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ABSTRACT

For any stream of time-stamped edges that form a dynamic
network, an important choice is the aggregation granularity
that an analyst uses to bin the data. Picking such a win-
dowing of the data is often done by hand, or left up to the
technology that is collecting the data. However, the choice
can make a big difference in the properties of the dynamic net-
work. Finding a good windowing is the time scale detection
problem. In previous work, this problem is often solved with
an unsupervised heuristic. As an unsupervised problem, it is
difficult to measure how well a given windowing algorithm
performs. In addition, we show that there is little correlation
between the quality of a windowing across different tasks.
Therefore the time scale detection problem should not be
handled independently from the rest of the analysis of the
network.

Given this, in accordance with standard supervised ma-
chine learning practices, we introduce new windowing algo-
rithms that automatically adapt to the task the analyst wants
to perform by treating windowing as a hyperparameter for
the task, rather than using heuristics. This approach mea-
sures the quality of the windowing by how well a given task
is accomplished on the resulting network. This also allows
us, for the first time, to directly compare different windowing
algorithms to each other, by comparing how well the task is
accomplished using that windowing algorithm. We compare
this approach to previous approaches and several baselines
on real data.

1 INTRODUCTION

Data mining on social and other types of networks often
either requires information about dynamics or is improved by
such information. Incorporating temporal information can
improve the efficacy and lead to a more detailed analysis.
As data collection becomes cheaper and easier, the rate
at which the data is being collected is often orders of mag-
nitude more frequent than the underlying system. The rate
of the data collection process is typically a function of the
technology used and not necessarily related to the evolution
or dynamics of the network itself. Thus the data collection
process makes a choice about the bin size - also called the
resolution, aggregation granularity, or time scale of the dy-
namic network - that may not be the correct choice. Binning
the data at coarser resolutions may make it possible to dis-
tinguish between the (temporal) orders of interactions that
are the result of noise and the orders of interactions that
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are critical in the network. Indeed, the time scale of the
network strongly impacts what structures and dynamics may
be observed in the network [4, 11, 14, 19, 21, 22]. Moreover,
the choice of time scale impacts the efficacy of data mining
on networks [9]. For any data mining task over dynamic
networks, choosing the bin size is not only important, but a
necessary choice the data scientist must make, and leaving
it up to the data collection process is not ideal. This is the
problem we take up in this paper, which we will refer to
as windowing to emphasize the fact that the bin sizes - or
windows - may not necessarily all be the same size.

If sufficient knowledge of the data is at hand already, a time
scale may be chosen manually to represent natural scales,
such as the diurnal or weekly scales common to dynamics
among people. However, frequently, getting such domain-
knowledge through a data exploration phase or otherwise
may be prohibitively difficult or expensive. For these reasons,
we seek an automated algorithm for the windowing problem.

In this paper, we give concrete evidence that any window-
ing algorithm needs to take into account what task the data
analyst wants accomplished on the resulting data because
there is little correlation between the quality of time scales
on each task. The time scale for predicting new links appear-
ing in the network is often different than the time scale for
predicting the values of vertex attributes, for example. This
may appear obvious, but it implicitly runs contrary to unsu-
pervised and heuristic approaches to choosing an appropriate
time scale that have been proposed in previous work. Due
to this observation, we need to explicitly take the task into
account when windowing.

Thus we set up the windowing problem as a hyperparam-
eter search needed for a supervised machine learning task.
For example, for predicting attribute values of vertices, we
set aside earlier training data from the network with known
attribute values. We then find the right time scale for this
labeled data, and apply the time scale to new data to find
the corresponding new attribute values. In other words, the
windowing algorithm takes as a parameter an algorithm that
performs the desired task, such as attribute prediction, and
finds the right time scale for that task on the input data. We
call this the task algorithm. Of course, the downside to this
approach is that it requires training data, such as historic
attribute values. However, we regard this as both a natu-
ral assumption and a necessary assumption: Many popular
prediction and classification problems have some notion of
ground truth. In addition, since the best time scale depends



on the task anyway, we might as well tailor our time scale
detection towards a particular goal.

In this paper, we consider the tasks of link prediction
and attribute prediction. We use these two tasks as popular
examples of tasks analysts perform on dynamic networks that
have some notion of ground truth. It is important to note
that the goal of this paper is not to produce state-of-the-art
results for each of these tasks. Instead, our aim is to find the
best windowing we can for a fixed task algorithm. That is, we
treat the task as a black box and we do not take advantage of
which task algorithm is used. We do this so that our methods
may be used on any algorithm for any task, not just the tasks
we offer as examples in this paper.

Our contributions are as follows: We introduce a window-
ing algorithm that automatically adopts to a given task at
hand. This approach treats the windowing problem as an
optimization of a hyperparameter for a supervised machine
learning task. We motivate this approach by providing evi-
dence that there is little correlation between the quality of
time scales on each task. This algorithm can be used for
any task that comes equipped with a notion of ground truth,
not just the example tasks we consider in this paper. In
addition, for the first time, we describe a simple method for
directly comparing the performance of windowing algorithms
that leverages task-dependency. We compare our approach
against several baselines and previous work. We demonstrate
that our approach is often superior to other approaches.

