Location-based Event Detection Using Geotagged Semantic
Graphs

Yifang Wei
Computer Science Department
Georgetown University
Washington D.C., the United States
yw255@georgetown.edu

ABSTRACT

Event detection using Twitter has attracted a significant amount
of research attention. While the emphasis of the related literature
has been on detecting events without considering geography in-
formation, this work regards an event as something occurring at a
particular location and time. We take a system perspective, focusing
on the process of event detection using a framework that highlights
different steps needed for identifying events in this noisy domain.
We also propose an algorithm which leverages geotagged bursty
term graphs to detect events from a tweet stream. Evaluating our
approach on three large tweet streams from three different domains
shows our approach significantly improves the detection precision
and recall when compared to the state of the art approaches. In
general, we find that simple modifications to existing algorithms
improves location-based event detection across methods.
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1 INTRODUCTION

Twitter, a social media platform, has been intensively leveraged by
people to report real life events. Event detection using Twitter has
also been an active area of research [2] [13] [6] [5] [19] [10] [18] [12]
[16] [17] [15] [11]. While most of the previous research focuses on
detecting events without considering geography information, we
consider an event as something occurring at a particular location and
time. In this work, we propose an approach for detecting location-
specific events from a tweet stream.

Our approach leverages a location-specific semantic graph. Graphs
are well-suited for representing complex connections between re-
lated entities, and graph algorithms are designed to reason about
these connections. In this work, we construct a geotagged bursty
term graph to represent words and relationships that rapidly in-
crease in frequency at a particular location. Each node in this graph
represent bursty terms, and an edge represents a co-occurrence of
two bursty terms within a tweet. For each geotagged bursty term
graph, our approach identifies the top connected nodes (bursty
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terms) to represent an event, and uses the tweet most representa-
tive of the extracted bursty terms as the event synopsis.

To summarize, our contributions to the literature are as follows:
(1) we propose a new event detection algorithm that takes advan-
tage of geotagged bursty term graphs to identify events; (2) for each
detected event, our approach specifies a locality as its primary loca-
tion and a representative tweet as its synopsis, making the detected
events more informative than that of the state of art; (3) we present
a system framework that walks through the process of location-
based event detection on Twitter; and (4) an empirical evaluation on
three large real-world data sets shows that combining geography
information with changes in bursting words significantly improves
the event detection precision and recall when compared to the state
of the art.

2 RELATED LITERATURE

The majority of literature related to unsupervised event detection
on Twitter does not consider geography information when detect-
ing events. Instead, it considers bursty textual segments (e.g., terms,
phrases) to represent an event [19] [18] [12] [8] [7] [3]. One of
particular relevance, proposed by Weng and colleagues, evaluates
a term’s burstiness using a wavelet transform [18]. The proposed
method then calculates the pairwise correlation between pairs of
busty terms in the wavelet domain, and uses a coherently connected
group of bursty terms to signal an event’s occurrence.

Another set of proposed algorithms leverages different graph
structures when detecting events on Twitter [2] [13] [6] [5] [4] [14]
[5]. Focusing on the ones that are most relevant to this research,
Cataldi et al. [4] employ a Twitter following/follower network to
quantify a user’s significance in propagating information. Further,
these values are used to modulate the energy of emergent keywords,
and each strongly connected component of emergent keywords
represents an event. Meladianos et al. [14] propose a K-degenerate
graph, in which nodes represent terms in tweets, and edges repre-
sent co-occurrences of pairs of terms in a tweet. This approach uses
terms pertaining to the highest KCore to represent the trending
event in a time window of the tweet stream. Our approach differs
from all the above mentioned works since our graph is location
specific, i.e. we have different graphs for different locations, and we
use bustiness to determine whether or not a word should appear in
the graph, only words with large changes in frequency are added
to the graphs.

Some previous work does consider location-based event detec-
tion [20] [9] [1] [15]. However, their models are not directly com-
parable to ours because of the assumptions made about location.
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Zhou and Chen [20] extend the classical LDA topic model to incor-
porate the location and time information, such that each topic is
drawn from a distribution of words, locations, and time. In order to
accomplish this, they extract user location information from user
profiles and map tweets based on those locations. Our model does
not assume the availability of user location information. Abdelhaq
et al. [1] suggest that events might occur in a geographical space
of substantial extent or within a small region. They construct a
geographical grid, and represent the usage of a term as a distribu-
tion in the grid. Having a small usage entropy suggests the main
usage of the term occurs in a geographical space of limited extent.
They assume that the tweets are geo-tagged. Our approach does
not make that assumption. Ramakrishnan et al. [15] build a system
to predict civil unrests in Latin America. They use a list of names
from different locations in Latin America to filter the tweet stream
fed into their event detection system. Our approach uses a location
ontology to allow for any major location to be investigated for
events.

