On Generalizing Neural Node Embedding Methods to
Multi-Network Problems

Mark Heimann
University of Michigan
mheimann@umich.edu

ABSTRACT

Representation learning has attracted significant interest in the
community and has been shown to be successful in tasks involving
one graph, such as link prediction and node classification. In this
paper, we conduct an empirical study of two leading deep learning
based node embedding methods, node2vec and SDNE, to examine
their suitability for problems that involve multiple graphs. Although
they have been shown to preserve properties necessary for the
success of canonical tasks on a single graph, we find that different
runs of the same algorithm even on the same graph yield different
embeddings. For node embedding methods to apply to multi-graph
problems, we note that this finding motivates additional work in
learning how to embed different graphs similarly.

KEYWORDS

representation learning, graph alignment, node embedding

ACM Reference format:

Mark Heimann and Danai Koutra. 2017. On Generalizing Neural Node
Embedding Methods to Multi-Network Problems. In Proceedings of Mining
and Learning with Graphs Workshop, Halifax, Nova Scotia Canada, August
2017 (MLG’17), 4 pages.

https://doi.org/10.475/123_4

1 INTRODUCTION

Inspired by the success of deep learning, several methods have been
proposed for learning representations of nodes in graphs that can be

used in downstream prediction, clustering, and visualization tasks.

Examples include node2vec [6], DeepWalk [10], LINE [12], SDNE
[13], and others. These methods learn embeddings of the nodes
in a graph in a low-dimensional latent space that aim to preserve
similarities between similar nodes. They have gained popularity for
graph mining, as the representations they learn have been shown
to lead to state-of-the-art performance in many canonical tasks
such as link prediction and multi-label classification.

Many important graph mining tasks, however, involve more than
just a single graph. Some problems such as network alignment [1]
or graph similarity [7] are inherently defined in terms of multiple
graphs. In other cases, it is desirable to perform analysis across a
collection of multiple graphs, such as the brain graphs of several
MRI patients [4] or snapshots of a time-evolving graph [11].

Representations of all the nodes in the various graphs could
be learned by running any of the above mentioned algorithms

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

MLG’17, August 2017, Halifax, Nova Scotia Canada

© 2017 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06...$15.00

https://doi.org/10.475/123_4

Danai Koutra
University of Michigan
dkoutra@umich.edu

on each of the individual graphs, but to facilitate effective cross-
graph analysis, the embeddings learned from different runs of the
algorithm would have to be comparable. In particular, it would be
desirable for similar nodes in different graphs, or at least different
runs of the algorithm, to be embedded similarly.

We investigate the meta-consistency of the embeddings pro-
duced by state-of-the-art node representation learning methods:
the extent to which they remain similar from run to run of the
algorithm. Our analysis suggests that while similarities within a
graph may be preserved, as was shown in [6, 13], similarities across
runs of the algorithm may not be so neatly preserved. Thus, we
contend that current methods are limited in their applicability to
multiple graph problems, and call for work to address the problem
of learning embeddings that are forced to align more closely.

2 NODE EMBEDDING METHODS: OVERVIEW

Intuitively, most deep learning inspired node embedding methods
learn embeddings by maximizing an objective function that is de-
signed to preserve various similarities in the graph. That is, similar
nodes (such as neighbors, or nodes with several common neighbors)
should have more similar embeddings.

node2vec. For example, node2vec has the following objective func-
tion:

max 3 [~log 37 ew(f@) - f@)+ 3 fan) f@)] 0

ueV veV n; €Ns(u)

Here V is the vertex set of graph, and f the representations.
In particular, f(u), the feature representation for a node u is a
d-dimensional vector, where d may be chosen by the user. This ob-
jective function seeks to learn these representations by maximizing
the likelihood of preserving node neighborhoods [6].

When node2vec learns a representation for a node u, it first
samples a neighborhood of nodes via a random walk starting from
u. (The sampling procedure is flexible, with users able to govern
some of its properties by setting hyperparameters p and g that bias
the random walk; if the random walk is left unbiased by setting
p = q = 1, then node2vec is equivalent to the related method
DeepWalk [10].) Nodes sampled are considered “in context” and
thus similar to u, and the second term in the bracketed outer sum is
maximized when they are embedded close to u. On the other hand,
other nodes in the graph are likely much less similar to u, and thus
the first term in the sum, which is negative, is maximized when
their embeddings are less similar to that of u. For efficiency’s sake,
this term is often approximated in practice with negative sampling,
where it is computed from samples of other nodes from the graph
not in the neighborhood N (u) but not from all the nodes in V [6].

