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ABSTRACT
The problem of predicting unobserved entries of a partially ob-
served matrix has found wide applicability in several areas, such as
recommender systems, computational biology, and computer vision.
Many scalable methods with rigorous theoretical guarantees have
been developed for algorithms where the matrix is factored into
low-rank components, and embeddings are learned for the row and
column entities. While there has been recent research on incorpo-
rating explicit side information in the low-rank matrix factorization
setting, often implicit information can be gleaned from the data, via
higher order interactions among entities. In this paper, we design a
method to make use of this implicit information, via random walks
on graphs. We show that the problem we intend to solve can be cast
as factoring a nonlinear transform of the (partially) observed matrix
and develop an efficient coordinate descent based algorithm for the
same. Experiments on several datasets show that the method we
propose outperforms vanilla matrix factorization, and also those
methods that use explicitly available side information.
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1 INTRODUCTION
The problem of factorizing amatrix into low-rank components plays
a vital role in many applications, such as recommender systems
[15], computational biology [2] and computer vision [11]. Standard
approaches to matrix factorization involves either explicitly looking
for low-rank approximation via non-convex optimization [21, 29]
or resorting to convex, nuclear norm based methods and solving
it using semi-definite programs [4] or projected gradient methods
that involve computing the SVD [3]. Overall, these methods can be
viewed as learning dense and low dimensional vector embeddings
of the row and column entities (for example, users and movies),
the inner products of which best approximate entries of the target
matrix.
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Modern datasets also contain vast amounts of side information,
incorporating which typically aids in prediction. For example, one
might have access to user social networks, product co-purchasing
graphs, gene interaction networks and so on. It is reasonable to posit
that side information can be exploited to yield better predictions
[5]. Recent work has focussed on developing new models that
incorporate this side information [14, 31], and developing highly
scalable algorithms for the same [20, 26]

While it seems natural to enforce the learned embeddings to be
faithful to the side information present, there also exists implicit
information in the data. For instance, two users consistently provid-
ing same ratings to the same set of movies implicitly suggests the
similarity in their preferences irrespective of the explicit links that
may or may not exist between them. Indeed, low rank represen-
tations inherently look to achieve this by assuming that users (in
this case) all lie in a common low dimensional subspace. However,
explicitly modeling such an implicit similarity tends to yield better
results. Recent advances have demonstrated that exploiting second-
order co-occurrences of users and items indeed results in better
prediction [17] which further strengthen our theory that the more
structured information we have about higher order transitions, the
better will be the predictions.

In this paper, we develop a general framework, Higher Order
Matrix Factorization (HOMF), that can incorporate both implicit
relationships via higher order information and explicit side infor-
mation present in the data in a natural way to enhance prediction
power. To clarify this further, our algorithm is not dependent on
the presence of explicit side information, but if present we can
efficiently assimilate it to improve our performance. Our method
scales gracefully to incorporate information from higher order
co-occurrences (beyond 2). Also, we can efficiently incorporate pre-
existing graph 1 side information on both row and column entities
of the matrix. The ease of scaling, utilization of side information
coupled with its strong performance give our algorithm a clear
advantage over most existing recommendation algorithms.

The key idea of our approach is to model the target matrix com-
bined with side information as a graph and then learn low-rank
vector embeddings that best approximate the local neighborhood
structure of the constructed graph. To be more explicit, consider a
movie recommendation system. We construct a graph with all the
users and movies as nodes. An (weighted, undirected) edge exists
between a user node and movie node if the corresponding entry
in the target matrix exists i.e. the user has rated the movie. Side
information such as social networks amongst users, when present,
are also used to form edges between user nodes. We aim to approx-
imate the multi-step transition probability, i.e., the probability of
jumping between two nodes within a small, predefined number
of hops, via a function proportional to the inner product between

1note that graphs can be constructed via user or item features.
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the node embeddings. This objective naturally encodes both the
implicit and side information: transition is more likely between
users preferring a similar set of items; a dense clique in user social
network also increase their probability of co-occurrence within
a small number of steps. Noting that we consider co-occurrence
within multiple steps, our embedding could account for higher
order implicit similarities rather than the standard pair-wise simi-
larity between users or movies, or just second order co-occurrences
[17]. Our experiments reinforce our claims that taking higher-order
information indeed improves the prediction accuracy on a variety
of datasets.