In general, what distinguishes our work from previous literature
is the following: (1) using separate graphs for each location identi-
fied in the tweet stream, (2) using a location ontology to label the
location associated with a tweet, (3) generating graphs that only
contain bursty terms. We will show that these simple differences in
data representation have a significant impact on the precision and
recall of the detected events.

3 DEFINITIONS AND ASSUMPTIONS

Let D = {d;, dy, ...,d3} denote a tweet stream, where d; is the i’"
tweet in the stream. Let ¢; denote the time when a tweet is published.
We are interested in detecting events E that occur in a specified
time window. Let 7 represent the set of time windows for tweets in
D. Each window contains a set of times, e.g. 71 = [to, tj), Where j is
the j'# tweet in the first window, and D(1j) represents the tweets
that occur in time window 7;. A tweet is composed of a set of words,
W = wj, wa, ..., Wi, and possibly a location /.

We make the following assumptions about tweets in the tweet
stream D:

(1) Given its 140 character length limit, a single tweet maps to
at most one event !.

(2) Not all the tweets in D contain a location. In these cases, we
say that the tweet is not discussing a particular event.

(3) When a tweet has a specified location /, this location tends
to be relevant to the event reported in the tweet, most likely
mapping to the location where the event occurs.

(4) Two different events do not share the same set of keywords
and the same location within the same time window 7;.

Problem Statement: Given a tweet stream D, the task of geo-

tagged event detection is to identify events E from D. The represen-
tation of an event ey, is a three-element tuple {A, @, 2}, in which
A represents the location where the event occurs, ® represents the
time when the event occurs, and X represents the synopsis of the
event.

!While this is not always the case, we empirically find that it is a reasonable
assumption that does not reduce the quality of the detected events
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4 EVENT DETECTION

Algorithm 1 presents a high level view of our proposed approach.
The input to our approach is a tweet stream D, the number of time
windows in the training phase p, and a locality ontology O. The
output is a set of detected events for each time window D(z;) in
the detecting phase, and each detected event e is in the form of a
three-element tuple. Here tuple {A, ®, X} is represented by tuple
(I, 7i,S(1, 7i)), in which [ represents the location where the event
occurs, 7; represents the time window when the event occurs, and
S(1, 7;) represents the synopsis of the event. Our approach begins by
calculating the term frequency w(z;) of each term in each training
window 7;, where w(r;) denotes the term frequency of term w in
D(z;) (Line 3). In the same way, our approach calculates the term
frequency w(z;) of each term in each detecting window 7; (Line 6).
A term is considered bursty in time window 7; if its term frequency
compared to the previous p windows is significantly different. We
denote a bursty term in time window 7; as b(7;), and the set of bursty
terms as B(z;) = {b(z;)} (Line 7). Then, the predominant location
I for each tweet is identified and tweets in D(z;) are divided into
groups {D(I, 7;)} according to their predominant locations (Line 8).
A geotagged bursty term graph G(I, 7;) is constructed using tweets
having the same location (Line 10), in which a node is a bursty term
b(r;) and an edge represents the co-occurrence of two bursty terms
within a tweet. For each geotagged graph G(I, 7;), an event e is
extracted by identifying a semantically cohesive set of nodes (Line
11). Using the tweets in D(l, 7;), the tweet most representative of
the detected event e is selected as the event synopsis S(I, 7;) (Line
12).

Algorithm 1: High level algorithm for online geotagged event
detection

Input: A tweet stream: D

The number of training windows: p

A location ontology: O

Output: Detected events: E

1 /* " *Training Phase™ *****/

fori « 1top do
L w(r;) = calculate_term_frequency(D(z;))

[N

4 /******Detecting Phase™ *****/

fori — p+1tondo

“w

6 w(t;) = calculate_term_frequency(D(z;))
7 B(z;) =
bursty_term_extraction(w(z;), {w(zi —p), ..., w(zi —1)})

8 {D(l, 7;)} = location_identification(D(z;), Q)

9 for D(I, 7;) € {D(l, 7;)} do

10 G(l, ;) =

create_geotagged_bursty_term_graph(D(l, t;), B(z;))

1 e = extract_event(G(l, 1;))

12 S(l, ;) = generate_synopsis(e, D(, 7;))

The framework of our proposed approach has five components:
location identification, bursty term identification, geotagged bursty
term graph generation, geotagged event detection, and event synop-
sis generation (shown in Figure 1). We take a system perspective by
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describing a framework for generating location-based events and
discussing our proposed algorithm in the context of this framework.

