
graph2vec: Learning Distributed Representations of
Graphs

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui
Chen, Yang Liu and Shantanu Jaiswal
Nanyang Technological University, Singapore

annamala002@e.ntu.edu.sg,

{mahinthan,rajasekarv,elhchen,yangliu}@ntu.edu.sg,shantanu004@e.ntu.edu.sg

ABSTRACT
Recent works on representation learning for graph struc-
tured data predominantly focus on learning distributed rep-
resentations of graph substructures such as nodes and sub-
graphs. However, many graph analytics tasks such as
graph classification and clustering require representing en-
tire graphs as fixed length feature vectors. While the afore-
mentioned approaches are naturally unequipped to learn
such representations, graph kernels remain as the most ef-
fective way of obtaining them. However, these graph ker-
nels use handcrafted features (e.g., shortest paths, graphlets,
etc.) and hence are hampered by problems such as poor
generalization. To address this limitation, in this work, we
propose a neural embedding framework named graph2vec

to learn data-driven distributed representations of arbitrary
sized graphs. graph2vec’s embeddings are learnt in an un-
supervised manner and are task agnostic. Hence, they could
be used for any downstream task such as graph classification,
clustering and even seeding supervised representation learn-
ing approaches. Our experiments on several benchmark and
large real-world datasets show that graph2vec achieves sig-
nificant improvements in classification and clustering accu-
racies over substructure representation learning approaches
and are competitive with state-of-the-art graph kernels.

Keywords
Graph Kernels, Deep Learning, Representation Learning

1. INTRODUCTION
Graph-structured data are ubiquitous nowadays in many

domains such as social networks, cybersecurity, bio- and
chemo-informatics. Many analytics tasks in these domains
such as graph classification, clustering and regression re-
quire representing graphs as fixed-length feature vectors to
facilitate applying appropriate Machine Learning (ML) al-
gorithms. For instance, vectorial representations (aka em-
beddings) of programs’ call graphs could be used to detect

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

malware [6] and those of chemical compounds could be used
to predict their properties such as solubility and anti-cancer
activity [7].

Graph Kernels and handcrafted features. Graph
kernels are one of the most prominent ways of catering
the aforementioned graph analytics tasks. Graph kernels
evaluate the similarity (aka kernel value) between a pair
of graphs G and G’ by recursively decomposing them into
atomic substructures (e.g., random walks, shortest paths,
graphlets etc.) and defining a similarity (aka kernel) func-
tion over the substructures (e.g., counting the number of
common substructures across G and G’). Subsequently, ker-
nel methods (e.g., Support Vector Machines (SVMs)) could
be used for performing classification/clustering. However,
these kernels exhibit two critical limitations: (1) Many of
them do not provide explicit graph embeddings. This ren-
ders using general purpose ML algorithms which operate
on vector embeddings (e.g., Random Forests (RFs), Neural
Networks, etc.) unusable with graph data. (2) The substruc-
tures (i.e., walk, paths, etc.) leveraged by these kernels are
‘handcrafted’ i.e., determined manually with specific well-
defined functions that help extracting such substructures
from graphs. However, as noted by Yanardag and Vish-
wanathan [7], when such handcrafted features are used on
large datasets of graphs, it leads to building very high dimen-
sional, sparse and non-smooth representations and thus yield
poor generalization. We note that replacing handcrafted
features with ones that are learnt automatically from data
could help to fix both the aforementioned limitations. In
fact, in related domains such as text mining and computer
vision, feature learning based approaches have outperformed
handcrafted ones significantly across many tasks [2, 9].

Learning substructure embeddings. Recently, sev-
eral approaches have been proposed to learn embeddings of
graph substructures such as nodes [4], paths [7] and sub-
graphs [5, 6]. These embeddings can then be used directly
in substructure based analytics tasks such as node classifi-
cation, community detection and link prediction. However,
these substructure representation learning approaches are
incapable of learning representations of entire graphs and
hence cannot be used for tasks such as graph classification.
As we show through our experiments in §5, obtaining graph
embeddings through trivial extensions such as averaging or
max pooling over substructure embeddings leads to subop-
timal results.

Learning task-specific graph embeddings. On the
other hand, a few supervised approaches (i.e., ones that re-
quire class labels of graphs) to learn embeddings of entire

10.1145/1235

graphs such as Patchy-san [9] have been proposed very re-
cently. While they offer excellent performances in supervised
learning tasks (e.g., graph classification) they pose two crit-
ical limitations that reduce their usability: (1) Being deep
neural network based representation learning approaches,
they require large volume of labeled data to learn mean-
ingful representations. Obviously, obtaining such datasets
is a challenge in itself as it requires mammoth labeling ef-
fort. (2) The representations thus learnt are specific to one
particular ML task and cannot be used or transferred to
other tasks or problems. For instance, the graph embed-
dings for the chemical compounds in the MUTAG dataset
(see [7] for details) learnt using [9] are specifically designed
to predict whether or not a compound has mutagenic effect
on a bacterium. Hence, the same embeddings could not be
used for any other tasks such as predicting the properties of
the compounds. To circumvent these limitations, similar to
the above mentioned substructure representation learning
approaches, we need a completely unsupervised approach
that can succinctly capture the generic characteristics of en-
tire graphs in the form of their embeddings. To the best
of our knowledge, there are no such techniques available.
Hence driven by this motivation, in this work, we take the
first steps towards learning task-agnostic representations of
arbitrary sized graphs in an unsupervised fashion.

