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ABSTRACT
Many researchers a�empt to study the e�ects of interventions in
network systems. To simplify experimental design and analysis in
these environments, simple assumptions are made about the behav-
ior of its members. However, nodes may not respond to treatment,
or may respond maliciously. �ese adversarial nodes in�uence treat-
ment topology by preventing or altering the expected network
e�ect, but may not be known or detectable. We characterize the
in�uence of adversarial nodes and the bias these nodes introduce
in average treatment e�ect estimates.

In particular, we derive expressions for the bias induced in av-
erage treatment e�ect using the linear estimator from Gui et al
(2015). In addition to theoretical bounds, we empirically demon-
strate estimation bias through experiments on synthetically gen-
erated networks. We consider both the case in which adversarial
nodes are dispersed randomly through the network and the case
where adversarial node placement is targeted to the highest degree
nodes. Our work demonstrates that peer in�uence makes causal
estimates on networks susceptible to the actions of adversaries,
and speci�c network structures are particularly vulnerable to to
adversarial responses.

CCS CONCEPTS
•Computingmethodologies→Causal reasoning anddiagnos-
tics; •Networks →Social media networks;

KEYWORDS
casual e�ect estimation, relational data, social networks, adversarial
analysis

1 INTRODUCTION
�e e�ect we have on our peers has been a long-studied question
in the social sciences. Social media systems provide a lens through
which to study social in�uence mechanisms and have allowed for
deeper analysis and experimentation in the study of peer e�ects.

�e unique role of social media in emotional and social contagion
is well documented [9] [16]. Some groups have a�empted to har-
ness the power of social systems to in�uence individual opinions.
Political campaigns by special interests groups against particular
policy views and fake product reviews from advertisers or compet-
ing products all act as adversaries with respect to network e�ect,
a�empting to persuade or otherwise manipulate other members of
the population. So-called ”astroturf” campaigns are one example
of this phenomenon [19]. In these campaigns, a single actor deter-
mines the behavior of several bot or otherwise arti�cial accounts
in a network (e.g., social media site). �ese players acts in a spe-
ci�c, coordinated way to convince other members of the network
to adopt opinions by simulating grassroots support through the
arti�cial members. �ese campaigns in special interests, marketing,

and political movements have been the subject of recent media and
scholarly a�ention [4] [14] [19] [25]. However, the existence of
such individuals is generally ignored in estimation of treatment
e�ects in large-scale online experiments. Given the growing con-
cern over the in�uence of these campaigns and other adversaries
in large social media platforms, we would like to understand the
e�ect of adversaries on e�ect estimation.

Adversaries can take many forms: bots, competitor-owned ac-
counts, paid individuals, and noncompliers might all function as
adversaries in the estimation of treatment e�ect relative to some
network A/B test. �e behavior of adversaries in the population
can in�uence the behaviors and outcomes of those exposed to the
deviant behavior, which might mask or manipulate the true esti-
mand of interest. �ese individuals may also distort the treatment
exposure topology of the network, further diverting measures of
treatment e�ect.

In this paper, we characterize the e�ect of adversarial agents
on treatment e�ect estimates in the propositional and network
se�ings. To our knowledge, this is the �rst exploration of the e�ect
of adversaries on causal estimation in networks. We show that
network e�ect is the primary source of bias from adversaries and
identify speci�c graph structures especially vulnerable to adversary
in�uence. We additionally derive expressions for the bias induced
from adversaries and examine the di�erence between random and
targeted placement in the network.

�e rest of the paper is structured as follows. In Section 2, we
review background on causal e�ect estimation in both the propo-
sitional and relational (network) cases. In Section 3, we de�ne
adversaries with respect to experimental design. In Section 4, we
derive expressions for the bias in average treatment e�ect (ATE)
estimation due to adversaries in the population. In Section 5, we
present simulation results over the increase in ATE bias as the
number of adversarial agents increases for three types of random
graphs. In Section 6, we review related work in the literature. In
Section 7, we conclude and discuss directions for future work.

2 BACKGROUND
A/B testing is the standard method for estimating the e�ect of some
treatment on a particular outcome of interest. �e procedure uses
random assignments of treatment in a population to determine the
di�erence in outcome a�er receiving that treatment.