Within the context of a single graph, this sampling procedure
was empirically shown to work well [6] (although many theoretical

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

MLG’17, August 2017, Halifax, Nova Scotia Canada

guarantees for the general skip-gram procedure with negative sam-
pling remain unknown-cf. [8].) However, the procedure inherently
ties the results of the algorithm to quantities specific to the run of
the algorithm on that graph (the specific IDs of nodes sampled in
the random walk).

The dependency of node2vec and its predecessor DeepWalk
on nodes sampled by ID in a random walk further complicates
things for problems such as graph alignment, where the standard
assumption is that the graphs are permuted and nodes that should
align do not necessarily have the same ID. To be specific, suppose
there are two graphs with respective vertex sets A and B, where
A; is the node in A with ID i. Perhaps A; is a neighbor of, say, A47,
but because the IDs are different, this does not transfer to graph 2.
It is very likely that By is not a neighbor of Bj, and thus the idea
that B47 should be in the context of B as its neighbor or that their
embeddings should be similar does not carry over. We thus note
that node embedding methods that use random walks to sample
contexts may struggle with generalizing to multi-graph problems,
at least in their current form.

SDNE. Another state-of-the-art node embedding method, Struc-
tural Deep Network Embedding (SDNE), takes a different approach
to preserving similarities that does not depend on a potentially
fragile context sampling procedure. SDNE learns features with an
autoencoder trying to reconstruct the adjacency matrix S of the
n-node graph G. Its loss function is designed to preserve node
similarities based on a combination of first-order proximities (di-
rect connections between nodes in the graph) and second-order
proximities (nodes that have several mutual neighbors).
The first-order loss is given by

n
> syllfi - £l B)
i,j=1
Here S is the adjacency matrix. If S;; is nonzero (the nodes i
and j are connected), then the this term is minimized the closer the
embeddings of nodes i and j are. This constraint is reminiscent of
Laplacian eigenmaps, a spectral technique for node embedding [2].
The second-order constraint is imposed by the reconstruction
error of the autoencoder. Specifically, according to [13], the re-
construction criterion can make nodes with similar neighborhood
structures (that is, many similar neighbors) have similar embed-
dings. Furthermore, due to the sparsity of real-world networks, it
is especially important that observed links (nonzero entries) be
reconstructed accurately. Thus, the second-order criterion is

IS -$) o BIIZ ®)

where S is the adjacency matrix and § the reconstruction learned
by the autoencoder. B is a penalty matrix that consists of a user-
specified term f > 1 for every nonzero entry in the adjacency
matrix (zeros elsewhere), to further penalize failure to reconstruct
observed links in the adjacency matrix.

Note that the node representations are the hidden represen-
tations at the last layer of the autoencoder, with the input (the
adjacency matrix) being at the first layer, and after that the hidden
representations being defined recursively as follows:

fik — O.(ka‘i(k_l) + b(k)),k = 2, Ce ,k (4)

Mark Heimann and Danai Koutra

Here o is a nonlinear activation function and the W and b terms
are weights (to be learned) and biases respectively. The reconstruc-
tion X is given by a decoder that reverses this encoding process.

The combined loss function that SDNE minimizes is a combi-
nation of the first-order and second-order loss (Equations 2 and
3 respectively), along with a regularization term on the weights
learned by the autoencoder. (The user must set hyperparameters
to determine how much emphasis to put on each component.) It is
based on global structural properties depending on the adjacency
matrix and not just a sampled neighborhood or specific node IDs.
However, it is nonconvex and may not converge to the same so-
lution every time, and little is proven about its consistency. Like
node2vec, SDNE function tries to enforce consistency within a run
of the algorithm on the graph, but does not by any means guarantee
consistency across graphs or runs of the algorithm.

In this work, we focus on node2vec and SDNE. Among deep
learning inspired node embedding methods, these two represent
arguably the two main categories of node embedding methods: ones
that explicitly sample contexts via random walks to use as contex-
tual information (node2vec, DeepWalk [6, 10]), and ones that look
to structural properties of the adjacency matrix to preserve first-
and second-order similarities (SDNE, LINE [12, 13]). They were
shown to outperform competing techniques [6, 13], with a recent
empirical survey of node embedding methods [5] further finding
that SDNE outperformed other methods, including node2vec, on a
variety of canonical tasks.