Our approach. To this end, we propose and develop a
neural embedding framework named graph2vec. Inspired
by the success of recently proposed neural document em-
bedding models, we extend the same to learn graph em-
beddings. These document embedding models exploit the
way how words/word sequences compose documents to learn
their embeddings. Analogically, in graph2vec, we propose
to view an entire graph as a document and the rooted sub-
graphs around every node in the graph as words that com-
pose the document and extend document embedding neural
networks to learn representations of entire graphs.

To the best of our knowledge, graph2vec is the first neural
embedding approach that learns representations of whole
graphs and it offers the following key advantages over graph
kernels and other substructure embedding approaches:

1. Unsupervised representation learning: graph2vec

learns graph embeddings in a completely unsupervised
manner i.e., class labels of graphs are not required for
learning their embeddings. This allows us to readily
use graph2vec embeddings in a plethora of applications
where labeled data is difficult to obtain.

2. Task-agnostic embeddings: Since graph2vec does not
leverage on any task-specific information (e.g., class la-
bels) for its representation learning process, the embed-
dings it provides are generic. This allows us to use these
embeddings across all analytics tasks involving whole
graphs. In fact, graph2vec embeddings could be used to
seed supervised representation learning approaches such
as [9].

3. Data-driven embeddings: Unlike graph kernels,
graph2vec learns graph embeddings from a large corpus
of graph data. This enables graph2vec to circumvent
the aforementioned disadvantages of handcrafted feature
based embedding approaches.

4. Captures structural equivalence: Unlike approaches
such as sub2vec [5] which sample linear substructures
(e.g., fixed length random walks) in a graph and learns

graph embeddings from them, our framework samples
and considers non-linear substructures, namely, rooted
subgraphs for learning embeddings. Considering such
non-linear substructures are known to preserve structural
equivalence1 and hence this ensures graph2vec’s repre-
sentation learning process yields similar embeddings for
structurally similar graphs.

Experiments. We determine graph2vec’s accuracy and
efficiency in both supervised and unsupervised learning tasks
with several benchmark and large real-world graph datasets.
Also, we perform comparative analysis against several state-
of-the-art substructure (e.g., node) representation learning
approaches and graph kernels. Our experiments reveal that
graph2vec achieves significant improvements in classifica-
tion and clustering accuracies over substructure embed-
ding methods and are highly competitive to state-of-the-
art kernels. Specifically, on two real-world program analysis
tasks, namely, malware detection and malware familial clus-
tering, graph2vec outperforms state-of-the-art substructure
embedding approaches by more than 17% and 39%, respec-
tively.

Contributions. We make the following contributions:

• We propose graph2vec, an unsupervised representation
learning technique to learn distributed representations of
arbitrary sized graphs.

• Through our large-scale experiments on several bench-
mark and real-world datasets, we demonstrate that
graph2vec could significantly outperform substructure
representation learning algorithms and highly competitive
to state-of-the-art graph kernels on graph classification
and clustering tasks.

• We make an efficient implementation of graph2vec and
the embeddings of all the datasets used in this work pub-
licly available at [15].

The remainder of the paper is organized as follows: In §2
the problem of learning graph embeddings is formally de-
fined. In §3, preliminaries on word and document represen-
tation learning approaches that graph2vec relies on are pre-
sented. The proposed method and its evaluation results and
discussions are presented in §4 and §5, respectively. Conclu-
sions are discussed in §6.

2. PROBLEM STATEMENT
Given a set of graphs G = {G1, G2, ...} and a positive in-

teger δ (i.e., expected embedding size), we intend to learn
δ-dimensional distributed representations for every graph
Gi ∈ G. The matrix of representations of all graphs is de-
noted as Φ ∈ R|G|×δ.

More specifically, let G = (N,E, λ), represent a graph,
where N is a set of nodes and E ⊆ (N×N) be a set of edges.
Graph G is labeled if there exists a function λ such that
λ : N → `, which assigns a unique label from alphabet ` to
every node n ∈ N . Otherwise, G is considered as unlabeled2.

1For instance, Weisfeiler-Lehman kernel uses non-linear
substructures for computing kernels across graphs and is
demonstrated to outperform linear substructure kernels such
as random walk kernel and shortest path kernel in many
tasks [7, 10].

2Since our procedure requires node labels, in the case of
unlabeled graphs, we follow the procedure mentioned in [10]
and label nodes with their degree.

Additionally, the edges may also be labeled in which case we
also have an edge labeling function, η : E → e.

Given G = (N,E, λ) and sg = (Nsg, Esg, λsg), sg is a sub-
graph of G iff there exists an injective mapping µ : Nsg → N
such that (n1, n2) ∈ Esg iff (µ(n1), µ(n2)) ∈ E. In this work,
by subgraph, we strictly refer to a specific class of subgraphs,
namely, rooted subgraphs. In a given graph G, a rooted sub-
graph of degree d around node n ∈ N encompasses all the
nodes (and corresponding edges) that are reachable in d hops
from n.

3. BACKGROUND: SKIPGRAM WORD &
DOCUMENT EMBEDDING MODELS

Our goal is to learn the distributed representations of
graphs by extending the recently proposed document em-
bedding techniques in NLP for multi-relational data. Hence,
in this section, we review the related background in language
modeling, word and document embedding techniques.