HOMF is closely related to recent advances in representation
learning in natural language processing [16, 18] and graphs [19, 23,
24]. [9] provides a comprehensive survey on various graph embed-
ding techniques. While these works also consider co-occurrences
of words within a small window in a sentence or nodes within
a few steps on graphs, their objective is equivalent to factoriz-
ing the logarithm of such local co-occurrences [27]. In contrast,
HOMF directly attempts to approximate the multi-step transition
probabilities. Moreover, in this paper, we explore various methods
to construct edge weights of our graph from both rating-like and
binary target matrix. Also, unlike the negative sampling and sto-
chastic gradient descent approach in [18, 19], we derive efficient
coordinate descent based methods for solving the corresponding
optimization problem. We verify that HOMF leads to better results
on a number of different problem settings, with and without side
information, feedback in standard star-rating or in binary form.

The rest of the paper is organized as follows: In the next section,
we formally set up the problem we wish to solve and provide moti-
vation for the algorithm we use. We also summarize related work
in Section 2. In Section 3 we provide our algorithm, and comment
on its computational complexity, as well as remark on its generality.
We provide extensive experimental results in Section 4.1. In Section
5, we provide some theoretical considerations behind our approach
and discuss possible future directions. We conclude the paper in
Section 6.

2 PROBLEM SETUP
We assume we are given a partially observed target matrix R ∈
Rm×n . Let the set of observed entries in R be denoted by Ω, where
typically |Ω | ≪mn. Given a rank parameter k , the goal in standard
Matrix Factorization (MF) is to learn k-dimensional embedding
vectors corresponding to the row and column indices of the matrix
R. The standard matrix factorization algorithm aims to solve a
problem of the form2:

Û , V̂ = argmin
U ,V

1
2
∥PΩ (R −UV

T )∥2F + λ
(
∥U ∥2F + ∥V ∥

2
F

)
(1)

where PΩ (·) is the projection operator that retains those entries of
the matrix that lie in Ω,U ∈ Rm×k and V ∈ Rn×k .
Incorporating Side Information : Following recent works by
[20, 31], it is possible to model the relationships between row (and
column) entities via graphs. For example, in the case of a recom-
mender system there might exist a graph Gr among users, such as
a social network, and a product co-purchasing graph Gc among
2bias variables are typically included, but we omit them from the text here for ease of
explanation.

items. Therefore, it is reasonable to encourage users belonging to
the same social community or products often co-purchased together
to have similar embeddings. Current state-of-the-art techniques
proposed to solve the MF problem with side information encourage
the embeddings of the row and column entities to be faithful with
respect to the eigenspace of the corresponding Laplacians:

Û , V̂ = argmin
U ,V

1
2
∥PΩ (R −UV

T )∥2F + λ
(
Tr(UT LrU ) + Tr(VT LcV )

)
(2)

where Lr and Lc are the graph Laplacians corresponding toGr and
Gc respectively.
Our approach- HOMF: In this paper, we look for a unified ap-
proach that can make use of (1) explicit side information provided
in the form of graphs and (2) implicit information inherent in the
data.

To this end, we propose constructing a (weighted, undirected)
graph G = {V, E} withV containing all them row entities and n
column entities. The edges in the graph are constructed as follows:
• If two row entities i, j are connected inGr , we form an edge
ei j ∈ E with ei j = д1 (Gr (i, j )). Here д1 (.) is some non-
negative, monotonic function of the edge weight in Gr . The
same procedure is repeated for column entities that are con-
nected in Gc .
• If i is a row node (e.g., user) and j is a column node (e.g.,
a movie), we form an edge ei j = д2 (R (i, j )) to encode the
interactions observed in the data matrix R. д2 (.) should also
be a non-negative, monotonic function, and can potentially
be the same as д1 (.).
• We then scale the side-information edges with some weight
parameter α ∈ (0, 1). The data-matrix edges are scaled by
1 − α .

