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ABSTRACT

Machine Learning based approaches for malware detection have

achieved a certain level of maturity as product o�erings by Cyber-

security companies. VirusTotal recently includedX by Invincea [21]

and MalwareScore by Endgame as signature-less anti-virus scan-

ners. In this position paper, we argue that the signi�cant chal-

lenges related to information heterogeneity, noisy and uncertain

inputs, and the demand (from cybersecurity professionals) to gen-

eralize beyond per-sample prediction are impeding further advance-

ment in this �eld. �ese challenges cannot be addressed by stan-

dard supervised machine learning approaches. We highlight the

fact that the current applications of machine learning for cyberse-

curity have focused on feature based learning and largely ignored

identifying and learning from the underlying relationships between

malware samples. Malware graphs are the obvious abstractions

for representing such relationships. We brie�y discuss potential

approaches and outline further research that is needed to build

high-impact deployable cybersecurity solutions based on malware

graphs.

1 INTRODUCTION

Machine Learning for Cybersecurity is an active area of research

and innovation within academia as well as the industry. Recently,

the cybersecurity industry has started o�ering malware detection

solutions based on supervised learning algorithms like Random

Forests 1, Support Vector Machines, and Deep Neural Networks 2

[21]. However, we believe that the era of plucking low hanging

fruits is over.

Current approaches for malware detection require three impor-

tant components: (1) large labeled datasets that contain a variety

of malware samples, (2) feature engineering to convert informa-

tion contained in �le properties, raw binary, and static analysis

into representations that can be used by machine learning algo-

rithms, and (3) use of either supervised or unsupervised learning

algorithms [2, 5, 7, 12, 21].

In this paper, we �rst highlight the challenges related to these

three components that are impeding further advancement in this

area. We propose using graphs that capture relationships between

di�erentmalware sampleswith semi-supervised learning to address

these challenges. However, building malware graphs involves its

own challenges arising from both information heterogeneity as

well as the need to explain an algorithm’s decision to security an-

alysts. We outline these challenges and discuss promising ideas to

address them.

1h�ps://www.endgame.com/blog/world-meet-malwarescore
2h�p://blog.virustotal.com/2016/08/virustotal-invincea.html

Challenge 1: Incomplete and Noisy labels. Security practi-

tioners rely on public and propriety malware repositories to col-

lect obtain samples to train machine learning models 3 [22]. How-

ever, all such e�orts su�er from lack to reliable labels. We have

datasets where only a subset of samples are labeled (either as mal-

ware or benignware). Furthermore, these labels can be incorrect,

either a malware sample is incorrectly labeled as benignware (or

vice-versa) or a malware sample is identi�ed as belonging to an in-

correct class (e.g. a highly dangerous remote access trojan used to

take over a computer system incorrectly labeled as the least danger-

ous Adware that simply displays advertisements on a computer).

To address this issue in the context of large datasets, we currently

rely on services like VirusTotal that allow you to submit samples

for analysis by multiple antivirus engines. A typical rule-of-thumb

has been to label any sample with no antivirus engine hits as be-

nignware and samples with 30% or more antivirus engine hits as

malware [22]. However, this approach has four major issues: (1)

It is no guaranteed to eliminated all incorrect labels, (2) It is not

consistent because antivirus engines constantly update their sig-

natures, (3) We are forced to throw away potentially useful sam-

ples, i.e. the ones with less than 30% antivirus engine hits, and

(4) It is not su�cient in a multi-class se�ing, i.e. we want to dis-

tinguish between di�erent malware types (in addition to malware

vs. benignware) because di�erent antivirus engines are known to

disagree on the type of a malware [15].

Challenge 2: Information heterogeneity. �e cybersecurity

community has built several tools for both static and dynamic anal-

ysis of malware samples. Today, we can generate multiple views of

a sample by extracting information from raw sample binary, static

analysis (referenced libraries and functions , PE (Portable Execu-

tion format) properties, digital signatures, etc.), and dynamic or

execution based analysis (�le system accesses, network behavior,

API calls, processes created, etc.). As malware reverse engineers

and threat researchers improve at their cra�, these analysis tech-

niques will provide more and more data. However, this creates

a data heterogeneity as well as curse of dimensionality problem

for machine learning based approaches. Recent work has used ap-

proaches like hashing trick, random projections, and multiple ker-

nel learning [2, 22], to address this challenge. However, these ap-

proaches sacri�ce explainability by creating features that security

analysts cannot interpret.

Challenge 3: Generalize beyond per-sample detections. A

vanilla malware classi�er simply �ags a sample as malware or be-

nignware with a certain score. However, o�en a malware sample

is a variant of a known type (produced by using obfuscation tech-

niques to evade antivirus engines) [27]. Hence, we need to get

be�er at discovering underlying relationships between di�erent

3www.virustotal.com

https://www.endgame.com/blog/world-meet-malwarescore
http://blog.virustotal.com/2016/08/virustotal-invincea.html
www.virustotal.com
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malware samples and move beyond predicting individual samples

as malware or benignware. �is will enable us to identify interest-

ing/anomalous samples to prioritize the e�orts to malware reverse

engineers (a precious resource at any organization and the com-

munity in general).