3.1 Skipgram model for learning word em-
beddings

Modern neural embedding methods such as word2vec [2]
use a simple and efficient feed forward neural network ar-
chitecture called ”skipgram” to learn distributed representa-
tions of words. word2vec works based on the rationale that
the words appearing in similar contexts tend to have similar
meanings and hence should have similar vector representa-
tions. To learn a target word’s representation, this model
exploits the notion of context, where a context is defined as
a fixed number of words surrounding the target word. To
this end, given a sequence of words {w1, w2, ..., wt, ..., wT },
the target word wt whose representation has to be learnt
and the length of the context window c, the objective of
skipgram model is to maximize the following log-likelihood:

T∑
t=1

log Pr(wt−c, ..., wt+c|wt) (1)

where wt−c, ..., wt+c are the context of the target word wt.
The probability Pr(wt−c, ..., wt+c) is computed as

Π−c≤j≤c,j 6=0Pr(wt+j |wt) (2)

Here, the context words and the target word are assumed to
be independent. Furthermore, Pr(wt+j |wt) is defined as:

exp(~wt · ~w′t+j)∑
w∈V exp(~wt · ~w)

(3)

where ~w and ~w′ are the input and output vectors of word
w and V is the vocabulary of all the words.

3.2 Negative Sampling
The posterior probability in eq. (2) could be learnt in

several ways. For instance, a naive approach would be to
use a classifier like logistic regression. However, this is pro-
hibitively expensive if the vocabulary V is very large.

Negative sampling is a simple yet efficient algorithm that
helps to alleviate this problem and train the skipgram model.
Negative sampling selects a small subset of words at ran-
dom that are not in the target word’s context and updates
their embeddings in every iteration instead of considering
all words in the vocabulary. Training this way ensures the
following: if a word w appears in the context of another

word w′, then the vector embedding of w is closer to that of
w′ compared to any other randomly chosen word from the
vocabulary.

Once skipgram training converges, semantically similar
words are mapped to closer positions in the embedding space
revealing that the learned word embeddings preserve seman-
tics.

3.3 Neural document embedding models
Recently, doc2vec, a straight forward extension to

word2vec from learning embeddings of words to those
of word sequences was proposed by Le and Mikolov [3].
doc2vec uses an instance of the skipgram model called para-
graph vector-distributed bag of words (PV-DBOW) (in-
terchangeably referred as doc2vec skipgram) which is ca-
pable of learning representations of arbitrary length word
sequences such as sentences, paragraphs and even whole
large documents3. More specifically, given a set of docu-
ments D = {d1, d2, ...dN} and a sequence of words c(di) =
{w1, w2, ..., wli} sampled from document di ∈ D, doc2vec

skipgram learns a δ dimensional embeddings of the docu-
ment di ∈ D and each word wj sampled from c(di) i.e.,
~di ∈ Rδ and ~wj ∈ Rδ, respectively. The model works by
considering a word wj ∈ c(di) to be occurring in the con-
text of document di and tries to maximize the following log
likelihood:

li∑
j=1

log Pr(wj |di) (4)

where, the probability Pr(wj |d) is defined as,

exp(~d · ~wj)∑
w∈V exp(

~d · ~w)
(5)

where V is the vocabulary of all the words across all doc-
uments in D. Understandably, eq. (4) could be trained
efficiently using negative sampling.

In graph2vec, we consider graphs analogical to documents
that are composed of rooted subgraphs which, in turn, are
analogical words from a special language and extend docu-
ment embedding models to learn graph embeddings.

4. METHOD: LEARNING GRAPH REPRE-
SENTATIONS

In this section we discuss the intuition (§4.1), overview
(§4.2) and main components of our graph2vec algorithm
(§4.3) in detail and explain how it learns embeddings of ar-
bitrary sized graphs in an unsupervised manner.

4.1 Intuition
With the background on word and document embeddings

presented in the previous section, an important intuition we
extend in graph2vec is to view an entire graph as a docu-
ment and the rooted subgraphs (that encompass a neighbor-
hood of certain degree) around every node in the graph as

3To be precise, there are two versions of doc2vec, namely,
PV-distributed memory (PV-DM) and PV-DBOW. PV-DM
is not an instance of skipgram model. It learns document
embeddings by combining and optimizing them with those
of words that occur within a fixed length context window
(similar to word2vec) in the corresponding documents. Evi-
dently, PV-DM is not related to our proposed technique and
hence we refrain from discussing it further.

Graph ID
Graph2vec
(skipgram)

rooted subgraph 1

rooted subgraph 2

rooted subgraph c-1

rooted subgraph c

.

.

.
Document ID

Doc2vec
(skipgram)

word 1

word 2

word c-1

word c

.

.

.

(a) (b)

Figure 1: (a) doc2vec’s skipgram model - Given a document d, it samples c words from d and considers them as co-occurring in the
same context (i.e., context of the document d) uses them to learn d ’s representation. (b) graph2vec - Given a graph G, it samples
c rooted subgraphs around different nodes that occur in G and uses them analogous to doc2vec’s context words and thus learns G’s
representation.

words that compose the document. In other words, differ-
ent subgraphs compose graphs in a similar way that different
words compose sentences/documents when used together.

At this juncture, it is important to note that other sub-
structures such as nodes, walks and paths could also be con-
sidered as atomic entities that compose a graph, instead of
rooted subgraphs. However, there are two reasons that make
rooted subgraphs more amenable for learning graph embed-
dings:
1. Higher order substructure. Compared to simpler
lower order substructures such as nodes, rooted subgraphs
encompass higher order neighborhoods which offers a richer
representation of composition of the graphs. Hence, the em-
beddings learnt through sampling such higher order sub-
structures would reflect the compositions of the graphs bet-
ter.
2. Non-linear substructure. Compared to linear sub-
structures such as walks and paths, rooted subgraphs cap-
ture the inherent non-linearity in the graphs better. This
fact is evident while considering the graph kernels, as well.
For instance, Weisfeiler-Lehman (WL) kernel which are
based on non-linear substructures offer significantly better
performance on many tasks than the linear substructure
based kernels such as random walk and shortest path ker-
nels [7, 10].