As a result of our graph construction, if a user rates a movie
highly, then there will be a large edge weight between that user
and movie. Similarly, if two movies are connected to each other
via Gc , then again we expect the edge weight to be large. Typical
choices for д1 (.),д2 (.) include:

• Exponential : д(x ) = exp(x )
• Linear : д(x ) = c · x , for some c ∈ R

• Step : д(x ) =



1 if x > 0
0 else

Appropriately arranging the nodes, we get the matrix G which is
defined as follows:

G =

[
αд1 (Gr ) (1 − α )д2 (R)

(1 − α )д2 (R)T αд3 (Gc )

]
(3)

where with some abuse of notation, the functions дi (.) act element-
wise on the arguments (i.e. matrices). We denote by A the row-
normalized version of this matrix G, so that each row of A sums
up to 1. A is thus a transition probability matrix (TPM), with Ai j
indicating the probability that a random walk starting at node i
jumps to node j in one step.
Let

fT (A) :=
A +A2 + . . . +AT

T
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for some positive integer T . Let ΩT be the set of non-zero entries
of fT (A). A simple example of how to create A from R is presented
in the appendix.

From a probabilistic point of view, the ijth entry of Al is the
probability of jumping from node i to j in l random steps on G .
Thus, [fT (A)]i j is the probability of jumping from i to j at least
once in T steps in a random walk on G.
Our objective in this paper is to factorize:

Û , V̂ = argmin
U ,V

1
2
∥PΩT ( fT (A) −UV

T )∥2F + λ
(
∥U ∥2F + ∥V ∥

2
F

)
(4)

where U ,V ∈ R (m+n)×k and fT (A) encodes higher-order hidden
information in the data. For example, two users rating the same set
of movies have a higher probability of jumping between each other
in a few steps on G. In other words, if two users have rated movies
in a similar fashion, then their future interactions will tend to be
more alike than not. Similarly, two users with common friends in
the side social network also have a higher transition probability to
land on the other within a small number of jumps. Letting ûi be
the ith row of Û , we use ûiv̂Tj as a proxy for the predicted value of
the corresponding entry in the target matrix.

We note that the design parameter α controls the overall weights
of the side information, and the number of steps T determines how
“local" our search space in the graph will be. Overall, (4) encourages
nodes with higher co-occurrence probability within a small number
of steps to have similar vector representations. The adverse effects
of noisy/missing side information can be reduced by appropriately
tuning α . When there is no side information, the algorithm forces α
to be 0 and ignores the side information matrix. Further motivation
for factorizing fT (A) is provided in Section 5.

2.1 Related Work
While several methods for vanilla matrix factorization (1) have
been proposed, incorporating explicit side information is a much
more recent phenomenon. Given attributes or features for the row
and/or column entities, [13, 26] consider the row and column fac-
tors to be a linear combination of the features. This was extended
to nonlinear combinations in [22]. If graph information is known
beforehand, then methods proposed in [20, 31] can be applied to
solve (2). Further, note that one can construct the pairwise relation-
ship between entities from the feature representations. Methods
that can implicitly glean relationships between row and/or column
entities have not been that forthcoming, an exception being [17].

[8, 25] and references therein view collaborative filtering as func-
tions of random walks on graphs. Indeed, the canonical user-item
rating matrix can be seen as a bipartite graph, and several highly
scalable methods have been proposed that take this viewpoint [30].
Methods that incorporate existing graph information in this context
have also been studied [7, 14]. [6] consider metrics such as average
commute times on random walks to automatically figure out the
similarity between nodes and apply it to recommender systems, but
also note that such methods do not always yield the best results.
Similarly, [1] consider local random walks on a user-item graph,
and resorts to a PageRank-style algorithm. Furthermore, they re-
quire the graph to have a high average degree, something most
applications we consider will not have.

Recently, ideas from learning vector representations of words
[18] have been used to obtain vector embeddings for nodes in a
graph. Specifically, the authors in [19] considered random walks on
a graph as equivalent to “sentences” in a text corpus, and applied the
standard Word2Vec method on the resulting dataset. [28] showed
that such a method is equivalent to factorizing a matrix polynomial
after logarithmic transformations. We instead consider factorizing
the function fT (·), which has the interpretation detailed above.