Challenge 4: Track evolution of malware. We know that mal-

ware classi�ers are e�ective at detecting variants of known mali-

cious platforms and toolkits [22]. However, Saxe et al. show that

the performance of a classi�er can degrade signi�cantly over time

by performing a time split experiment. �ey trained a Deep Neural

Network classi�er using samples with compilation timestamp be-

fore July 31st, 2014 in their dataset and used it to classify samples

compiled a�er July 31st, 2014. It detect 67.7% of malware at 0.1%

false positive rate. In contrast, the same algorithm when trained

with samples with compilation time similar to the samples in their

test dataset detected 95.2% of malware at 0.1%. �is is not surpris-

ing because malware evolves and hence, we need to keep the clas-

si�ers up-to-date by re-training it on new samples. However, this

fact underscores the importance of tracking malware genealogy;

something that our current focus on building malware classi�ers

ignores.

2 GRAPH MINING TO OUR RESCUE

Our position is that current applications of machine learning for

cybersecurity have focused on feature based learning and largely

ignored identifying and learning from the underlying relationships

between malware samples. Malware graphs are the obvious ab-

stractions for representing such relationships.

Graph based approaches for detecting malware is an active area

of research for malware targeted at PCs [3, 4, 8, 9, 14, 18–20] as

well as mobiles [6, 17, 26]. A popular approach is to build Program

Representation Graphs [17], i.e. graphs that capture semantic rep-

resentations derived from static analysis, e.g. function call graphs,

control and data �ow graphs, and data and program dependency

graphs [3, 6, 8, 11, 18, 26].

Polonium [4] uses a reputation-based approach by constructing

a bi-partite graph between �les and the users’ computers on which

they are found. Kwon et al. [14] propose a downloader-graph ab-

straction to capture the download activity on end hosts, and ex-

ploit the di�erences between the growth pa�erns of benignware

downloader-graphs and malware downloader-graphs to detect the

downloader trojans or droppersmalware. However, these approaches

build graphs using only one view of malware. In contrast, the

feature-based approaches discussed in Section 1 exploit multiple

views by combining information from static as well as dynamic

analysis.

�ere are bene�ts to capturing multiple views or aspects of a

malware using graphs [16]. Our claim is based on how entities

behave and interact in many real-world applications. E.g., humans

are associated with others based on di�erent types of relationships

that can only be inferred by combining information from multi-

ple sources. Even in our specialized roles as researchers, we are

part of multiple types of relationships, e.g., co-authors on a pa-

per, publishing at the same/similar conferences or journals, citing

the same/similar papers. �e similarity between web pages based

on hyperlinks or words occurring on a page is another example.

Researchers have used multiple graphs [24], heterogeneous net-

works [23], and multi-view spectral clustering [28] to study such

networks.

Multiple kernel learning o�ers an interesting possibility [2] for

building networks to capture multiple malware views. Anderson

et al. de�ne a similarity metric on each distinct view of a mal-

ware using kernels. �ey use multiple kernel learning to �nd a

weighted combination of the di�erent kernel which yields the best

classi�cation accuracy in a support vector machine classi�er. An-

other approach can be based on metric learning to automatically

learn the importance of each view for the problem [13]. Multiple

kernels can also be used for semi-supervised learning [25], which

might be more suited for malware detection due to the problem of

incomplete and noisy labels (see Section 1).

An alternate approach can use graphs from di�erent views of

malware to detect di�erent malware families (instead of fusing

them together as done bymultiple kernel learning based approaches).

Kwon et al. [14] have shown that network activity graphs are ef-

fective at capturing the behavior of trojans or droppers malware

whereas �le system activity graph can be e�ective at detecting

ransomware [10]. More research is needed to understand the re-

lationship between di�erent malware views and the frameworks

and toolkits used by di�erent malware families.

Graphs can help in tracking malware genealogy as well. Ge-

nealogies are naturally represented as relations which evolve with

time. Hence temporal network analysis can help in pinpointing

di�erent malware families and how they evolve. Dynamic graph

mining is a growing �eld of research [1], and we believe this can

generate interesting novel problems.

Graph mining also raises various interesting computational is-

sues. Storing the entire graph centrally sometimes may not be an

option for real-time detection. Hence in such cases, we may want

to do the computation in a decentralized fashion among the user

facing sensors. �is is a challenging problem, as sensors typically

have severe resource constrains. We envisage this to be fruitful

area of research, which can aid in deployment in di�erent se�ings.

Where are the datasets? We know of three malware datasets

that are publicly available: WINE from Symantec4, Sherlock-a mo-

bile malware dataset5, and the Microso� Malware Classi�cation

Challenge dataset hosted by Kaggle6. Additionally, one can har-

vest samples from online resources shared by the cyber security

professionals7. Representative datasets on real-world malware is

important for engaging researchers. We should continue to ex-

plore opportunities for creating more such datasets.

3 CONCLUSIONS

To conclude, we have discussed new challenges in data-driven mal-

ware detection, which can not be handled using standard approaches

used so far. Our position is that sophisticated approaches leverag-

ing graph mining can play an important role in addressing such

4h�p://securityresponse.symantec.com/about/pro�le/universityresearch/sharing.jsp
5h�p://bigdata.ise.bgu.ac.il/sherlock/
6h�ps://www.kaggle.com/c/malware-classi�cation
7h�p://thezoo.morirt.com/
h�ps://zeltser.com/malware-sample-sources/

http://securityresponse.symantec.com/about/profile/universityresearch/sharing.jsp
http://bigdata.ise.bgu.ac.il/sherlock/
https://www.kaggle.com/c/malware-classification
http://thezoo.morirt.com/
https://zeltser.com/malware-sample-sources/
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challenges. In summary, graphs can help in dealing with informa-

tion heterogeneity, noisy and uncertain inputs, help generalize de-

tection and track malware families instead of just samples. Much

work needs to be done, but addressing these crucial issues are nec-

essary to cra� high-impact deployable security solutions.
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