Suppose an administrator for a large-scale online encyclopedia
would like to introduce some new feature to increase the time
visitors spent on her site. She is considering adding a link to the
top of the page that will send the visitor to a random article on
the site, which she hopes will increase total browsing time for site
visitors. Before deploying this change to all visitors, she would like
to quantify the e�ect of this website change.

For each individual, we are concerned with estimating the e�ect
of some treatment administered. Let zi be the treatment assignment



to individual i . Here we consider only binary treatments, where
each individual either receives treatment (zi = 1), or not (zi = 0).
Let Yzi be the outcome of individual i under treatment assignment
z.

In the online encyclopedia scenario, treatment is serving a page
with the random article link, and outcome is some measure of
the visitor’s total browsing time over a given period (e.g., minutes
browsing per month). �is treatment is assigned randomly to site
visitors, and the treatment assignment of any user is �xed once
assigned.

We let Y1i denote visitor i’s minutes per month spent browsing
where i was selected to receive pages with the random article link,
and Y0i is i’s minutes per month spent browsing where i received
the control pages.

2.1 Causal E�ect Estimation
�ere are many methods described in the literature to measure
the e�ect of treatment on some population. In this work, we will
focus on the estimation of the average treatment e�ect (ATE), τ , the
average di�erence in outcome under treatment and control:

τ =
1
N

N∑
i
(Y1i − Y0i ) (1)

We cannot observe both Y1i and Y0i since each individual can only
receive a single treatment assignment. Instead, we will estimate τ
under the potential outcomes framework of Rubin [22]. �is frame-
work relies on the use of counterfactuals. A counterfactual value
is the outcome of an individual under the alternative treatment
assignment.

We would like to quantify the di�erence between the mean
outcomes of the population under global treatment, where every in-
dividual receives treatment, and global control, where no treatment
is assigned. �ere are several methods for estimating τ using coun-
terfactuals. �e simplest procedure takes the di�erence between
mean outcomes in each treatment group:

τ̂ =
1
N1

N∑
i,zi=1

Y1i −
1
N0

N∑
i,zi=0

Y0i (2)

A more sophisticated method learns a model of outcome depend-
ing on the unit’s treatment assignment and other unit-speci�c
a�ributes, then estimates each unit’s counterfactual outcome [13]
[18]. Another alternative matches units in treatment to units in
control using e.g., k-means, and uses the outcomes of the matched
units to estimate the counterfactual outcomes [20].

�e potential outcomes framework assumes that our population
samples are individually and identically distributed (iid) and the
outcome of an individual i is dependent only on i and her treatment
assignment. �at is, the treatment assignment of other individuals
does not interfere with i’s outcome. �is is referred to as the Stable
Unit Treatment Value Assumption (SUTVA).

2.2 Causal E�ect Estimation in Networks
�e causal estimation framework discussed so far has been in the
propositional se�ing, where the data is iid. Now we consider the
network or relational case. Returning to our example, suppose the
encyclopedia website includes a social sharing component that

facilitates article sharing between friends. Now visitors assigned
to treatment can easily send interesting random articles to their
potentially untreated friends, polluting the time on site estimates
of users in the control group. With the addition of this social
component, we must revisit the experimental design.

If a treated individual is sharing her randomly served articles
with her friends, then her treatment assignment spills over to her
friends’ treatment assignments. �e outcome of an individual,
Yi (Z = {0, 1}N ), now depends on the vector Z of treatment assign-
ments across the network rather than just her individual treatment
assignment. �is is a violation of SUTVA. To estimate treatment
e�ect, we must determine the di�erence between global treatment
and global control:

τ =
1
N

N∑
i=1

(
Yi (Z = 1N ) − Yi (Z = ON )

)
(3)

2.2.1 Graph Cluster Randomization. In the relational paradigm,
the properties of one unit are not independent of other units (the
data is non-iid). LetG = 〈V ,E〉 be an undirected graph representing
the relationships among the population, where two nodes vi ,vj
have an edge ei, j if and only if there is a relationship between vi
and vj . We use A to denote the adjacency matrix of G and D to
represent the degree matrix of G.

�e edges between nodes are carriers of treatment exposure.
When units in control are exposed to treatment, the outcome of
those exposed units is potentially in�uenced by exposure. �is
treatment interference introduces bias in the average treatment
e�ect by a�ributing outcomes due to treatment exposure to control
behavior.

