen compressive sampling in this paper.

3 RELATED WORK

There have been a few works which consider graph topological
constraints in order to design a feasible measurement matrix
in complex networks using compressive sampling [20, 24, 27,
28, 37, 40]. Different methods which were applied for this
purpose can be categorized as follows:

e Deterministic designs of measurement matrix: these

methods are based on explicit construction of mea-
surements. In [20], the authors challenged to estimate
network link delays from end-to-end probing between
boundary nodes along predetermined routes. Accord-
ing to this method, each row of the measurement ma-
trix is constructed with a predetermined path (usually
the shortest one) between two boundary nodes. They
showed that most of the times with high probability,
0.6| E| measurements are sufficient to recover 1-sparse
link vectors. Note that this number of measurements
is relatively high, regarding to the next methods in the
recent literature.
On the other hand, [37] introduced a new concept
called hub. They proposed a method to find a subset
of nodes which can be treated as a complete graph
and so measured freely via hub. In this method, the
additive measurements can be taken over nodes only if
they induce a connected sub-graph. They also assume
that the constructed measurement matrix is a binary
matrix and show that the value of each node in every
measurement should be added just once. To achieve
this, there must not be more than two nodes with odd
degrees in a set of connected nodes by conformity with
Euler’s theorem. This theorem is not considered in
their method, so the constructed measurement matrix
is not feasible.

e Random designs of measurement matrix: in these meth-
ods, measurements are generated randomly such that
the graph path constraints are held. For example, in
[40] each measurement corresponds to a random walk
over the links of graph which starts from a random
selected node and traverses a number of nodes and
links randomly, denoted by ¢. It is proven that with t =
O(#TD(H)), the number of required measurements for

recovering k-sparse link vectors are O(C4T2 (n)klog(n)),
where T'(n) is the mixing time of random walk and
(c, D) are constants. [27, 28] use a different version of
random walk which is not biased towards high-degree
nodes in order to have a more coverage from the net-
work. In another method [24], each entry of the mea-
surement matrix is randomly generated in nodes and
information is propagated through the network using
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gossip technique which is a decentralized iterative algo-
rithm. In each iteration, a node randomly selects one
of its neighbor and their values are updated with the
average of their data. As the number of iterations tends
to infinity, the data of nodes converge to the average
of all of their initial values (x;(0)), denoted by:

i () = 2; 24(0) (3)

[40] is one of the state-of-the-art CS-based algorithms (we
call RW in short) for sparse recovery in networks, although
we stated its three major drawbacks in section 1. In this
paper, to solve these drawbacks, we propose the CS-SRN
framework which reduces the sufficient number of required
measurements, increases the accuracy in sparse recovery,
and avoids biasedness towards high degree nodes. We will
experimentally evaluate the performance of the CS-SRN
method compared to RW in section 5.

4 PROPOSED METHOD

In this section, we propose a Compressive Sampling frame-
work for Sparse Recovery in Networks (CS-SRN). In CS-SRN,
we construct a feasible random measurement matrix A to
infer the link features inside a network by indirect end-to-end
measurements. In the constructed measurement matrix A,
each measurement (with non-negative integer entries) has to
be feasible in the sense that the links of the same measure-
ment should correspond to a path or connected sub-graph.
Thus, CS-SRN holds sparse recovery with network topolog-
ical constraints. In the proposed method, every row of the
measurement matrix A is constructed from a guided walk
based on the CS-SRN approach. In order to construct each of
m measurements (row of A), which is called “CS-SRN walk”,
the following steps should be iteratively performed:

(1) A start node is selected relative to the probability

Pl) = prl * 1 )
probability has the inverse relation to the degree of a
node (deg(v)).

(2) For all the neighbors of current node, the transition
probabilities of moving from current node (Cn) to

its neighbor node w where the link (Cn,w) € E are
1 deg(Cn) )
» deg(w)

(3) The probability of staying at current node is computed
by P(Cn) =1 — ZwEN(C'n) P(w).

(4) The next node is selected between three different op-
tions, then the visited link removes. In the first option,
if there exist some neighbors for the current node such
that their probabilities P(w) are greater than P(Cn)
then the next node will be chosen randomly among
these neighbors. In the second option, if there does
not exist such neighbor then the next node is selected
relative to P(w). Otherwise the walker traces back to
the previous node in which the next node will be the
previously visited node before the current node.

) as current node. This

calculated by P(w) = m X min(
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(5) The last three steps are repeated t times which is the
length of a walk (measurement).

(6) Finally, we accomplish the above steps m times to
construct m independent linear measurements.