3 OUR PROPOSED ALGORITHM
We now describe the algorithm to solve (4). Note that once the
matrix fT (A) is formed, the problem reduces to standard matrix
factorization, for which highly efficient methods exist. However,
obtaining fT (A) is expensive both from a computational and mem-
ory point of view. Indeed, regardless of the sparsity of A, Al for
even small l , (say l ≥ 3) will not be sparse. Figure 1 displays this
phenomenon, where we created a random 1000 × 1000 matrix R,
randomly select the observed set Ω with different sparsity levels,
and constructed a block diagonal A (eqn. (3)), without side informa-
tion graphs (Gr = Gc = 0). 3. Even for 1% sparse Ω, the multi-step
transition AT quickly become dense.

T
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Figure 1: Sparsity of AT for different power T and sparsity
level of observed set Ω for ratingmatrix R. The sparsity level
is defined as the ratio of the size of Ω (i.e., the non-zero en-
tries (nnz)) to the overall size of R. Note that even for 1% sam-
pling, the matrix saturates in terms of sparsity. (best seen in
color)

Given the size of modern datasets, storing suchAl will be prohib-
itive, let alone storing fT (A). One thus needs an efficient method to
compute higher matrix powers. We will see in the sequel that we
in fact need not compute fT (A), but only specific rows or columns
of the matrix, which can be done efficiently.

We propose a coordinate descent method to alternatively update
U and V . Let u (t )i (respectively v (t )

i ) be the ith row (respectively
column) ofU (respectivelyV ) at iteration t . We describe our method
to update V keeping U fixed. The updates for U with V fixed will
be analogous. At iteration t , the update equation for V keeping the
other entities fixed is as follows:

V (t ) = argmin
V
∥PΩT ( fT (A) −U

(t−1)VT )∥2F + λ∥V ∥
2
F (5)

3In this case, the maximal sparsity of Al , ∀l can be 0.5
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Algorithm 1 Recursive method for column sampling
Input: matrix A, column index i , steps T
Initialize: a1 = Ai , t = 1
for t = 2, 3, · · · ,T do
at = a1 +Aat−1

end for
Return: fT (A)Ωi

T
= 1

T aT

Algorithm 2 Procedure for solving (5)
Input: matrix A, steps T , fixedU , regularizer λ
for i = 1, 2, · · · ,M in parallel do
Column sample x := fT (A))Ωi

T
using Algorithm 1

Solve (6) with x ,U , λ as inputs using conjugate gradients
Set vi to be solution of above problem

end for
Return: V

This ridge regression problem can be solved column-wise without
storing the fT (A) matrix. The key observation is that each column
of fT (A) can be calculated efficiently as:

fT (A)ei =
1
T
A(ei +A(ei +A(. . .) . . .))

where ei is the ith canonical basis vector. This computation re-
quires only the storage of sparse matrix A and can be executed
on-the-fly by T sparse matrix-vector multiplications. We outline
the recursive details in Algorithm 1. An analogous procedure to the
one mentioned in Algorithm 1 can be applied to obtain the rowwise
updates. The updates for row-wise and column-wise optimization
strategy lead us to solve the following problem:

vi (t ) = argmin
v

1
2
∥ ( fT (A))Ωi

T
−Uv ∥22 + λ∥v ∥

2
2 (6)

where Ωi
T is the set of nonzeros of the ith column of fT (A). We

note that Eq. (6) can be solved using standard regularized least
squares solvers, for example the conjugate gradient method as we
adopted in this paper. Moreover, the updates for different columns
can be parallelized. The empirical speedup via this parallelization
is investigated later in the experiment section. Algorithm 2 details
the pseudocode for solving (5). A row-wise analogous version of
Algorithm 2 can be used to update ui (.).