4.1 Bursty Term Extraction

This component extracts terms that are bursty in the context of
their term frequencies in the current time window 7; compared to
their values in the previous p time windows. Given all the terms in
D(7;), the terms with a term frequency that is at least one standard
deviation above their mean values are considered bursty in time
window 7;:

B(r;) = {wlw(ri) > MEAN (W(ti—p, 7i-1)) + STD(W(7i-p, Ti-1))}
1
where w(z;_p, 7i—1) denotes {w(zi—p), ..., w(z;-1)}. Term frequen-
cies’ mean values and standard deviations are calculated based on
their values in the previous p windows, where p is a user-specified
parameter. Terms go viral on Twitter because people are using
these terms to discuss occurring event(s). When discussing the
same event, people tend to use the same set of keywords. When a
new event occurs, people will tend to use a new set of words that
differs from the set of words they used to discuss previous events.
Therefore, we should be able to represent events reported in tweets
with bursty terms if these bursty terms are appropriately grouped.

4.2 Location Identification

The location identification component identifies the predominant
location for each tweet. Using open-source data (described in Sec-
tion 5), our approach constructs an ontology, in which each node
represents a location. Such a location could be a country, a gover-
norate, or a city. Using this ontology, we determine the predominant
location for each tweet by counting the number of occurrences of
each location in the tweet, and aggregating the number of occur-
rences of children locations to their parent locations iteratively.
The location with the highest frequency count is considered the
predominant location of the tweet. A tie indicates that a tweet does
not have a predominant location and it is therefore removed from
further analysis. Based on their determined predominant locations,
our approach divides D(r;) into groups {D(l, 7;)}, where D(l, z;)
denotes the set of tweets having [ as their predominant location.

4.3 Geotagged Bursty Term Graph Generation

While there are many different representations of graphs, we choose
to leverage a co-occurrence graph. For a set of tweets D(I, 7;) having
the same predominant location I, we construct a graph G(I, 7;) in
which a node represents a bursty term and an edge represents the
co-occurrence of two terms within a tweet. Since all the nodes in
the graph are tagged with the same location, we refer to the graph
as a geotagged graph.

Our empirical analysis shows that in most cases two different
events do not share the same set of keywords and the same location
within the same time window (refer to our Assumption 3); in rare
cases where two different events share the same set of keywords and
the same location within the same time window, these two events
tend to be closely related. Thus, we consider them as belonging to
the same event. As an example, on November 13, 2015, three suicide
bombers struck outside the national sports stadium of France during
a football match. It was followed by several mass shootings and a
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suicide bombing at cafes and restaurants. Each of these attacks is
considered a part of a large event November 2015 Paris attacks, as
opposed to separate events 2,

While this distinction seems detailed, an important component
of our approach is to generate separate graphs for bursty terms
associated with different locations in each time window. So under-
standing location “boundaries” is necessary to accurately identify
events. As we will show, doing so leads to improved accuracies.

4.4 Geotagged Event Extraction

The geotagged event extraction component aims to extract the
terms most representative of all the nodes in the geotagged bursty
term graph G(I, 7;). This means that we want the selected terms to
form a semantically cohesive group. In other words, we do not want
the terms that have the highest frequency alone. Instead, we want
the terms that are most frequent, but part of a connected component.
Therefore, we begin by identifying the node/term with the highest
frequency in the graph. We then select its neighbors in frequency
order and iteratively continue the process until we have a set of k
nodes. Once we have k nodes, we stop. The subgraph containing
the k identified nodes is considered a semantically cohesive group
since it is frequently occurring and has relationships among the
nodes.

4.5 Synopsis Generation

Along with detecting events, it is important to determine a mean-
ingful description of the event. While using keywords is one option,
it is less informative than the tweets themselves. Therefore, this
final component of our framework generates a synopsis by identi-
fying the tweet that best describes the detected event, i.e., the tweet
containing the most information about the event. To accomplish
this, we identify the tweet that contains the highest overall term
frequency of bursty terms associated with the detected event.