1.1 Previous Work

In numeric time series, this problem is often termed ‘segmen-
tation,” and segmentation of numeric times series has a long
history which is outside the scope of this work; see [12] for
an overview.

For dynamic networks, there has been some work related
to our problem in the area of change point detection, which
seeks to find points in time where the dynamic network has
changed abruptly. Typical methods include using generative
models of dynamic networks [18] or clustering similar time
slices [3]. This literature is marginally different from the
problem addressed in this paper because - while finding
change points do implicitly segment the dynamic network -
the goal of change point detection is not necessarily to find a
good representation of the network for the purpose of binning
each segment but rather just to find the points when the
dynamic network undergoes significant change.

Also related is graph compression, which tries to find a
representation of the dynamic network that minimizes the bits
needed to store it while simultaneously retaining sufficient
information about the network, under the general heading
of graph summarization algorithms. See [16] for a survey of
graph summarization techniques. This problem is slightly
different from ours because we do not necessarily seek a small
representation, merely an accurate representation for the task
at hand.

More broadly, optimizing hyperparameters has a vast lit-
erature encompassing many different techniques and kinds

of parameters, such as for classical supervised machine learn-
ing [2, 28] or in Bayesian settings [25]. In the context where
the hyperparameter is the windowing, for many tasks on
dynamic networks, proposed algorithms have included some
way to search for a good time scale, e.g. for attribute predic-
tion [20].

However, to the best of our knowledge, such methods have
previously been confined to the context of specific tasks or
algorithms, and do not necessarily generalize. Meanwhile,
previous work on the time scale detection problem in general
has focused either on task-independent heuristics or methods
that attempt to optimize for a specific metric on graphs.
Caceres et al. maps the dynamic network to a time series using
a metric on graphs (such as the number of triangles in each
graph) and then analyzes that time series [27]. Soundarajan
et al. determines a windowing of the data with respect to
some metric (such as the exponent of the degree distribution)
by measuring when that metric has converged [26]. In our
view, these approaches have the downside that they require a
specific metric. For a given data set or task to accomplish on
a data set, it is not necessarily clear what metric to choose.
Darst et al. use a parameter-free approach that seeks to
find an appropriate time scale by measuring the similarity
between graphs using the Jaccard index [6], similar to an
approach used by Krings et al. [14]. Most closely related to
the approach that we take in this paper, Fish and Caceres use
the quality of the performance of link prediction algorithms
to determine the best time scale [9]. These are parameter-free
methods or, relatedly, methods that assume that there is
some ‘ground truth’ time scale via a generative model or the
like, as in [4, 6, 9]. In this paper, we do not take this tactic
because the choice of time scale may be dependent on the
task at hand, making the task a de facto parameter for time
scale detection.

1.2 Background

Consider a dynamic network over a fixed set of vertices, rep-
resented as a stream of time-stamped edges, represented as a
sequence of graphs G1,...,Gr. The goal of windowing is to
segment this input stream of edges into intervals to form a se-
quence of graphs Hi, ..., Hy,, each graph representing all of
the edges that occurred within an interval. A window of size
k is a sequence G;,Git1,...,Gitk—1. A windowing is a se-
quence of windows {G1,...,Gk, }, {Grky+1,Gri42,---,Gry
o Gk, -
windows. The resulting sequence is H1, ..., H,,, where H; =
Uf;ki_l+1Gj. As a slight abuse of notation, we will refer to
both the segmentation of the input graph sequence and the
resulting sequence Hi, ..., Hy as a windowing.

If all windows have the same size w (except possibly the
last window if the length of the sequence does not divide w),
we refer to this as a uniform windowing and w the bin size,
window size, or time scale. A window size of w = 1 represents
the time scale of the collection process and a window size
of w =T, where T is the duration of the observed network,
means that all temporal information is ignored. The goal of

.., Gr}. In this paper we focus on non-overlapping



this paper is to describe and evaluate algorithms for finding a
windowing given an input sequence of graphs. Once we have
found a windowing Hi, ..., H.,, it can now be the input for
any task that operates over a dynamic network.

In general, we are given the edges of a dynamic network
up to some time t as a training set, and performance is
evaluated on the dynamic network from time ¢ + 1 onwards.
The windowing algorithm gets ground truth on the training
set, e.g. the links that have formed unto time ¢, and the task
algorithm uses only the windowed graph sequence to conduct
its analysis, say finding new links in the test set.

2 TASK-DRIVEN WINDOWING
ALGORITHMS

We start by describing our proposed windowing algorithm in
both offline and online settings. This algorithm automatically
adapts to whichever task needs to be accomplished on the
dynamic network by treating the task algorithm as a parame-
ter, and so is able to be used for any task and corresponding
task algorithm. So that the algorithms we introduce remain
useful for not just the tasks we consider, but any task, our
algorithms do not attempt to take advantage of the particular
nature of the task and corresponding algorithm at hand: we
treat the task algorithms as black boxes. However, as we
show in Section 8, this approach is still able to perform well
despite this self-imposed constraint.