We briefly describe the computational complexity of our method.
Each matrix-vector multiplication in Algorithm 1 can be performed
in O (nnz (A) (m + n)) time. For a given T , the complexity for col-
umn sampling is then O (nnz (A) (m + n)T ). The main bottleneck
in the conjugate gradients procedure to solve (6) is the Hessian-
vector multiplication. The Hessian of (6) is

(
UTU + λI

)
∈ Rk×k ,

and hence the complexity of the conjugate gradient method is
O (k2 (m + n)). The per-iteration complexity of Algorithm 2 is thus
O ((nnz (A)T + k2) (m + n)), since the per-column update can be
parallelized. Typically k is a small number, so k2 ≪ nnz (A), and
hence the complexity of the method is essentially linear inm,n,T
and the size of the data, including graph side information, since
nnz (A) = 2nnz (R) + nnz (Gr ) + nnz (Gc ).

3.1 Generality of HOMF
We see that HOMF is highly general, and can efficiently incorporate
pre-existing side information via the parameter α . Indeed, the side
information graphs can also yield interesting higher order interac-
tion information, as we will see from our experiments. When side
information is not present, we can obtain higher order information
from only existing data. Furthermore, when α = 0,T = 1 effectively
ignores higher order information, and is conceptually similar to
the standard MF routine. T = 2 in the same vein is similar to the
co-factor method in [17].

4 EXPERIMENTS
4.1 Computational Complexity
In this section, we test our method against standard matrix factor-
ization and other methods that use graph side information. We have
attempted to use a variety of datasets, some with additional graph
containing side information, and some without to demonstrate the
universality of our algorithm. We also consider a binary dataset
with graphs. Details about the datasets are provided in Table 1.
MovieLens 1 million (ML-1M) is a standard movie recommenda-
tion dataset 4 [12]. The FilmTrust dataset [10] has a similar task as
that of ML1m, but also has user-user network given 5. The Gene
dataset is a binary matrix, where the task is to determine what
genes are useful for predicting the occurrence of various diseases 6.
There also exist gene-gene interaction network data and a disease
co-morbidity graph. For ML-1M and FilmTrust, we generate a ran-
dom 80/20 Train-Test split of the data. For Gene, we use the split
provided online. Since this is a one-class classification problem, we
randomly sampled the same number of samples as in the data, to
act as the negative class for classification.

4.2 Evaluation Metrics
For the Gene dataset with binary observations, we computed the
standard AUC score on the test set. For non-binary data (ML-1M and
FilmTrust), we compute Precision, Recall, Mean Average Precision
(MAP), and Normalized Discounted Cumulative Gain (NDCG), all@
various thresholds (K). Note that sincewe are factorizing a nonlinear
transformation of the ratingsmatrixR, the RMSEwill not be a useful
metric to compute. For the ML-1M dataset, we determine that a
movie rated by a user is a true positive if the corresponding rating
is 5 while K = {5, 10}. For the FilmTrust dataset, we determine that
a movie is a true positive if the corresponding rating is at least 3
and corresponding values of K are set to 1 and 2 since the dataset
is small and it is hard to find many highly rated movies for most
users. The K and threshold values are determind by the average
number of highly rated movies for each user which is consistent
with most available literaute. For the sake of completeness and to
prevent confusion, we provide explicit formulas for the metrics
used. Let i1, . . . , inu be items in test set rated by user u sorted by
the predicted score. Let I (u, i ) = 1 if user u rated item i as relevant
in the ground-truth test data and 0 otherwise. For simplicity, let
Iu =

∑nu
ℓ=1 I (u, iℓ ) be the total number of relevant items per user.

4https://grouplens.org/datasets/movielens/1m/
5http://www.librec.net/datasets.html
6http://bigdata.ices.utexas.edu/project/gene-disease/

https://grouplens.org/datasets/movielens/1m/
http://www.librec.net/datasets.html
http://bigdata.ices.utexas.edu/project/gene-disease/
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Table 1: Descriptions about the datasets used in our experiments

Dataset Type # rows # columns # entries Graph present? # links
ML-1M 0-5 6040 3952 1000208 no -
FilmTrust 0-5 1508 2071 35497 rows 1632
Gene Binary 1071 1150 2908 rows and columns 7424 (rows)

437239 (columns)

We first calculate for each user u:

Precision@(K ,u) =
K∑
j=1
I (u, i j )/K

Recall@(K ,u) =
K∑
j=1
I (u, i j )/Iu

AP@(K ,u) =
K∑
j=1

Precision@(j,u)/min(Iu ,K )

and then average across all the users to get Precision@K, Recall@K,
and MAP@K. For NDCG, we first calculate

DCG@(K ,u) =
K∑
j=1

2I (u,i j ) − 1
log(i + 1)

and IDCG@(K ,u) based on the ordered ground truth ranking of all
the items. We obtain NDCG@(K ,u) = DCG@(K ,u)/IDCG@(K ,u)
and average it across all users.