5 EVALUATION OF GEOTAGGED EVENT
DETECTION

In this section we empirically evaluate our approach. We begin this
section by describing the data sets, and then evaluate the different
components of our framework.

5.1 Datasets

For our empirical analysis, we consider three tweet streams in three
distinct domains: terrorism, migration, and politics.

Terrorism: The Islamic State of Iraq and Syria (ISIS) is a Sunni
jihadist group with a violent ideology. The group is responsible
for terrorist attacks worldwide in recent years, emerging as a top
security concern for the United States and many other countries 3.
We work with an interdisciplinary team of researchers, students,
and policymakers, some of whom have years of in-field research
experience in the Middle East. With their help, we identified a set
of hashtags that are related to ISIS. When collecting tweets using
these hashtags with Twitter API, we find that #isis and #isil are
the only two hashtags that each returns over 10 thousand tweets

*https://en.wikipedia.org/wiki/November_2015_Paris_attacks
3http://law.emory.edu/eilr/content/volume-30/issue-2/comment/isis-largest-
threat-world-peace.html
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Figure 1: The framework of our proposed approach

Table 1: Datasets

Hashtags Start Date | End Data #Tweets
#isis,
Terrorism #1,5 1,51 2014-09-10 | 2016-03-10 | 15,835,184
isi
. . #flee,
Migration 2014-09-10 | 2016-03-10 | 5,511,455
#refugees
#hillary,
e 2016-07-03 | 2016-09-13 | 18,368,438
Politics #trump
#votehillary,
2016-09-27 | 2016-11-13 | 2,210,202
#votetrump

per day on average. This evaluation consists of tweets containing
one of these two hashtags published between September 2014 and
March 2016.

Migration: More than one million migrants crossed into Europe
in 2015 4, triggering a crisis which many European countries have
been struggling to deal with. We worked with the Institute for the
Study of International Migration (ISIM) at Georgetown University
to identify a set of hashtags related to migration. Two popular ones
are #flee and #refugees. In this evaluation, we use tweets containing
one of these hashtags between September 2014 and March 2016.

Politics: Our research team collected a set of hashtags related
to the 2016 US presidential election: #hillary, #trump, #votehillary,
and #votetrump. This evaluation uses tweets containing any of
these four hashtags from July 2016 to November 2016, which covers
the most crucial part of the campaign season. Table 1 shows some
statistics about these three datasets.

Noise is pervasive in tweets. An analysis of 2,000 English tweets
originating from the United States conducted by San Antonio-based
market-research firm Pear Analytics shows only 4% of the 2,000
tweets are reporting real world events °. Therefore, a well designed
preprocessing step is imperative for a data mining task on a tweet
stream. Our preprocessing includes (1) removing all the retweets,
since many retweets are automatically generated by retweet bots
and are thus irrelevant to real world events ®, (2) removing any tweet
containing over two urls, or over two Twitter handles, (3) filtering
the tweet stream using the cybozu library 7 to remove any tweet
considered non-English, (4) tokenizing and stemming tweets, and
(5) removing stopwords (the hashtags employed to collect tweets
are also considered stopwords) and non-alphanumerical characters.

4https://en.wikipedia.org/wiki/European_migrant_crisis
Shttps://en.wikipedia.org/wiki/Twitter
®https://en.wikipedia.org/wiki/Twitterbot
"http://developer.cybozu.co.jp/archives/oss/2010/10/language-detect.html

Table 2: Three exemplar tweets whose determined predominant
locations are relevant to the events reported in the tweets, but not
the locations where the events occur

Actual
Locality

Determined

Tweet
wee Locality

raqqa the airstrikes today is by
russian warplanes and they
don t hit isis hq most of the places
are civilian they destroy bridge

Terrorism Russia Syria

the three year old was killed as
his family made a desperate bid

Syria Turke
to flee syria and mirror columnist Y Y

Migration

carole malone says we must learn

breaking donald trump jr just

pledged 89 delegates from new
york officially placing donaldtrump

over 1237 as the gop nominee

Politics New York Ohio

5.2 Location Identification

We build our location ontology using Wikipedia and Statoids 8.
Wikipedia has a set of pages listing all the major cities around
the world by country, and Statiods lists governorates and the ma-
jor cities in governorates and their populations for each country.
Leveraging these two sources, we construct a three-level ontology,
including countries, governorates, and cities. The raw ontology
has 37,379 nodes with 55,816 locality names. After applying the
population-based duplicate name removal, the ontology is left with
46,560 distinct locality names.