If treatment assignment to nodes across the network is random
and uniform, the probability that a node experiences global treat-
ment or global control in their neighborhood is 1

2Ni where Ni is
the number of nodes adjacent to i , so the probability of a single
node being exposed to both treatment assignments is high.

We would like a procedure to minimize this exposure between
treatment and control assignments. �e graph cluster randomiza-
tion approach of Ugander et al. [23] accomplishes this by assigning
treatment to clusters of the graph, which reduces node exposure
to the alternative treatment assignment. �e general procedure
for graph cluster randomization is as follows: (1) cluster the graph,
(2) randomly assign treatment to clusters, and (3) estimate causal
e�ect.

�e treatment assignment vector over the graph, Z, results in
varying levels of exposure for each node in the network. To esti-
mate outcomes for global treatment and global control, the authors
assume multiple treatment assignment vectors for a given unit can
map to the same potential outcome. 1[Z ∈ Ω1

i ] denotes the indi-
cator function for Z belonging to the set of treatment assignment
vectors under which YZi = Y1i . When the function is true, the unit
is network exposed to treatment t . �e analogous de�nitions hold
for units network exposed to control.

Under this assumption, the ATE can be estimated using a Horwitz-
�ompson estimator, which uses inverse probability weighting over
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outcomes for units network exposed to treatment and network ex-
posed to control:

τ̂ =
1
N

N∑
i

(YiZ1[Z ∈ Ω1
i ]

Pr (Z ∈ Ω1
i )
−
YiZ1[Z ∈ Ω0

i ]
Pr (Z ∈ Ω0

i )

)
(4)

�e authors identify a number of exposure model de�nitions for
approximating Ω1

i , Ω0
i . One de�nition uses a neighborhood portion

threshold q such that Z ∈ Ω1
i when qNi of i’s neighbors receive

treatment, and Z ∈ Ω0
i when qNi of i’s neighbors are assigned to

control. Nodes with treatment exposure outside of either of these
ranges are omi�ed from the estimation, which can lead to high
variance over the estimate [23].

2.2.2 Additive Models. An alternative estimation procedure by
Gui, et al. [12] uses a linear estimator of outcome д from individual
treatment e�ect and the portion of treated neighbors. Returning
to the online encyclopedia example, if we believe the browsing
time for one visitor in�uences browsing time for her friends, then
her treatment assignment a�ects her friends’ outcomes through its
e�ect on her browsing time. �is, too, is a violation of SUTVA.

�e linear additive model assumes that ATE is additive in indi-
vidual and network e�ects. Instead of binning units according to
their network exposure to treatment and control, the portion of
treated neighbors σ is used directly in the estimation:

д(zi ,σi ) = α + βzi + γσi (5)

ATE is then estimated as the sum of the individual treatment and
treatment exposure parameters, β̂ + γ̂ . �is estimation method
allows a spectrum of treatment exposure across the network, and
is robust to SUTVA violations from outcome interference.

3 ADVERSARIAL NODES
Given this framework for causal inference, we de�ne an adversary,
or adversarial node as an individual in the population who is aware
of her treatment assignment in the experiment and acts under a spe-
ci�c behavioral model in order to skew the experimental quantity
of interest.

It is unlikely for a single node to have a large e�ect on esti-
mation in an appropriately dense network. More likely, we are
concerned with the e�ect of a set of adversaries following the same
behavioral model. In the propositional se�ing, the data is iid, so
bias in estimated treatment e�ect is determined only by the dis-
torted response of adversaries. In the network se�ing, however,
treatment of a single individual may expose the neighbors of that
unit to treatment, so bias is induced both through the adversary’s
outcome and the peer e�ect that adversary applies to its neighbors.
We consider the case with interference from both treatment and
outcome. �is means the behavior of the adversary additionally
in�uences the outcome of its neighbors, so adversary bias in the
network se�ing can di�use through the network via peer in�uence
into nonadversary outcomes.

3.1 Behavioral Models for Adversaries
We will assume that each adversary in the network follows the same
behavioral model. Here we assume that the outcome of individuals

is bounded. We recognize three possible behavioral models an
adversary might follow:

(1) �e adversary responds randomly from a uniform distri-
bution over the outcome space, regardless of treatment
assignment.

(2) �e treated adversary responds with the maximum out-
come, and the control adversary responds with the mini-
mum outcome, in order to in�ate the estimated treatment
e�ect.