4.3 Baselines, Parameters and Initialization
We fixed the rank (k) for all methods to be 10. For comparing against
standardmatrix completion and the graph based counterparts (equa-
tions (1) and (2)), we used the GRALS method [20]7. For FilmTrust
dataset with side information graph, we also compared against the
TrustWalker algorithm [14] which makes recommendations using
random walks on graphs.

We implemented our method in python using the multiprocess-
ing framework to parallelize the method in Algorithm 2.8 Wherever
applicable, we varied λ ∈ {10−4, 10−3, . . . , 102} and cross-validate
λ on a fixed validation set (20% of the training data).When the graph
side information is available, we also variedα ∈ {0.15, 0.25, 0.5, 0.75}.
We consider random walks of lengths {2, 4, 6, . . .Tmax } for all
datasets. For ML-1M, FilmTrust and Gene, Tmax was fixed at 8, 6
and 6 respectively. We initialized the factor matricesU ,V such that
each entry is an independent uniform [0, 1] random variable.

4.4 Results
Table 2 summarizes the results obtained on the test set in ML-
1M and FilmTrust. We see that HOMF consistently outperforms
standard matrix factorization, and also the version that uses graph
side information. In some cases, the performance gap is significant.

In Table 3, we show the results obtained on the Gene-Disease
dataset. In this setting, with rich graph information encoding known
relationships between the entities, HOMF significantly outperforms
7code available online
8Our code will be made public after the reviewing procedure.

graph based matrix completion. This suggests that there are hid-
den, higher order interactions present in the data, which the given
graphs do not fully capture by themselves. This opens an inter-
esting avenue for further research, especially in domains such as
computational biology where obtaining data is hard, and hence
hidden information in the data is even more valuable.

4.5 Effect of T , дi (.) and α
We now study the computational and statistical effect of the param-
eter T (Figs. 2, 3), the length of walks considered, in HOMF, as well
as the weighting parameter α (Fig. 3) when the side information
graphs are present. We also consider both the exp(.) and linear
functions for д1 (.),д2 (.)

Figure 2 shows the effect of varying the walk length T on the
runtime of the algorithm, on the ML-1M dataset. As expected, the
time increases with T. Importantly, note that the time increases
nearly linearly with T (with a very small slope), as indicated by
the complexity argument in Section 4.1. However, it also has to
be noted that the time difference is not much: approximately 15
seconds extra for the method when T = 8, compared to T = 2
seems to suggest that the method is scalable. From a theoretical
perspective, as discussed in Section 5, even though it may not be
useful to take very long walks (T > 20), it is impressive to note that
long walk lengths do not hamper computational performance.

Next, we show that the walk length should be treated as a (hy-
per)parameter of our method, and should be tuned via cross val-
idation. Figure 3 ((a)-(d)) shows the effect of varying T for the
ML-1M dataset. We see that bigger is not necessarily better when it
comes to T but for higher orders (T > 2), we usually get superior
performance in terms of the evaluation metrics.

T
2 3 4 5 6 7 8

ti
m

e
 (

s
e

c
)

808

810

812

814

816

818

820

822

824

Figure 2: Time taken as a function of walk length
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Table 2: Comparison of various algorithms using Top-N evaluation metrics. HOMF performs comparably to standard matrix
factorization with or without side information, and often beats it. Bold values indicate the best result among the methods
considered. The exponential activation function (i.e. д(.)) was used to obtain the following results.