To evaluate our location identification approach, we obtain a
random sample of 300 tweets from the tweets having predominant
locations for each of the three datasets, and manually check whether
the determined location of a tweet maps to the location where the
event reported in the tweet actually occurs. We find that for some
tweets the determined predominant locations are the locations
where the events reported in the tweets occur (Type A), whereas
for some other tweets the determined predominant locations are
relevant to the events reported in the tweets, but not the locations
where the events occur (Type B). As an example, the first row in
Table 2 gives a tweet reporting Russian airstrikes in Syria on Nov
3, 2015. The determined location of the tweet is Russia, but the
airstrikes actually occurred in Syria. We consider this a relevant
location, but it is not the predominant one. This type of location
labeling is a mistake in certain contexts, but reasonable in other
contexts. Therefore, we keep track of how often this occurs.

8http://www.statoids.com
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Figure 2: Location identification accuracy. Type A: the determined
locations are the locations where the events reported in the tweets
occur; Type B: the determined locations are relevant to the events
reported in the tweets, but not the locations where the events occur

If we consider both types of answers as correct answers, our
location identification approach achieves accuracies of 97.0% and
94.7% for the terrorism dataset and migration dataset, respectively
(shown in Figure 2). The accuracy is 79.7% for the politics dataset.
This lower accuracy occurs because some names of politicians also
map to location names, e.g. Lincoln.

5.3 Geotagged Graph Generation

Since an exhaustive and authoritative list of ground truth events
is not available, our team manually created a list of ground truth
events. We focused in on a 30 day consecutive stream for each of the
three datasets. More specifically, we choose Nov 1, 2015 to Nov 30,
2015 for the terrorism dataset, September 1, 2015 to September 30,
2015 for the migration dataset, and July 13, 2016 to August 12, 2016
for the politics dataset. These time periods were chosen because
of their comparatively higher volume of data during these time
periods (refer to Figure 1).

Applying location identification and geotagged graph generation
to a time window of a tweet stream yields a list of geotagged graphs.
In the rest of this evaluation, we only consider the top 5 geotagged
graphs generated for each time window, which correspond to 150
geotagged graphs throughout the 30 day tweet stream. Note that
for the terrorism dataset and the migration dataset, we generate
geotagged graphs on the country level. For the politics dataset, we
generate geotagged graphs on the state level. Figure 4 shows the
geotagged graph distribution over countries or states. For the ter-
rorism dataset, the top 2 countries are Syria and Russia. It confirms
our intuition: Syria is the country where most of ISIS’s territory
is, and Russia is deeply involved in the conflict. For the migration
dataset, the top 2 countries are Syria and Germany: Syria is the
country where most of the refugees left from to go to Europe, and
Germany has accepted a large number of refugees. With respect
to the politics dataset, the top states include DC, New York, Ohio,
Texas, Florida, Colorado, etc. DC is the US capital; New York is the
home state of both candidates; Texas has the second largest number
of electors in the electoral college; Ohio, Florida, and Colorado are
three key swing states, where both candidates had a number of
events.

5.4 Geotagged Event Extraction

In detecting events using our geotagged event extraction compo-
nent, we set the length of the time window to a day. We set the
number of time windows in the training phase p to 10, and the
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Table 3: The number of ground truth events for the three datasets

Dataset Number of Events
Terrorism 100
Migration 98

Politics 107

number of top terms representing a detected event k to 10. These
numbers were chosen based on an empirical sensitivity analysis.
Note that the 10 training windows are not included in the selected
30 day tweet stream. They correspond to 10 days prior to the 30 day
detecting phase. We evaluate the accuracy of the events detected by
our approach, and compare our approach (Geo) to three state-of-art
event approaches described in Section 2: [14] (KCore), [4] (Emerge),
and [18] (Wavelet). For each of the four approaches, we consider the
top 5 events (if available) detected for each day, and manually check
whether each of them maps to any real world event by exploring
Wikipedia event pages and using their key terms as search queries
for Google search. In this way, we build a list of ground truth events
reported in the tweet stream. Then we manually check whether a
detected event maps to any event on the ground truth event list.
Table 3 shows the number of events labeled as ground truth events
for the three datasets.