(3) �e treated adversary responds with the minimum out-
come, and the control adversary responds with the max-
imum outcome in order to minimize the estimated treat-
ment e�ect.

�e �rst of these behavioral models results in an increase in
variance over the ATE. �e adversaries inject noise into the estimate
through random behavior. In the network se�ing, this increases
the amount of random noise observed by neighbors, but does not
bias neighbor outcomes.

�e behavioral models (2) and (3) aim to bias the e�ect estimation
in some direction. In the network se�ing, these behavioral models
have a stronger e�ect than the random response model. By using
extremes in their outcome response function, adversaries push
the outcomes of their neighbors by exercising maximum network
e�ect.

Consider behavioral model (2) in the encyclopedia example, and
recall that we assume adversaries know their treatment status. An
adversary given treatment would spend the maximum time on
site and share a large number of pages with their friends, and an
adversary in control would stop using the site and social component.

�e models described here are not meant to be a complete de�-
nition for any possible adversary. �e adversary behavioral model
can be arbitrarily complex. Indeed, sophisticated adversaries are
likely interested in masking some behavior to avoid detection. In
this work, however, we are interested in a general exploration of the
worst case performance of causal e�ect estimation in the presence
of adversaries and concentrate on extreme models of adversary
behavior.

4 BIAS FROM ADVERSARIAL NODES
We are interested in ATE bias due to adversarial behavior in the
network. Previous work has shown that variance over ATE esti-
mation using graph cluster randomization is large and sensitive to
several choices in the experimental setup: estimation parameters,
clustering method, and treatment assignment each in�uence the
variance over the ATE estimate for a particular graph [8]. Given the
plurality of factors that in�uence the variance over ATE estimation,
this work focuses on the bias in the ATE estimate due to adversarial
behavior. In addition, the bias-inducing behavioral models are of
greater interest in the network experimental se�ing because those
behaviors result in stronger peer in�uence, especially in estima-
tion methods that include the neighborhood outcome mean as a
parameter in the e�ect estimation.

We de�ne δR (x̂ ,k) as the bias in the estimate of x due to k
adversaries in the population. For our framework and analysis, we
will assume adversary identities and behavioral functional forms
are known.
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4.1 Adversaries in the Propositional Setting
In the propositional se�ing, the only in�uence an adversary can
exact on the estimated ATE is through its own behavior. We can
therefore separate the outcomes of adversaries from the outcomes
of non-adversary units:

τ̂ =
1
N1

N∑
i=1
zi=1
i<R

Y1i −
1
N0

N∑
i=1
zi=0
i<R

Y0i +
1
N1

∑
r ∈R
zr=1

Y1r −
1
N0

∑
r ∈R
zr=0

Y0r (6)

where R is the set of adversaries in the population. Note that the
adversary outcomesY1r andY0r are de�ned by the adversary behav-
ioral function. When the adversary outcome function is constant,
we can derive the bias due to adversary behavior:

τ̂ =
1
N1

N∑
i=1
zi=1
i<R

Y1i −
1
N0

N∑
i=1
zi=0
i<R

Y0i +
|R1 |
N1

YR1 −
|R0 |
N0

YR0 (7)

where R1, R0 are sets of adversaries receiving treatment or in con-
trol, respectively, and YR1, YR0 are adversary outcomes under treat-
ment and control. So the bias introduced from adversarial behavior
in the propositional case is given by:

δR (τ̂ , |R |) =
|R1 |
N1

YR1 −
|R0 |
N0

YR0 (8)

4.2 Adversaries in the Relational Setting
In systems with outcome interference, the treatment e�ect di�uses
through the network. �is generally requires a temporal component
in the model. In the �rst time-step, the treatment in�uences only
the the nodes for which it was assigned. For subsequent time-steps
t , outcome is a function of both zi , the unit’s treatment assignment,
and Yj,t−1, the outcome of neighbors, j, of i .

Adversaries in the network se�ing are particularly interesting
because these nodes block the �ow of treatment e�ect through the
network. �is distorts the treatment topology of the network, and
the e�ect of those blocks deepens as the number of time-steps for
treatment propagation increases. In addition, di�usion of treatment
e�ect through the network also allows bias to propagate through
the network. �is is why astroturf campaigns are e�ective: arti�cial
accounts target individuals susceptible to peer in�uence and push
them toward a particular outcome, and those individuals in turn
in�uence their neighbors.