Through establishing the above mentioned analogy of doc-
uments and words to graphs and rooted subgraphs, respec-
tively, one can utilize document embedding models to learn
graph embeddings. The main expectation here is that struc-
turally similar graphs will be close to each other in the em-
bedding space. In this sense, similar to the Deep Graph
Kernels [7], graph2vec’s embeddings provide means to ar-
rive a data-driven graph kernel.

4.2 Algorithm overview
Similar to the document convention, the only required in-

put is a corpus of graphs for graph2vec to learn their repre-
sentations. Given a dataset of graphs, graph2vec considers
the set of all rooted subgraphs (i.e., neighbourhoods) around
every node (up to a certain degree) as its vocabulary. Sub-
sequently, following the doc2vec skipgram training process,
we learn the representations of each graph in the dataset.

To train the skipgram model in the above mentioned fash-
ion we need to extract rooted subgraphs and assign a unique
label for all the rooted subgraphs in the vocabulary. To this
end, we deploy the WL relabeling strategy (which is also
used by the WL kernel).

4.3 graph2vec: Algorithm

Algorithm 1: graph2vec (G, D, δ, e, α)

input : G = {G1, G2, ..., Gn}: Set of graphs such that each
graph Gi = (Ni, Ei, λi) for which embeddings have to
be learnt
D: Maximum degree of rooted subgraphs to be
considered for learning embeddings. This will produce
a vocabulary of subgraphs, SGvocab = {sg1, sg2, ...}
from all the graphs in G
δ: number of dimensions (embedding size)
e: number of epochs
α: Learning rate

output: Matrix of vector representations of graphs Φ ∈ R|G|×δ
1 begin

2 Initialization: Sample Φ from R|G|×δ

3 for e = 1 to e do
4 G = Shuffle (G)
5 for each Gi ∈ G do
6 for each n ∈ Ni do
7 for d = 0 to D do

8 sg
(d)
n := GetWLSubgraph(n,Gi, d)

9 J(Φ) = −log Pr (sg
(d)
n |Φ(G))

10 Φ = Φ− α ∂J
∂Φ

11 return Φ

The algorithm consists of two main components; first, a
procedure to generate rooted subgraphs around every node
in a given graph (§4.3.1) and second, the procedure to learn
embeddings of the given graphs (§4.3.2).

As presented in Algorithm 1 we intend to learn δ dimen-
sional embeddings of all the graphs in dataset G in e epochs.
We begin by randomly initializing the embeddings for all
graphs in the dataset (line 2). Subsequently, we proceed
with extracting rooted subgraphs around every node in each
of the graphs (line 8) and iteratively learn (i.e., refine) the
corresponding graph’s embedding in several epochs (lines 3
to 10). These steps represent the core of our approach and
are explained in detail in the two following subsections.

4.3.1 Extracting Rooted Subgraphs
To facilitate learning graph embeddings, a rooted sub-

graph sg
(d)
n around every node n of graph Gi is extracted

(line 8). This is a fundamentally important task in our
approach. To extract these subgraphs, we follow the well-
known WL relabeling process [10] which lays the basis for
the WL kernel [7, 10]. The subgraph extraction process is
explained separately in Algorithm 2. The algorithm takes
the root node n, graph G from which the subgraph has to be
extracted and degree of the intended subgraph d as inputs

Algorithm 2: GetWLSubgraph (n,G, d)

input : n: Node which acts as the root of the subgraph
G = (N,E, λ): Graph from which subgraph has to be
extracted
d: Degree of neighbours to be considered for extracting
subgraph

output: sg(d)n : Rooted subgraph of degree d around node n

1 begin

2 sg
(d)
n = {}
if d = 0 then

3 sg
(d)
n := λ(n)

4 else
5 Nn := {n′ | (n, n′) ∈ E}
6 M

(d)
n := {GetWLSubgraph(n′, G, d− 1) | n′ ∈ Nn}

7 sg
(d)
n := sg

(d)
n ∪ GetWLSubgraph

(n,G, d− 1)⊕ sort(M(d)
n)

8 return sg
(d)
n

and returns the intended subgraph sg
(d)
n . When d = 0, no

subgraph needs to be extracted and hence the label of node
n is returned (line 3). For cases where d > 0, we get all the
(breadth-first) neighbours of n in Nn (line 5). Then for each
neighbouring node, n′, we get its degree d− 1 subgraph and

save the same in list M
(d)
n (line 6). Finally, we get the degree

d− 1 subgraph around the root node n and concatenate the

same with sorted list M
(d)
n to obtain the intended subgraph

sg
(d)
n (line 7).

4.3.2 Skipgram with Negative Sampling
Given that sg

(d)
n ∈ SGvocab and |SGvocab| is very large,

calculating Pr(sg
(d)
n |Φ(G)) in line 9 of Algorithm 1 is pro-

hibitively expensive. Hence we follow the negative sampling
strategy (introduced in §3.2) to calculate this posterior prob-
ability.