The success of the above methods lies in the effectiveness of
their loss functions in encouraging similar nodes within a graph to
have similar embeddings [6, 13]. If this were also true across graphs
(the best case being running the methods on two identical graphs),
then the learned representations would be useful for identifying
similarities between nodes in different graphs. The loss functions
are tailored to a single graph, of course, but if methods such as
node2vec or SDNE learned consistent embeddings each time they
were run, then assuming the graphs are similar, the embeddings
learned for the corresponding nodes would still be similar. The
question then becomes: How consistent in fact are these methods?

3 EXPERIMENTAL ANALYSIS

In this section, we study how the performance of the two node
embedding methods changes when run different times. Even when
the graphs are hardly different (simple permutations of each other),
or not even different at all, we observe significant changes.

Data. For our experiments, we run the two network embedding
methods on each of the following networks, which have both been
used for evaluating node embedding methods [6] and yield consis-
tent results.

Table 1: Real Data

Name Nodes Edges Description

BlogCatalog [14] 10312 333983 blog social network
PPI [3] 3890 76584 Homo Sapiens protein-protein interaction

Experimental setup. For both methods, we used mostly the de-
fault settings, since we are not trying to optimize predictive accu-
racy on a task but merely visualize standard results of the algo-
rithms. For node2vec, we set p and ¢ = 1, leaving the random walk
unbiased (this amounts to performing DeepWalk, which suffices to

On Generalizing Neural Node Embedding Methods to Multi-Network Problems

MLG’17, August 2017, Halifax, Nova Scotia Canada

(a) node2vec (dimensions from top left: 3, 8, 9, 11, 25, 27, 31, 34, 41, 51, 52, 60,
61, 74, 87, 90, 95, 97, 109, 128)

(b) SDNE (dimensions from top left: 3, 8, 9, 11, 25, 27, 31, 34, 41, 51, 52, 60, 61,
74, 87, 90, 95, 97, 109, 128)

Figure 1: BlogCatalog: Comparison of embeddings—dimension by dimension (for 20 randomly chosen dimensions)—from two
runs of (a) node2vec and (b) SDNE. x axis: node embedding value in run 1; y axis: node embedding value in run 2. The y = x is

shown in each plot.

get a flavor for what the embeddings might look like). We performed
10 walks of length 80 per source node, and set a neighborhood size
of 10. For SDNE, we set the first hidden layer of the autoencoder
to have 1000 nodes and the second, the output to have 128 (the
dimensionality of the features). We chose f, the reconstruction
penalty for nonzero elements to be 15, and put weights of 1 on the
first-order loss and 5 on the second-order loss.

Per dimension comparison. For both node2vec and SDNE, we
run the algorithm twice to learn two embeddings of the nodes with
two different runs of the algorithm. For each dimension, we plot the
nodes with their value in the first embedding on the x axis and their
value in the second embedding on the y axis. If the embeddings
perfectly corresponded-the feature values are the same in both
embeddings—we should see the points falling on a straight line
y=x.

Instead, in Figure 1, we visualize 100 nodes from the BlogCat-
alog dataset along 20 randomly chosen dimensions and see that
the correspondence is not nearly so clear. For SDNE in particular,
we note that many points that have similar values along a given
dimension in one embedding have quite different values along the
same dimension in the other embedding. Even node2vec, however,
demonstrates a noisy at best correspondence between values of
the same feature in different embeddings. Indeed, we note that
there is no reason that latent feature i in one embedding should
correspond to latent feature i in another embedding. We observe
similar results for the PPI dataset in Figure 2. We visualize only 10
randomly chosen dimensions, as the others are similar.

The differences between embeddings are also observable on a
macroscopic level, which we illustrate by visualizing the embed-
dings of the BlogCatalog dataset. We run each method with the
same settings twice on the original graph. Additionally, we run the
method on the simplest possible experiment involving a different
network: a noiseless permutation of the graph, where the structure
is not changed (the permuted graph is isomorphic to the original
one) and only the node IDs are randomly shuffled.

Low-dimensional embedding comparison. We learn a 128-di-
mensional representation and, following the protocol of [13], use

_—

. /i . /
N

= “ET"ﬁ-‘n_.ﬁj ,L_x_:_:

(b) SDNE (dimensions from top left: 8, 9, 25, 41, 52, 74, 87, 97, 109, 128)

Figure 2: PPI: Comparison of embeddings—dimension by di-
mension (for 10 randomly chosen dimensions)—from two
runs of (a) node2vec and (b) SDNE. x axis: node embedding
value in run 1; y axis: node embedding value in run 2. The
y = x is shown in each plot.

t-SNE [9] to further learn a low-dimensional embedding that allows
us to visualize the embeddings in 2-dimensional space. To further
simplify the figure, we subsample the same 500 nodes at random to
plot for each figure. The results for node2vec are shown in Figure
3, and those for SDNE are shown in Figure 4.