In this context, the most in�uential nodes are not necessarily
nodes with highest degree. A node with fewer neighbors experi-
ences a larger e�ect from any single neighbor’s outcome. A high
degree node only has a high e�ect on its neighbors outcomes if its
neighbors have low degree. We de�ne adversarial in�uence, ωi , of
a node i in the network G as:

ωi = D−1AINi (9)

where D is the diagonal degree matrix of G, A is the adjacency
matrix ofG , and Ii is a 1xN vector with the ith row equal to 1. Note
ωi is equal to the ith column sum of the transition matrix of G and
bounded [0,N ]. For comparing total in�uence of a set of adversaries
among graphs, we take the sum of ωa for each adversary a in the
set and divide by N to normalize.

Figure 1: Total normalized in�uence of adversaries as the
number of adversaries increases in stochastic block models,
small-world networks, and scale-free networks. We consid-
ered cases where adversaries are selected either randomly or
greedily based on maximum degree.

If the goal of the set of adversaries is to maximize bias in the
experimental estimate, it is unlikely the entire network will consist
of adversaries even in the worst case. We will instead consider bias
for a set of adversaries up to a dominating set of adversaries. A
dominating set S of a graph is a set of vertices such that every node
in the network shares at least one edge with a member of S . When
adversaries form a dominating set over the graph, every node will
be adversary-exposed to some degree.

�ere are a number of ways to construct this set. �e simplest
procedure is to greedily select nodes from the graph according to
some heuristic until the set of chosen adversaries dominates the
network. We compare the following selection methods:

(1) Randomly select nodes from the graph.
(2) Greedily select nodes according to number of neighboring

uncovered nodes, breaking ties with vertex degree.

An uncovered node is one that is not adjacent to an adversary.
�ese two procedures represent random placement of adversaries
and targeted placement of adversaries, respectively. �e greedy
procedure using number of uncovered nodes and degree is the
standard method for greedily constructing a dominating set over
the graph [7].

Figure 1 shows the increase in total normalized adversary in-
�uence as the number of adversaries increases using the random
and greedy selection procedures for three di�erent random graph
generation procedures: small-world networks [24], scale-free net-
works [5], and stochastic block models [11]. Our analysis does not
include Erdös-Rényi graphs, as these graphs rarely exhibit commu-
nity structure or other properties consistent with those observed
in real-world networks.

Small-world networks are generated by constructing a la�ice
with a given degree and then rewiring edges to new nodes with
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rewiring probability p. A rewiring probability of 0 produces a reg-
ular la�ice, and a rewiring probability of 1 produces a random
(Erdős-Rényi) network. When the rewiring probability falls in
the range [0.01, 0.1], the network is considered a small-world net-
work. �ese networks have large clustering coe�cients and short
diameters, which are properties found to be consistent with many
real-world networks [24].

In a scale-free network, new nodes are connected to existing
nodes in proportion γ to the current in-degree of the existing node.
Networks generated in this way have degree distribution following
a power law P(k) ∼ k−γ [5], which is an additional property noted
in real-world networks.

Stochastic block models (SBMs) are a widely used benchmark
for graph generation in the community detection literature. �ese
models are generated by constructing individual communities of
bounded size, each generated using some intracommunity connec-
tion probability, and adding edges between communities according
to a community mixing probability. SBMs have ground truth com-
munities by construction, and the networks generated follow a
power law distribution in node degree and community size.

Our analysis considers three graph generation procedures. For
scale-free networks, we generate 200-node graphs with power
parameter ∈ {0.1, 0.3, 0.5}. We generate 225-node small-world
graphs with rewiring parameter p ∈ {0.03, 0.05, 0.1}. We generate
stochastic block models with 500 nodes, intracommunity a�ach-
ment probability 0.8, and intercommunity a�achment probability
∈ {0.1, 0.2, 0.3}, and community size ∈ [10, 20]. For each graph
se�ing, we generate 100 graphs of that type.

Clearly, in�uence of adversaries is intimately related to the con-
nectivity and degree distribution of the graph. Scale-free networks
are the easiest to exploit due to their generating algorithm. A
greedily-selected dominating set in scale-free networks total an
average of 0.65 in�uence over the graph, and the curve of total
in�uence increases steeply with the number of adversaries. �e
construction mechanism of scale-free networks lends these graphs
to easy capture. New edges are added in proportion to in-degree of
each nodes. �is leads to the existence of high-degree hub nodes in
the network, which are likely to have high node in�uence.