In our negative sampling phase, for every training cy-
cle of Algorithm 1, given a graph Gi ∈ G and a set of
rooted subgraphs in its context, c(Gi) = c = {sg1, sg2, ...},
we select a set of fixed number of randomly chosen sub-
graphs as negative samples c′ = {sgn1, sgn2, ...sgnk} such
that c′ ⊂ SGvocab, k << |SGvocab| and c ∩ c′ = {}. Intu-
itively, negative samples (c′) is a set of k subgraphs, each
of which is not present in the graph whose embedding has
to be learnt (Gi), but in the vocabulary of subgraphs. The
number of negative samples (k) is a hyper-parameter that
could be empirically tuned. For efficient training, for ev-
ery graph Gi ∈ G, first, the target-context pairs (Gi, c) are
trained and the embeddings of the corresponding subgraphs
are updated. Subsequently, we update only the embeddings
of the negative samples c′, instead of the whole vocabulary.

Given a pair of graphsGi andGj , this training makes their
embeddings Φ(Gi) and Φ(Gj) closer if they are composed of
similar rooted subgraphs (i.e., c(Gi) is similar to c(Gj)) and
at the same time distances them from the embeddings of all
the graphs which are not composed of similar subgraphs.

4.3.3 Optimization
Stochastic gradient descent (SGD) optimizer is used to

optimize the parameters in line 9 and 10 of Algorithm 1.
The derivatives are estimated using the back-propagation
algorithm. The learning rate α is empirically tuned.

4.4 Use cases
Once the embeddings of graphs are computed using

graph2vec, they could be used for a variety of downstream
graph analytics tasks. The prominent ones are reviewed be-
low.

Graph Classification. Given G, a set of graphs and Y ,
the set of corresponding class labels, graph classification is
the task where we learn a modelH such thatH : G→ Y . To
this end, one could obtain the embeddings of all the graphs
in G and feed them to general purpose classifiers such as
RFs, Nueral Networks and SVMs to perform classification.
At this juncture, it is important to note that other graph em-
bedding procedure such as graph kernels and substructure
embeddings do not offer this flexibility. More specifically,
in the case of such methods, the kernel matrices computed
using them4 could be used only in conjunction with kernel
classifiers (e.g., SVMs) and general purpose classifiers could
not be used.

Graph Clustering. Given G, in graph clustering, the
goal is to group similar graphs together. graph2vec’s em-
beddings could be used along with general purpose clus-
tering algorithms such as K-means and relational clustering
algorithms such as Affinity Propagation (AP) [14] to achieve
this. Again, due to the aforementioned limitations of graph
kernels and substructure embeddings, they could be used
only with relational clustering algorithms.

5. EVALUATION
We evaluate graph2vec’s accuracy and efficiency both in

graph classification and clustering tasks. Besides experi-
menting with benchmark datasets, we also evaluate our ap-
proach on two real-world graph analytics tasks from the field
of program analysis, namely, malware detection and mal-
ware familial clustering on large malware datasets.

Research Questions. Specifically, we intend to ad-
dress the following research questions: (1) How does
graph2vec compare to state-of-the-art substructure repre-
sentation learning approaches and graph kernels for graph
classification tasks in terms of accuracy and efficiency on
benchmark datasets, (2) How does graph2vec compare to
the aforementioned state-of-the-art approaches on a real-
world graph classification task, namely, malware detection
detection, and (3) How does graph2vec compare to the
aforementioned state-of-the-art approaches on a real-world
graph clustering task, namely, malware familial clustering.

Comparative Analysis. The proposed approach is com-
pared with two representation learning techniques, namely,
node2vec [4] and sub2vec [5] and two graph kernel tech-
niques, namely, WL kernel [10] and Deep WL kernel [7].
node2vec is a neural embedding framework which learns fea-
ture representation of individual nodes in graphs. In our
experiments, to obtain embeddings of entire graphs using
node2vec, we average those of all the nodes in the graph.
sub2vec [5] is a framework that learns representations of any
arbitrary subgraphs. Therefore, obtaining representation of
whole graphs using sub2vec is a straightforward procedure.
WL kernel [10] is handcrafted feature based kernel that de-
composes graphs into rooted subgraphs and computes the
kernel values based on them. Besides kernel values, it also
yields explicit vector representations of graphs. Deep WL

4see [7] for the explanations on obtaining kernel matrix
with substructure embedding approaches

Table 1: Benchmark dataset statistics

Dataset # samples
nodes
(avg.)

distinct
node labels

MUTAG 188 17.9 7
PTC 344 25.5 19

PROTEINS 1113 39.1 3
NCI1 4110 29.8 37

NCI109 4127 29.6 38

kernel [7] is a representation learning variant of WL ker-
nel which learns embeddings of rooted subgraphs such that
similar subgraphs have similar embeddings. Thus, the ker-
nel values obtained using subgraph embeddings would be
unaffected by the limitations of handcrafted features such
as diagonal dominance.

Evaluation Setup. All the experiments were conducted
on a server with 36 CPU cores (Intel E5-2699 2.30GHz pro-
cessor) and 200 GB RAM running Ubuntu 14.04.