We use two metrics in evaluating event detection accuracy: pre-
cision and recall. Precision is the percentage of detected events
mapping to ground truth events, and recall is the percentage of
ground truth events mapped by detected events. Figure 5 shows
the precision and recall of our proposed approach and the three
baseline approaches. We can see that our approach achieves over
55% precision and over 65% recall on all the three datasets, signifi-
cantly outperforming the baselines in terms of both precision and
recall. The success of our approach can be attributed to two factors:
(1) it provides a tweet as the synopsis for a detected event, which
greatly facilitates mapping it to a ground truth event. In contrast,
both the Emerge approach and the Wavelet approach provide a set
of terms as the synopsis of a detected event, which is much less
interpretable; (2) our approach detects events only based on the
tweets with predominant locations. This helps filter Twitter memes
since memes usually do not contain location information. When
looking at the results produced by the state of the art methods, we
observe that most of the events detected by the KCore approach are
Twitter memes. Finally, we pause to mention that there could be
events that none of the methods detected that we are missing. This
is a limitation of our evaluation approach resulting from evaluation
data sets not being available.

Since our event detection approach also specifies a location for
each detected event, we are interested in understanding the how
the location maps to the ground truth locations of the events: what
is the percentage of the determined locations that map to where
the events actually occur (Type A), and what is the the percentage
of the determined locations that are relevant to the detected events,
but not the locations where the events occur (Type B). The results
are shown in Figure 6. We can see that by combining both types
of answers together, our approach achieves over 90% accuracy for
all the three datasets. Again, the terrorism and migration location
accuracy are higher than the location accuracy for the politics
dataset.
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Figure 6: Event location accuracy. Type A: the determined
locations are the locations where the events occur; Type B: the
determined locations are relevant to the events, but not the
locations where the events occur

5.5 Event Synopsis

We now show the event synopses generated by different approaches.
Table 4 provides the synopses of the top 3 events (if available) de-
tected by different approaches on a single day for the terrorism
dataset. Table 5 and Table 6 provide the synopses of the top 3 events
detected by our approach on a single day for the migration dataset
and the politics dataset (events detected by baseline approaches
are not shown given the space limitation). In these tables, the GT

rows list the corresponding ground truth events, and the Map GT
column shows which ground truth event a detected event maps
to. We can see that the event synopses generated by our approach
and the KCore are much more informative than the Emerge ap-
proach and the Wavelet approach, since both our approach and
the KCore approach give a tweet as event synopsis, whereas the
Emerge approach and the Wavelet approach give a set of terms as
event synopsis. On the other hand, our approach achieves a much
higher event detection accuracy than the KCore approach, which
can be seen in Table 4, Table 5, and Table 6. Combining the event
accuracy and event synopsis informativeness, our approach clearly
outperforms all the three baseline approaches.

5.6 Case Study: Geotagged vs. Non-Geotagged

As stated previously, one of the reasons our approach performs
better than the baseline approaches is that it leverages geogra-
phy information during graph construction. Although the baseline
approaches do not consider geography information in detecting
events, we hypothesize that leveraging geography information
could also improve their performance. For this analysis, we inves-
tigate the impact of incorporating location information into the
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Table 4: Synopses of events detected by different approaches on
Nov 13, 2015 for the terrorism dataset

MLG’17, August 2017, Halifax, Nova Scotia, Canada

Table 6: Synopses of events detected by our approach on August 11,
2016 for the politics dataset

in Paris, killing 130 people.

M M
No. Gz'll? Event Synopsis No. Gz,il? Event Synopsis
1 GT1 ISIS carries out a series of coordinated attacks GT1 Hillary Clinton makes a speech in Detroit.