Small-world graphs show low total adversary in�uence, even
with a dominating set of adversaries. �is, too, is due to the con-
struction procedure for the graph. �e degree distribution in small-
world graphs is tight, so all nodes have close to the same number
of neighbors. As a result, no individual node is likely to have a
signi�cantly di�erent in�uence than any other in the network and
there is li�le di�erence between the randomly and greedily selected
adversaries.

SBMs also show a large di�erence in total adversary in�uence
between adversary selection methods. Adversaries sets selected
randomly total an average of 0.04 adversary in�uence, while dom-
inating sets selected greedily total an average of 0.25 adversary
in�uence. When SBMs are generated with a moderate level of inter-
community connection, as is typical of real-world graphs, only a
small number of adversaries is needed to form a dominating set
over the graph. In our experiments, the size of the dominating set
was on average 6% of the total network.

�e low total adversary in�uence of SBMs and small-world net-
works is also partially due to the small size of the dominating set
relative to the size of the network.

4.3 Bias in Average Treatment E�ect
We will now examine bias in estimated ATE due to adversaries. First,
we can derive the bias due to adversaries in the linear estimator
from Gui et al. [12], shown in Equation 5. Recall that τ̂ = β̂ + γ̂ . By
de�nition, the parameters β,γ are estimated as:

β̂ =
(∑σ2)(∑ZY ) − (∑Zσ )(∑σY )
(∑Z2)(∑σ2) −∑(Zσ )2 (10)

γ̂ =
(∑Z2)(∑σY ) − (∑Zσ )(∑ZY )
(∑Z2)(∑σ2) −∑(Zσ )2 (11)

We can simplify these expressions using the de�nition of Z. Since
treatment is binary,

∑
Z2 =

∑
Z = N1, the number of units re-

ceiving treatment, and
∑
ZY is the sum of outcomes from units

receiving treatment,
∑
Y1.

β̂ =
(∑σ2)(∑Y1) − (

∑
Zσ )(∑σY )

N1(
∑
σ2) −∑

Zσ2 (12)

γ̂ =
N1(

∑
σY ) − (∑Zσ )(∑Y1)

N1(
∑
σ2) −∑

Zσ2 (13)

�ere are two ways an adversary r in�uences the estimated pa-
rameters: (1) through its own outcome, Yr , and (2) through neigh-
borhood exposure to its outcome. In this additive framework, we
assume that γ

∑ YAj
dj

is the portion of an individual j’s outcome,
Yj , due to network e�ect. Because of the additive functional form,
we can separate these two sources of bias. We let β̂R , γ̂R be the
bias in estimated parameters due to the outcome from a set of ad-
versaries R, and β̂Y , γ̂Y be the bias in estimated parameters due to
neighborhood exposure to outcomes from R, so that

δR (τ ,k) = β̂R + γ̂R + β̂Y + γ̂Y (14)
Since these parameters are estimated as sums over each unit individ-
ually, we can divide β̂ and γ̂ into terms accounting for nonadversary
outcome and adversary outcomes in the network. �en the estimate
of the parameters due to adversary outcomes is:

β̂R =

|R1 |Y1R
∑(σr 2) − (∑Zσ ) ( ∑

r ∈R
σrYr

)
N1(

∑
σ2) −∑

Zσ2 (15)

γ̂R =

N1
∑
r ∈R

σrYr − |R1 |Y1R
∑
Zσ

N1(
∑
σ2) −∑

Zσ2 (16)

So the bias in estimates β̂, γ̂ due to adversary outcome is:

β̂R + γ̂R =

|R1 |Y1R (
∑
σ2 −∑

Zσ ) + (N1 −
∑
Zσ )( ∑

r ∈R
σrYr )

N1(
∑
σ2) −∑

Zσ2 (17)