5.1 Graph Classification with Benchmark
Datasets

Datasets. Five benchmark graph classification datasets
namely MUTAG, PTC, PROTEINS, NCI1 and NCI109 are
used in this experiment. These datasets belong to chemo-
and bio-informatics domains and the specifications of the
datasets used are given in Table 1. MUTAG is a data set
of 188 chemical compounds labeled according to whether
or not they have a mutagenic effect on a specific bacteria.
PTC dataset comprises of 344 compounds and their classes
indicate carcinogenicity on rats. PROTEINS is a collection
of graphs whose nodes represent secondary structure ele-
ments and edges indicate neighborhood in the amino-acid
sequence or in 3D space. NCI1 and NCI109 datasets consist
of 4,110 and 4,127 graphs respectively, representing two bal-
anced subsets of datasets of chemical compounds screened
for activity against non-small cell lung cancer and ovarian
cancer cell lines, respectively.

Experiment & Configurations. In this experiment,
for each of the datasets, we train a SVM classifier with 90%
of the samples chosen at random and evaluate its perfor-
mance on the test set of remaining 10% samples. The hyper-
parameters of the classifiers are tuned based on 5-fold cross
validation on the training set. For all the representation
learning methods, we used a common embedding dimensions
of 1024, which was arrived empirically5.

Evaluation Metrics. The experiment is repeated 5
times and the average accuracy is used to determine the
effectiveness of classification. Efficiency is determined in
terms of time consumed for building graph embeddings (aka
pre-training duration). The training and testing durations
are not reported as they are not directly related to the pro-
posed method.

5.1.1 Results and Discussion
Accuracy. The results obtained by the graph2vec on

benchmark datasets are summarized in Table 2. From the
results, it is evident that the proposed approach outperforms
other representation learning and kernel based techniques
on 3 datasets (MUTAG, PTC and PROTEINS) and has
comparable accuracy on the remaining 2 datasets (NCI1 and
NCI109). The following inferences are made from the table.

5Embedding dimensions of {16, 32, 64,..., 4096} were ex-
perimented with and 1024 was found produce best results
predominantly with reasonable efficiency, across all datasets

0 50 100 150 200 250 300 350 400 450

Time in (s)

MUTAG

PTC

PROTEINS

NCI1

NCI109

D
at

as
et

Graph Embedding Time

Graph2vec
Deep WL kernel
Sub2vec
Node2vec
WLK

Figure 2: Pre-training durations of graph embedding techniques

• node2vec being a lower order substructure embedding
technique, it could only model local similarity within a
confined neighborhood and fails to learn global struc-
tural similarities that helps to classify similar graphs
together. This is especially evident from the results
on larger datasets, PROTEINS, NCI1 and NCI109
where node2vec’s accuracy is just above 50% (i.e., only
marginally better than random classification). In gen-
eral, from these results, one could conclude that while the
substructure embeddings techniques excel in substructure
based analytics tasks (see [4] for node2vec’s node classifi-
cation and link prediction performances), extending them
directly for tasks involving whole graphs yields sub-par
accuracies.

• sub2vec performs predominantly poorly across all
datasets. This is mainly because of the fact that its strat-
egy to sample graph substructures and learn their embed-
dings is particularly ill-suited for obtaining embedding of
large graphs. That is, sub2vec samples only one random
walk (of fixed length) from the given graph and subse-
quently learns its representations using fixed length linear
context skipgrams (with several iterations) over the sam-
pled walk. This prevents sub2vec from learning meaning-
ful representations of an entire graph, as sampling only
random walk may not be enough to cover all the neighbor-
hoods in the graph. This ultimately prevents the method
from appropriately modeling the structural similarities
across graphs which reflects in its poor performance. Also,
this inference is reinforced by the fact that sub2vec accu-
racies decrease with the increase in the size of the graphs
(see the difference in accuracies for MUTAG and NCI109
datasets).

• WL kernel, being a technique particularly designed to
cater tasks such as graph classification, consistently pro-
vides good results on all datasets. Deep WL Kernel per-
forms better than WL kernel on all datasets, as it ad-
dresses the limitations of the latter kernel’s handcrafted
features and achieves better generalization.

• Finally, graph2vec’s structure-preserving, data-driven
embedding which appropriately models both local and
global similarities among graphs, consistently yields good
results on all datasets. In particular, it outperforms all
the state-of-the-art methods in MUTAG, PTC and PRO-
TEINS dataset and obtains slightly lesser accuracies on
NCI1 and NCI109 datasets than the kernels.

Table 2: Average Accuracy (± std dev.) for graph2vec and state-of-the-art graph kernels on benchmark graph classification datasets

Dataset MUTAG PTC PROTEINS NCI1 NCI109

node2vec [4] 72.63 ± 10.20 58.85 ± 8.00 57.49 ± 3.57 54.89 ± 1.61 52.68 ± 1.56
sub2vec [5] 61.05 ± 15.79 59.99 ± 6.38 53.03 ± 5.55 52.84 ± 1.47 50.67 ± 1.50
WL kernel [10] 80.63 ± 3.07 56.91 ± 2.79 72.92 ± 0.56 80.01 ± 0.50 80.12 ± 0.34
Deep WL kernel [7] 82.95 ± 1.96 59.04 ± 1.09 73.30 ± 0.82 80.31 ± 0.46 80.32 ± 0.33
graph2vec 83.15 ± 9.25 60.17 ± 6.86 73.30 ± 2.05 73.22 ± 1.81 74.26 ± 1.47

Efficiency. A pre-training phase to compute vectors of
substructures and graphs is required for all the aforemen-
tioned methods except WL kernel. On the other hand, WL
kernel requires a phase to extract rooted subgraph features
and build handcrafted embeddings. In the case of former ap-
proaches, pre-training is the crucial step that helps in cap-
turing latent substructure similarities in graphs and thus
aids them to outperform handcrafted feature techniques.
Therefore, it is important to study the cost of pre-training.
The results of pre-training/feature extraction durations for
all the methods under study are shown in Figure 2.