Random Walk-based measurement matrix construction
of [40] is one of the state-of-the-art CS-based algorithm for
sparse recovery in networks. RW-based methods introduces
a linear bias towards high-degree nodes [25], and it may be
inapplicable for designing an efficient measurement matrix
to infer networks with diverse degree distributions, ranging
from constant-degree (e.g., in regular graphs), a distribution
concentrated around the average value (e.g., in Erdos-Rényi
random graphs, or in well-balanced peer-to-peer networks), to
heavily right-skewed distributions (as the case in World Wide
Web, unstructured P2P, Internet at the IP and Autonomous
System level, and Online Social Networks). Because in these
networks, the congested links (an example for sparsity prop-
erty of links) are mostly located on the links pointing to the
lower degree nodes.

The basic idea in the proposed CS-SRN framework is in-
spired by the Metropolis-Hasting MCMC technique [11, 23],
which is unbiased toward high-degree nodes [25]. In the pro-
posed method, we can avoid biasedness towards high-degree
nodes by selecting a “good start” node for every measure-
ment, and assigning proper probabilities to the neighbors of
current node for walking on the best next node for every walk
of length t. Moreover, we choose the best next node between
three different aforementioned options. Note that these mea-
surements (walks) through the connected sub-graphs show
the feasibility of the measurement matrix A. Therefore, the
CS-SRN may be more proper approach than RW to solve the
aforementioned problem by recovering the congestion links
which are located on links pointing to the neighbors of not
only high-degree nodes but also low-degree nodes. We exper-
imentally compared the CS-SRN and RW methods under
four various aspects and the results in section 5 evidence this
claim such that the CS-SRN is more applicable approach
than RW for sparse recovery in the networks. As a result, we
offer the CS-SRN framework for analysing various kinds of
complex networks.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate the performance of the CS-SRN
framework under various configurations. First, we introduce
the synthetic and real-world networks we used for the eval-
uation. Next, we explain settings of the evaluation. Finally,
the achieved results and their analysis are shown.

5.1 Datasets

We consider both synthetic and real-world networks. We
use four well-known classic models for generating synthetic
networks via SNAP platform [2]. All of these networks have
500 nodes which namely:

(1) The Erdos-Rényi network (The simplest variety of
random graphs), [19], with 6000 links.
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(2) The Watts-Strogatz network (“Small-world” graphs
with high clustering and low path lengths), [38], with
2490 links. The rewiring probability is 0.5 and the
number of initial closest neighbors is 5.

(3) The Barabési-Albert network (Graphs with extreme
degree distributions, also known as power-law or scale-
free graphs), [4], with 2485 links and each new node is
preferentially connected to 5 existing nodes.

(4) The G* network with each node directly connecting
to its four closest neighbors in ring topology with 500
links. G* is important to the study of small-world
networks [38].

We have summarized these networks in Table 1.

Table 1: Synthetic Networks Models

Synthetic Network Model | Parameters | No. of nodes | No. of links

Erdos-Rényi [19] - 500 6000
Watts-Strogatz [38] [5; 0.5] 500 2490
Barabasi-Albert [4] 5 500 2485

G7 [38] 4 500 500

We also consider two real-world networks:

(1) The network of 500 busiest commercial airports in the
United States (USTop500), [14], with 500 nodes and
2980 links.

(2) The neural network of the Caenorhabditis elegans worm
(C.elegans), [38], with 306 nodes and 2345 links.

‘We have also summarized these networks in Table 2.

Table 2: Real-World Networks

Real-World Network | No. of nodes | No. of links
USTop500 [14] 500 2980
C.elegans [38] 306 2345

5.2 Settings

In each of the test cases for the synthetic networks, we gen-
erated 3 networks using SNAP with 10 set of walks. For the
real-world datasets, we generated 10 set of walks with the
same settings. For each network and each set of walks, we
performed the experiments. The denoted points in the figures,
represent the mean value of all tests.

The objective function that we seek to minimize is the
LASSO model [36],[8], which has ¢ norm as the regulariza-
tion term:

min |21 + Az — y[3. )

To perform the optimization, we use MATLAB and SPAMS
package [1].