Note that the only terms of β̂R + γ̂R related to the placement of
adversaries r in the network is in exposure to treatment, σr . Now
we consider the bias due to the adversary network e�ects.
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Reasoning about bias due to adversary network in�uence through
parameter estimation is di�cult, since the bias due to the adver-
sary is dependent on the strength of the true network e�ect, γ ,
which is only calculated in the linear estimator through the portion
of the neighborhood receiving treatment. Further, even if nonad-
versary outcome is separated into (1) the portion of its outcome
independent of its neighbors, (2) the the portion of outcome due to
nonadversary peer e�ects, and (3) the portion of outcome due to
peer e�ects from adversaries, we still must account for the adver-
sarial peer e�ects in i’s adversary-exposed neighbors in (2), which
may be exposed to a di�erent adversary than r . Instead of reasoning
about the strength of adversarial di�usion, we can approximate the
bias induced by a single adversary r ’s outcome on nonadversary
neighbor j’s outcome using the fact that Yr skews Yj relative to
the distance between Yr and the mean outcome of j’s neighbors
excluding r , YAj \r . So the bias in Yj due to Yr is ∝ 1

dj
(Yr − YAj \r ),

where dj is the degree of node j , and Yr is the outcome of adversary
r under treatment assignment zr . So the total bias induced by r on
its neighbors outcome is:

β̂Y + γ̂Y =
∑
j ∈Ar

1
dj
(Yr − YAj \r )

= ωr
∑
j ∈Ar
(Yr − YAj \r ) ≈ ωr (Yr − YA2r )

(18)

where YA2r is the mean outcome in r ’s two-hop neighborhood.
�en the total ATE bias due to adversaries in the network is

δR (τ ,k) =
|R1 |Y1R (

∑
σ2 −∑

Zσ ) + (N1 −
∑
Zσ )( ∑

r ∈R
σrYr )

N1(
∑
σ2) −∑

Zσ2

+
∑
r ∈R

ωr (Yr − YA2r )
(19)

5 SIMULATION RESULTS
To empirically demonstrate the e�ect of adversaries in ATE estima-
tion over a network, we simulated outcomes in a network and used
the ATE estimation of Gui et al. [12] to estimate treatment e�ect in
networks both with and without adversary interference.

5.1 Graph generation
Graphs are generated using the same procedure reported in section
4.2. We consider scale-free networks with power = 0.3, small-
world networks with rewiring parameter p = 0.5, and SBMs with
community mixing parameter µ = 0.2.

5.2 Simulation model
Observed outcome values were generated using the following linear
model adapted from Gui et al. [12], Eckles et al. [10]:

Yi,t = λ0 + λ1zi + λ2
AiYt−1
Di,i

+Ui,t (20)

where zi is the treatment assignment of unit i , AiYt−1
Di,i

is the mean
outcome units neighboring unit i , andUi,t ∼ N(0, 0.1) is an individual-
level noise parameter. Following the parameter assignments of [12],
we set t = 3, λ0 = −1.5, andY0,i = 0 for all i . We consider individual
treatment parameters λ1 ∈ {0.25, 0.5, 0.75, 1} and neighborhood
treatment parameters λ2 ∈ {0, 0.1, 0.5, 1.0}.

�e adversary behavior follows (3) from section 3.1 where adver-
saries respond to minimize the estimated ATE. Adversary outcome
is determined by λ0 and λ1:

Yr =

{
λ0 if zr = 1,
λ0 + λ1 if zr = 0.

We assign clusters to treatment or control according to a binomial
distribution B(c , 0.5), where c is the number of clusters produced
by the clustering procedure.

5.3 Methodology
For a given graph, we generate a clustering of the graph using
the Infomap algorithm for community detection [21] and assign
clusters to treatment or control. We then generate a dominating
set of adversaries using greedy selection, sorted by decreasing
degree. A second adversary set of the same size is selected uniformly
at random from the graph. Given this selection procedure, the
randomly selected adversary set may not form a dominating set
over the graph.

For speci�c se�ings of λ1 and λ2, we determine the outcome
function for nodes and adversaries. We then iterate over the set of
adversaries, starting with an empty set and adding an adversary to
the previous set, ending with the entire dominating set. For each
adversary subset, we generate outcome Yi , 3 for each node. We use
the linear estimator over generated outcomes to estimate ATE for
each subset of adversaries. �e estimated ATE for the experiment
with no adversary interference is used as a baseline of comparison
for ATE bias induced by adversaries.

5.4 Synthetic network results
Figure 2 shows the results of our simulations. �ese results demon-
strate the e�ect of adversaries on the estimated treatment e�ect. �e
bias induced by adversaries increases as the number of adversarial
nodes increases.