Data Algos Precision Recall MAP NDCG
@5 @10 @5 @10 @5 @10 @5 @10

ML-1M MF 0.316 0.311 0.598 0.614 0.462 0.474 0.692 0.707
HOMF 0.370 0.331 0.544 0.662 0.499 0.529 0.744 0.749

@1 @2 @1 @2 @1 @2 @1 @2
FilmTrust MF 0.701 0.633 0.345 0.436 0.795 0.744 0.761 0.747

TrustWalker 0.506 0.497 0.316 0.456 0.598 0.607 0.584 0.568
GRALS 0.752 0.740 0.365 0.492 0.812 0.801 0.772 0.770
HOMF 0.754 0.745 0.375 0.502 0.816 0.802 0.778 0.773

T
2 3 4 5 6 7 8

0.26

0.28

0.3

0.32

0.34

0.36

0.38

exp
linear

(a)
T

2 3 4 5 6 7 8
0.49

0.5

0.51

0.52

0.53

0.54

0.55
exp
linear

(b)
T

2 3 4 5 6 7 8
0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

exp
linear

(c)
T

2 3 4 5 6 7 8
0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

exp
linear

(d)

alpha
0.2 0.3 0.4 0.5 0.6 0.7
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Figure 3: Performance of HOMF on theML-1M (top) and FilmTrust (bottom) datasets, as T (top) and α (bottom) is varied. [From
left to right]: Precision, Recall, MAP and NDCG, for exponential and linear activation functions. We also see that sometimes
the exp() function is better and sometimes it is worse. (best seen in color)

Table 3: Comparison of various algorithms for Gene dataset

Data Method AUC
Gene MF 0.546

GRALS 0.572
HOMF(exp) 0.623
HOMF(linear) 0.630

We also studied the effect of varying α on the FilmTrust dataset,
where we fixed T = 4. Figure 3 (e)-(h) again shows that different
values of α yield different results, though they are fairly uniform.

4.6 Speedup via Parallelization
Finally, we see from Figure 4 that we obtain near-linear speedups via
the parallel procedure in Algorithm 2. We used the ML-1M dataset

here and varied the number of processors over which we paral-
lelized the updates. When the number of processors is increased to
about 20, we see that the corresponding speedup is nearly 17. For a
given number of processors N , we define the speedup to be

speedup (N ) =
Time taken with 1 processor
Time taken with N processors

5 DISCUSSION AND FUTUREWORK
Our motivation behind transforming the original rating matrix into
a Transition Probability Matrix is to find higher order information
from the graph.Al will encode the lth order information. Our aim is
to assimilate as much (non-redundant) higher order information as
possible. Another key point is that our approach is highly general,
and by settingT = 1we can obtain similar performance to standard
matrix factorization.
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Figure 4: Speedup obtained as a function of # processors

At large l , the matrixAl might not capture too much information.
Clearly, for large l , one might inherently force two nodes very far
in the graph to have a similar representation. At low values of l ,
one can miss out on the implicit higher order relationships that
exist between nearby nodes of the graph. Hence, it is necessary to
be prudent while choosing l .

Future Work: The development of a fully distributed method re-
mains an open challenge. Given the matrix A, we can solve the
problem in a parallel fashion on a multicore machine as we have
demonstrated in this paper. However, for extremely large datasets,
the matrixAmight not fit into memory. WhenA itself is distributed,
computing higher order powers can be a challenging task, since
Algorithm 1 requires access to the full matrix A.

From a theoretical perspective, we would like to address the
problem posed in Equation 4 and obtain convergence guarantees for
the low rank matrix factorization for functions of matrix Awithout
explicitly computing the function. As of now, we are unaware of any
literature pertaining to matrix factorization of higher orders of A,
say Ap let alone fp (A) for general matrices A. Another interesting
avenue is to compute the minimum number of samples required
from A to recover Ap as accurately as possible.

6 CONCLUSION
In this paper, we presented HOMF, a unified method for matrix
factorization that can take advantage of both explicit and implicit
side information in the data. We developed a scalable method for
solving the resulting optimization problem and presented results
on several datasets. Our method is one of the first to include both
existing side information and implicit higher order information
and yields superior results with respect to various evaluation met-
rics when compared to other methods that only use explicit side
information, or no information at all.
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