2 | GT 2 | Donald Trump holds rally in Kissimmee, Florida.

jihadijohn reuters is isis syria iraq

GT 5 GT2 Pentagon confirms Jihadi John was killed in an 6T s | GT3 Utah Governor Gary Herbert says he’ll be
airstrike carried out by US. voting for Donald Trump.
3 GT 3 | Suicide bomb and road blast kill 26 in Baghdad. MICHIGAN: hillary you bill and obama
FRANCE: good job boys thanks for paris attack 1 GT 1 | destroyed michigan economy now you have the
1 GT1 france paris attack parisattack jihadist Geo nerve to speak about creat jobs in detroit
Geo mujahedeen islam terror alqaeda isis is isil FLORIDA: and whichever florida pastors
SYRIA: us military says reasonably certain that 2 | GT2 applauded to trump claim about obama
2 GT 2 raqqa airstrike killed daesh terrorist founding isis should resign immediately

IRAQ: 150 killed wounded in a triple isis suicide

UTAH: utah govgaryherbert is voting for trump
3 GT 3 so i must not vote for herbert in the fall

support isis parisattacks parisshooting

3 GT3
attacks in east baghdad in sadr in one day iraq anyonebuttrump anyonebutherbert
good job boys thanks for paris attack france
1 GT1 paris attack parisattack jihadist mujahedeen
. c 80%
KCore islam terror alqaeda isis is isil
fuck terrorism fuck isis fuck al queda fuck u and 60%
2 GT1 fuck everything you fucking stand for you
. . - . 40%
fucking fuckwit fuckers isis parisattacks
parisattacks is a wake up call for every single 20%
3 GT1 country in the world except the countries that 0%
0

Emerge 1 GT1 isis, the, to, of, in, ccot, rt, is, on, paris
1 N cold, usual, carlyfiorina, nuclear, journalneo,
one
experi, thr, constitut, weather, ecentauri
Wavelet - — - —
ilnewsflash, billion, tag, price, oct, record, victim,
2 None
star, hunt, shock
destruct, true, communiti, thereaperteam,
3 None

hellfir, oust, journal, boom, worth, european

Table 5: Synopses of events detected by our approach on Sept 5,
2015 for the migration dataset

M
No. G"al? Event Synopsis
1 GT1 Alan Kurdi, a three-years-old Syrian child,

drown in the Mediterranean Sea.

GT
2 | GT2 | Refugees are stranded at Budapest train station.

3 | GT3 Refugees applauded in Germany by locals.

SYRIA: the three year old was killed as his

1 GT 1 | family made a desperate bid to flee syria mirror

Geo columnist carole malone says we must learn

HUNGRAY: hungarian families arrive at the

2 | GT 2 | railway station with aid for refugees a new wave
waiting to leave for their destination budapest

GERMANY: check out germany being super cool

3 | GT3 as ever applauding refugees arriving in

munich way to go deutschland

baseline approaches. More specifically, we divide a tweet stream
D into multiple tweet streams {D(I)} by using the predominant
location of each tweet in D. These geotagged tweet streams are
then fed into a baseline approach.

Precision Recall

¥ Geo Kcore M Emerge Wavelet

Figure 7: Event detection accuracy of the geotagged baseline
approaches and our approach on the terrorism dataset

Given a geotagged tweet stream D(I), each geotagged baseline
approach returns one event at location ! during each time window
7;. The events detected from multiple geotagged tweet streams
{D(I)} within the same time window 7; are sorted according to the
number of tweets in the tweet window |D(J, 7;)| in a descending
order. Similar to Section 5.4, we select the top 5 events per time
window for each of the three geotagged baseline approaches and
our proposed approach, and manually check whether a detected
event maps to any real world event.

We apply the three geotagged baseline approaches and our pro-
posed approach to the terrorism dataset. Figure 7 shows the preci-
sion and recall of the four approaches. Combining Figure 5 (event
detection accuracy of non-geotagged baselines) and Figure 7 (event
detection accuracy of geotagged baselines), we can see that leverag-
ing the location information improves both the detection precision
and recall by over 20% for the KCore approach and the Emerge
approach; with respect to the Wavelet approach, the improvement
is not significant, but still observable. We conclude that including
geography information is beneficial to event detection in general.
On the other hand, we can see that our proposed approach still
outperforms the geotagged baseline approaches. It suggests that
other components of our approach, including bursty term extrac-
tion, geotagged bursty term graph generation, and event extraction,
are important for detecting events accurately.
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6 CONCLUSIONS

In this paper, we proposed an approach for detecting events from
a tweet stream that leverages geotagged bursty term graphs. An
empirical evaluation on three large real-world data sets shows that
our approach significantly improves the event detection precision
and recall when compared to the state of the art, and that adding
geography information to the other approaches does improve their
precision and recall. We also find that events are easier to detect
because of our simple approach to labeling them using tweets con-
taining bursty words. Future directions include understanding the
relationship between event detection and levels of noise on Twit-
ter, and considering varying time windows and periods for event
detection.
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