As individual treatment e�ect λ1 increases, the slope of the bias
increase remains constant. For randomly selected adversaries, the
increase in peer e�ect λ2 has li�le e�ect. �e dramatic changes
in bias occur with increases to peer e�ect for greedily selected
adversaries.

�e importance of peer e�ect strength also depends on network
topology. SBMs and scale-free networks are particularly suscepti-
ble to bias in ATE for networks with large peer e�ects, especially
for greedily selected adversaries. SBMs with greedily selected ad-
versaries double the ATE bias of randomly selected adversary sets.
�ese two graph generation procedures are o�en cited as producing
graphs most closely resembling real-world networks, and SBMs in
particular are recommended as random graphs most closely repli-
cating real world community structure [5] [17] [26]. It is interesting
that these structures are also the most vulnerable to malicious be-
havior, even for relatively small sets of adversaries.

6 RELATEDWORK
Literature in in�uence maximization is closely connected to this
work. In�uence maximization is concerned with identifying the set
of nodes in a (social) network to target in order to maximize the
spread of some quantity of interest [9] [15]. A similar problem is

6



(a) 200-node scale-free networks with power = 0.3

(b) 225-node small-world graphs with p=0.5

Figure 2: Bias in estimated ATE for (a) scale-free, (b)
small-world networks, and (c) SBMs under di�erent assign-
ments of individual treatment and network treatment ef-
fects. Rows share individual treatment e�ect parameter set-
tings, λ1, and columns share network treatment e�ect set-
tings, λ2. Note the di�erence in scales on the y-axis for ad-
versary bias. Scale-free networks and SBMs exhibit signi�-
cant bias with increases in the strength of peer e�ects, even
for a small set of adversaries.

(c) 500-node SBMs with µ=0.2

the study of di�usion over a network and, in particular, resource-
constrained di�usion maximization. In this se�ing, node selection
is associated with some cost, and the total cost of the set of selected
nodes cannot exceed some budget [2]. �is is similar to reasoning
about adversary selection, though our work is interested in the
e�ects of adversary behavior under various selection procedures
rather than maximizing the e�ect.

Some models of adversary behavior can be cast as non-compliance
behavior in an experimental study. Recent work by Kang and Im-
bens introduces peer encouragement designs, a novel approach
to estimating causal estimands which allow for analysis of non-
compliance behavior in a network se�ing [14]. �is design accounts
for dropout non-compliance, though non-compliance through pur-
posefully extreme adversarial behavior is still a concern.

Our work is related to other studies of the e�ects of adversaries
in the network se�ing. �ese tend to focus on detection of adver-
saries [4] [6] or measuring and analyzing the success of adversary
integration in the network [1] [3]. �is paper is the �rst to explore
the e�ect of bots and other adversaries in network A/B testing.

7 CONCLUSION AND FUTUREWORK
�is work presents an introductory analysis of the e�ect of adver-
sary behavior on the average treatment e�ect estimate. Adversarial
behavior adds a layer of complexity over peer e�ects in network
experiments that has so far been ignored, though it is a recognized
issue in the literature. Our work demonstrates a vulnerability in
network A/B testing to manipulation by adversary behavior, espe-
cially in networks with easily exploited topology. We have shown
that networks with strong peer e�ects are susceptible to ATE bias
from adversary behavior and identi�ed scale-free networks and
SBMs as network structures vulnerable to adversary bias.

As future work, we are interested in exploring the space of
adversary behavioral models. We have focused on extreme models
of adversary behavior, and it is not di�cult to imagine applications
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in which an adversary will choose their outcome according to not
only their treatment assignment, but the treatment assignment
and behavior of its neighbors. Alternatively, we might consider
less extreme adversary behavior models or mixtures of behavioral
models. An interesting approach to exploring this space might be to
characterize the trade o� between injecting ATE bias and avoiding
detection from extreme responses.

Another direction is in identifying experimental designs over
networks that are robust to adversary in�uence. Our work has
demonstrated that the ATE estimate using state of the art methods
is easily skewed. We might instead consider alternative methods
for estimating treatment e�ect (e.g., average treatment e�ect on
the treated, local average treatment e�ect), peer encouragement
designs, which may be less vulnerable to manipulation or reveal
other weaknesses in causal e�ect estimation in networks.
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