In all of the test cases, we compare our CS-SRN method
with the work in [40] which we call RW in short. As mentioned
before, this work is one of the best existing methods for

sparse recovery in networks. For recovery error, we consider
llz—a'|l2
o ) llll2 ]
the original and predicted vectors, respectively.

the relative error, specifically , where z and &’ are
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Figure 2: Experiment 1: Recovery error for measurements of length @

5.3 Simulations

Experiment 1 (Recovery Error): Figure 2 shows the recovery
error for different synthetic and real datasets. The number
of measurements (walks) in each dataset is in a range from
0.1|E| to 0.45|E| and the length of each measurement is set to

@. The sparsity percentage for each network is mentioned
under its figure. We consider a constant positive value for
the non-zero elements and spread them in the unknown link

vector z in the following way:

(1) Set N = Sort the nodes by their degrees in ascending
order.

(2) Set I = ¢ (NULL).

(3) Traverse N in ascending order and for each node, add
the connecting links to I.

(4) Set s = number of non-zero elements for the network
(from the sparsity percentage).

(5) Set the value of the corresponding elements of the first
s links in [ to a non-zero constant value.

As shown in Figure 2, in almost all test cases, our CS-SRN
framework outperforms RW in terms of having lower relative
error for all numbers of measurements. Also, our method gets
lower error even in small number of measurements compared
to RW. This improvement can be very important in the
situations where performing measurements has a high cost
and the goal is to do an acceptable recovery on a reasonable
cost.

The reasons for this improvement in recovery can be ex-
plored in several ways. First, in our algorithm, we do not
traverse links repeatedly in one measurement due to the op-
tions defined in the proposed method, which leads to have a

more coverage of the whole network. Second, performing an
unbiased CS-SRN walks on the graph, leads to fair coverage
of all nodes of all degrees, consequently, the covered links
are less connected to high degree nodes, where we are prone
to coverage of the links related to such nodes. Hence, in our
method, we cover more links and the indirect end-to-end
measurements will include more non-zero values by the mea-
surements. Overall, we see around 20.45% improvement in
average on all datasets.

Experiment 2 (Sparsity Effect): In this experiment for all
networks and for each percentage of sparsity, we ran a set

of measurements containing @ walks of length @ The
results can be seen in Figure 3. Except a temporal decrease
in USTop500 for lower values of k, in all other test cases our
method produces a better recovery with lower error for each
sparse vector.

In Figure 3, particularly for Watts-Strogatz and Barabasi-
Albert networks which are closer to real-world graphs than
Erdos-Rényi network, it can be observed that even on high
sparsity, we have the lower recovery error by our method, and
we observe more than 16% improvement in various sparsity.
Thus, the results demonstrate that our CS-SRN framework
can work accurately even on very high sparse link vectors.
Overall, we see around 11.3% improvement in average.

Experiment 3 (Maximum Recoverable Sparsity): In this
experiment, with the same settings as experiment 1, we used
two variations of Erdos-Rényi networks with 3000 and 6000
links and the G* network. For each sparsity for the unknown
link vector, we did the recovery of the unknown vectors.
We call a vector recovered, if the vector is recovered with
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the relative error of no more than 0.01 in at least 90% of
generated tests.

As seen in Figure 4, our method gets a better recovery,
although this improvement is more significant in G* network
which has a more structured nature. This can be very useful
in the design of the network structure where we can choose
the structure that gives us a better recovery of the unknown
vector.

Experiment 4 (Impact of Density in Network Structure):
In this experiment, we only considered Erdés-Rényi network
with different number of links. This causes various density in
the graph structure. We consider the unknown link vector| t(l)
E

have 20% sparsity and for each network, we ran a set of

2
measurements with the length of |TE‘ using RW and CS-SRN.
We observe in Figure 5 that in different structure density,

the CS-SRN framework has better recovery than RW, while

in the density of 0.05, CS-SRN outperforms RW by 33%
improvement. It is important to note that in a less dense
network structure, the non-zero elements are more spread
throughout the network links. Thus, it is natural to have a
more difficult recovery in this case. But in a dense network,
this task becomes easier and our method uses this privilege
in the recovery, while RW does not.

6 CONCLUSION

In this paper, we presented a general framework, called CS-
SRN, for the sparse recovery of certain characteristics of the
links over the networks in the context of network tomography.
Our proposed framework is based on compressive sampling
in order to generate a sufficient number of collective additive
measurements under network topological constraints to de-
sign a feasible measurement matrix. Extensive simulations
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have been conducted on both synthetic and real networks in
several aspects under various configurations. Our experimen-
tal results demonstrate that this framework outperformed
the state-of-the-art CS-based method for sparse recovery in
a wide class of networks. Further research is needed to find
efficient ways to construct measurement paths. Moreover,
we have only studied compressive sampling over simple net-
works, and extensions to weighted networks [28, 30], directed
networks, and bipartite networks [33, 34] will be of future
works.
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