Looking at the embeddings as a whole, we see that the general
shapes are visibly different. Qualitatively, we note that SDNE’s
embeddings are less ragged than node2vec’s, which may reflect its

MLG’17, August 2017, Halifax, Nova Scotia Canada

Mark Heimann and Danai Koutra

(a) First run on original graph.

(b) Second run on original graph.

(c) Run on permuted graph.

Figure 3: node2vec: 2-dimensional embeddings learned via t-SNE from the 128-bit node2vec embeddings of the BlogCatalog

network. x axis: t-SNE dimension 1; y axis: t-SNE dimension 2.

(a) First run on original graph.

(b) Second run on original graph.

(c) Run on permuted graph.

Figure 4: SDNE: 2-dimensional embeddings learned via t-SNE from the 128-bit SDNE embeddings of the BlogCatalog network.

x axis: t-SNE dimension 1; y axis: t-SNE dimension 2.

greater emphasis on structure for context as opposed to specific
node samples. Even SDNE’s embeddings, however, have appreciably
different topography. Nor does there appear to be a simple transfor-
mation from one feature space to another, either between different
embeddings learned for the same graph or between embeddings
learned for permuted graphs.

4 DISCUSSION

While node2vec and SDNE may, in individual runs of the algorithm
on a single graph, learn embeddings that preserve important node
proximities, we see that over the course of several runs of the algo-
rithm the embeddings are not guaranteed to be the same. Simply
trying to apply these and other off-the-shelf node embedding meth-
ods to multi-network problems, then, is insufficient. Experimental
analysis has illustrated that the ways the nodes are embedded in the
latent feature spaces are not guaranteed to correspond in a straight-
forward way, either directly or with a simple transformation of one
space to the other.

Instead, further work is likely needed during the embedding
learning stage to force the node embeddings of two networks to
align more closely. As we have noted, the loss functions of cur-
rent methods are tailored to preserving similarities within graphs,
but come with no other consistency guarantees. To extend these
methods to multi-network problems, it would be useful to develop
methods with such guarantees, and/or to augment the loss functions
to preserve any known cross-graph similarity information.

REFERENCES

[1] M. Bayati, M. Gerritsen, D. F. Gleich, A. Saberi, and Y. Wang. Algorithms for
large, sparse network alignment problems. In Data Mining, 2009. ICDM’09. Ninth
IEEE International Conference on, pages 705-710. IEEE, 2009.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373-1396, 2003.

[3] B.-J. Breitkreutz, C. Stark, T. Reguly, L. Boucher, A. Breitkreutz, M. Livstone,

R. Oughtred, D. H. Lackner, J. Béhler, V. Wood, et al. The biogrid interaction

database: 2008 update. Nucleic acids research, 36(suppl 1):D637-D640, 2008.

F.D. V. Fallani, J. Richiardi, M. Chavez, and S. Achard. Graph analysis of functional

brain networks: practical issues in translational neuroscience. Phil. Trans. R. Soc.

B, 369(1653):20130521, 2014.

[5] P.Goyal and E. Ferrara. Graph embedding techniques, applications, and perfor-
mance: A survey. arXiv preprint arXiv:1705.02801, 2017.

[6] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 855-864. ACM, 2016.

[7] D.Koutra,]. T. Vogelstein, and C. Faloutsos. Deltacon: A principled massive-graph
similarity function. In Proceedings of the 2013 SIAM International Conference on
Data Mining, pages 162—-170. SIAM, 2013.

[8] O.Levy and Y. Goldberg. Neural word embedding as implicit matrix factorization.
In Advances in neural information processing systems, pages 2177-2185, 2014.

[9] L.v.d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine
Learning Research, 9(Nov):2579-2605, 2008.

[10] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 701-710. ACM, 2014.

[11] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos. Timecrunch: Inter-
pretable dynamic graph summarization. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1055—
1064. ACM, 2015.

[12] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale infor-
mation network embedding. In Proceedings of the 24th International Conference
on World Wide Web, pages 1067-1077. ACM, 2015.

[13] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 1225-1234. ACM, 2016.

[14] R. Zafarani and H. Liu. Social computing data repository at ASU, 2009.

[4

flaas

	Abstract
	1 Introduction
	2 Node Embedding Methods: Overview
	3 Experimental Analysis
	4 Discussion
	References