Understandably, WL kernel is the most scalable method
for obtaining graph embeddings as it does not involve learn-
ing representations. node2vec learns embeddings of lower
order entities (i.e., nodes) through confined explorations of
neighborhoods around them and hence takes very less time
for pretraining. sub2vec learns graph embeddings by sam-
pling linear substructures and running several iterations of
skipgram algorithm over them. This results in significantly
high pretraining durations. DeepWL kernel learns rooted
subgraph embeddings using skipgram. It takes much lesser
duration than sub2vec as the latter’s length of sampled ran-
dom walk is much longer than the number of samples rooted
subgraphs in the former. Finally, our approach, which learns
embeddings of higher order structures remains less scalable
than node2vec, but much more scalable than Deep WL ker-
nel and sub2vec. This is due to the fact that, our approach
runs skipgram training only a limited number times (which
is equal to the number of rooted subgraphs sampled form the
given graph), while the other two approaches run it several
times over a fixed length linear context window.

The efficiency results in our experiments with real-world
datasets discussed in subsequent subsections follow the same
pattern as the one discussed above. Hence, we refrain from
discussing efficiency results here after.

5.2 Graph Classification with Real-world
Dataset

The performances of graph embedding approaches on
large real-world datasets may be different from the bench-
mark ones as they are more complex. Furthermore, bench-
mark datasets used in §5.1 are too small for the data-driven
embedding approaches to reap considerable leverage by ex-
ploiting the volume of data over the handcrafted approaches.
Therefore, it is highly essential to evaluate the performance
of the proposed method on large real-world datasets to show-
case its true potentials.

Experiment & Configurations. To this end, we con-
sider a large-scale Android malware detection problem where
we are given a dataset of API Dependency Graphs (ADGs)
of malicious and benign Android apps, and the task is to
represent each of them as vectors and train ML classifiers to
identify malicious ones. The datasets statistics are presented
in Table 3. Evidently, these ADGs are much larger than the
benchmark graphs. The dataset comprises of 10,560 ADGs,
each of which contain more than 2,600 nodes (i.e., instruc-

Table 3: Large real-world datasets used in graph classifications
and clustering tasks

Dataset source
#

samples
#

classes
nodes
(avg.)

edges
(avg.)

distinct
node labels

Classification [1, 12] 10,560 2 2637.12 927.31 4271
Clustering [13] 24,650 71 1071.33 544.83 3828

Table 4: Malware Detection - Results

Method Accuracy (avg. ± std.)

node2vec [4] 81.25 ± (1.04)
sub2vec [5] 76.83 ± (2.83)
WL kernel [10] 97.12 ± (0.44)
Deep WL kernel [7] 98.16 ± (0.20)
graph2vec 99.03 ± (0.17)

tions), 920 edges (i.e., control flows among instructions) and
4200 unique node labels (i.e., APIs invoked in instructions)
on average. The training set comprises of 70% of samples
chosen at random and the remaining 30% samples are used
as test set to evaluate the models. The experiment is re-
peated 5 times and the results are averaged.

Evaluation Metrics. The same evaluation metrics that
are used in experiments with benchmark datasets (see §5.1)
are used here as well.

5.2.1 Results & Discussion
The malware detection results of the proposed and com-

pared state-of-the-art approaches are presented in Table 4.
From the results obtained, the following inference is drawn:

• Averaging node2vec embeddings and using sub2vec to
obtain graph representations perform poorly in this ex-
periment as well. In particular, the proposed approach
outperforms these two techniques by more than 17% and
22%, respectively.

• Both WL and Deep WL kernels perform significantly bet-
ter than the two substructure representation learning ap-
proaches. However, graph2vec still outperforms these
techniques by 1.91% and 0.87%, respectively.

• Evidently, being data-driven approaches, both graph2vec

and Deep WL kernel exhibit excellent performance on
this large-scale dataset. Especially in this experiment,
the range in which they outperform other techniques un-
der comparison is more pronounced than the experiments
with benchmark datasets. Again, the two representa-
tion learning approaches, node2vec and sub2vec perform
worse as they are ill-suited for learning embeddings of en-
tire graphs.

5.3 Graph Clustering
The goal of this experiment is to demonstrate the effi-

cacy of graph2vec’s embedding in a downstream analytics
task where we do not have class labels for graphs. This
task would be most appropriate for evaluating and compar-
ing the methods that do not leverage on any task-specific
information in the process of learning representations.

Experiment & Configurations. In this experiment,
we are given with ADGs of malware samples and the name

Table 5: Malware Clustering - Results

Method ARI (as %)

node2vec [4] 16.39
sub2vec [5] 14.55
WL kernel [10] 48.93
Deep WL kernel [7] 50.41
graph2vec 56.28

of families6 to which they belong and the task is to group
samples belonging to the same family into the same cluster.
To this end, we consider the AMD dataset [13] which com-
prises of more than 24,000 Android malware apps belonging
to 71 families. The statistics of this dataset is presented in
Table 3.

From this dataset, only the large families that have more
than 100 corresponding malware samples are considered for
clustering as this helps to mitigate imbalance in the cluster
sizes. The embeddings and kernels of ADGs belonging to
these families are built and a relational clustering algorithm,
namely, AP [14] is used to cluster them.

Evaluation Metric. In order to quantitatively measure
malware familial clustering accuracy, a standard clustering
evaluation metric, namely, Adjusted Rand Index (ARI) is
used. The ARI values lie in the range [-1, 1]. For the ease of
understanding, we report the ARI as a percentage value. A
higher ARI means a higher correspondence to the ground-
truth data.

5.3.1 Results and Discussion
The results of malware clustering using graph2vec and

other state-of-the-art methods are presented in Table 5.
From the table, the following inferences are drawn:

• At the outset, we observe all the method obtain lesser
ARIs in this experiment, as the malware clustering task
is inherently more complex than two classification tasks
considered previously.

• Similar to the classification tasks, both node2vec and
sub2vec perform poorer than the kernels and graph2vec.
This reinforces the inference that adopting node2vec and
sub2vec for graph embedding will yield subpar results.

• Both WL and Deep WL kernel perform much better than
the two aforementioned embedding approaches. However,
different from the classification tasks, in this task, the
former methods outperform the latter methods by more
than 2 folds.

• In this experiment, graph2vec outperforms all the other
compared approaches highly significantly. In particular,
it outperforms the substructure embedding techniques by
more than 39% and the kernels by more than 5%. This
reinforces the findings inferred from the classification ex-
periments.

Summary. Summarizing the inferences from all the three
experiments, one could see: (1) trivially extending node and
subgraph representation learning approaches to build graph
embeddings yield sub-par results, and (2) learning graph em-
bedding from data leads to more accurate results than build-
ing the same using handcrafted features. Since graph2vec

is appropriately designed, it achieves excellent accuracies in
graph analytics tasks with reasonably good efficiency.

6Samples belonging to same families perform similar ma-
licious activities

6. CONCLUSIONS
In this paper, we presented graph2vec, an unsuper-

vised representation learning technique to learn embed-
ding of graphs of arbitrary sizes. Through our large-
scale experiments involving benchmark graph classification
datasets, we demonstrate that graph embeddings learnt
by our approach outperform substructure embedding ap-
proaches significantly and are comparable to graph kernels.
Since graph2vec is a data-driven representation learning ap-
proach, its true potentials are revealed when trained on
large volumes of graphs. To this end, when evaluated on
two real-world applications involving large graph datasets,
graph2vec outperforms state-of-the-art graph kernels with-
out compromising efficiency of the overall performance. We
make all the code and data used within this work available
at: [15].

7. ACKNOWLEDGMENTS
We thank the authors of [4], [7] and [10] for making the

source code of their approaches publicly available. We thank
the authors of [5] for sharing their approach’s source code
with us.

8. REFERENCES
[1] Google Play Market. https://play.google.com/store (accessed

May 2017).

[2] Mikolov, Tomas, et al. ”Efficient estimation of word
representations in vector space.” arXiv preprint arXiv:1301.3781
(2013).

[3] Le, Quoc, and Tomas Mikolov. ”Distributed representations of
sentences and documents.” Proceedings of the 31st International
Conference on Machine Learning (ICML-14). 2014.

[4] Grover, Aditya, and Jure Leskovec. ”node2vec: Scalable feature
learning for networks.” Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. ACM, 2016.

[5] Adhikari, Bijaya, et al. ”Distributed Representation of
Subgraphs.” arXiv preprint arXiv:1702.06921 (2017).

[6] Narayanan, Annamalai, et al. ”subgraph2vec: Learning
distributed representations of rooted sub-graphs from large
graphs.” International Workshop on Mining and Learning with
Graphs. (2016).

[7] Yanardag, Pinar, and S. V. N. Vishwanathan. ”Deep graph
kernels.” Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM,
2015.

[8] Goyal, Palash, and Emilio Ferrara. ”Graph Embedding
Techniques, Applications, and Performance: A Survey.” arXiv
preprint arXiv:1705.02801 (2017).

[9] Niepert, Mathias, Mohamed Ahmed, and Konstantin Kutzkov.
”Learning convolutional neural networks for graphs.”
Proceedings of the 33rd annual international conference on
machine learning. ACM. 2016.

[10] Shervashidze, Nino, et al. ”Weisfeiler-lehman graph kernels.”
Journal of Machine Learning Research 12.Sep (2011): 2539-2561.

[11] Wang, Daixin, et al. ”Structural deep network embedding.”
Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM,
2016.

[12] Arp, Daniel, et al. ”DREBIN: Effective and Explainable
Detection of Android Malware in Your Pocket.” NDSS. 2014.

[13] Wei, Fengguo, et al. ”Deep Ground Truth Analysis of Current
Android Malware.” Proceedings of the 14th Conference on
Detection of Intrusions and Malware & Vulnerability
Assessment. 2017.

[14] Frey, Brendan J., and Delbert Dueck. ”Clustering by passing
messages between data points.” science 315.5814 (2007):
972-976.

[15] Graph2vec website: https://sites.google.com/view/graph2vec

https://play.google.com/store
https://sites.google.com/view/graph2vec

	Introduction
	Problem Statement
	Background: skipgram word & document embedding models
	Skipgram model for learning word embeddings
	Negative Sampling
	Neural document embedding models

	Method: Learning Graph Representations
	Intuition
	Algorithm overview
	graph2vec: Algorithm
	Extracting Rooted Subgraphs
	Skipgram with Negative Sampling
	Optimization

	Use cases

	Evaluation
	Graph Classification with Benchmark Datasets
	Results and Discussion

	Graph Classification with Real-world Dataset
	Results & Discussion

	Graph Clustering
	Results and Discussion

	Conclusions
	Acknowledgments
	References