2.1 Offline task-driven windowing

The idea is very simple: since we know what task we want to
accomplish on the test set, we use the same task algorithm
to learn the window size on the training set. In the offline
setting, in order to try to prevent overfitting and to make the
search space smaller, we only consider uniform windowings.
We then do a simple hyperparameter search: For each window
size, up to the length of the training set, window the training
set at that size and use that as input for the task algorithm.
Measure the performance of the task algorithm (remember
we assume we have ground truth for the training set) and
use that as the score for the window size. Window the test
set with the window size that received the highest score. Of
course, this means running the task algorithm O(T') times
(where T is the length of the training set), which is not
particularly efficient. However, we make the assumption that
since this is an offline setting, this blowup in running time in
the training phase is not prohibitively large. We will refer
to this as the offline supervised method, because it uses the
training data to predict how well a window size will perform
in the future on unseen testing data.

2.2 Online task-driven windowing

In the online setting, we require a windowing of the data
seen so far at every time step. We could at each time step
perform a similar procedure as in the offline case, leading to
O(4) runs of the task algorithm at the ith step, for a total
of O(T?) times, where T is the total length of the sequence.
This will often be prohibitively expensive. We introduce an

Algorithm 1 Online windowing for link prediction

Parameters: Integers M and B, Link predictor L
Initialize scores,, as the empty list
for each new graph G; do
Let new window sizes include w for 1 < w < i if
length(scores,) < M
Let best window sizes include the top B window sizes
by average(scores,)
for w in new window sizes, best window sizes do
Let Ho = Hi,.. .,HI—E-‘ be the windowing of
G1,...,G;—1 at window s?ze w
predicted links = L(Hw)
Append AUC(new links in G;, predicted links) to

scoresy
end for
w”™ = arg max,, average(scores,,)
Let Hy+ = Hy,.. "H(w’%W be the windowing of
G1,...,G; at window size w*
return L(H.~)

end for

approximate online windowing algorithm to deal with this
issue. We illustrate with link prediction, as a natural example
of an online task. For details on link prediction, see Section 4.

Every time we receive a new graph G;, representing the
edges that occurred in the next time step, we can test each
window size w by binning the sequence so far at size w and
then use the last graph in the windowed sequence to predict
the edges that will appear in G;. We then compare the
predicted edges to the actual edges in G, producing an AUC
score for that window size'. The window size w* chosen next
to bin the sequence seen so far including G; is the window
size that maximizes the average of all scores for that window
size so far. However, this still means testing O(i) window
sizes at each time step, for a total of O(T?) tests.

To decrease the number of tests, we instead use an ap-
proximate version of this where only some of the window
sizes are tested, as described in Algorithm 1. This online
algorithm is described explicitly for link prediction for ease
of reading, but the same algorithm may in principle be used
for any online task. Given hyperparameters to the algorithm
M and B, we test a window size if it has either been tested
fewer than M times, or if the average score so far ranks it
amongst the top B window sizes. The intuition behind this
approach is that a window size that has been performing
badly will not suddenly become the best performing window
size, and thus doesn’t need to be tested. This requires only
O((M + B) - T') total runs of the link prediction algorithm
instead of O(T?), where we think of as M and B as con-
stants. In our experiments, we set M = B = 10 (We also
demonstrate the effect of changing these hyperparameters in
Section 8). We also test a weighted variant of Algorithm 1
(Weighted Algorithm 1) by instead using a weighted average
LFor the sake of computational efficiency, we only score pairs of vertices

with non-zero degree, since the score will produce a score of 0 for all
other pairs.



of the scores for each window size, in order to privilege scores
closer to the present than the past. We use an exponential
weighting scheme, where the weight for the score tested on
the jth graph where ¢ graphs have been seen already is o™,
For the purpose of our experiments, we use o = 1/2.

We also consider a version of this that stops generating
new scores after the training period is over, and sticks with
the best window size for the training data for all future time
steps (Training only).

3 OTHER WINDOWING
ALGORITHMS AND BASELINES

We compare against several baselines: the first is always
using a ‘hand-chosen’ value (which we will refer to as the
hand-chosen algorithm), which represents what we could have
done if an expert already had insight into the particular data
set. It is important to note that this represents how well we
would have done if we didn’t need a windowing algorithm at
all, and as such should be seen as closer to an upper-bound
on performance rather than a lower bound. The second
baseline is the random algorithm (Random), which chooses a
random windowing of the test set. In addition, for attribute
prediction, we also consider the windowing that removes all
temporal information, i.e. the window size that is always the
length of the test sequence (No time). The final baseline we
consider is slightly more sophisticated: Given a time series
that assigns a real value to every graph in the sequence,
we may compute its discrete Fourier transform (DFT). For
frequency f, denote by xy the amplitude of that frequency.
The score we assign w is the maximum magnitude |zf| of any
frequency in the transform such that f rounds to w. We then
choose the window size with the maximum score (Fourier).
In this paper, we consider the DFT under the commonly-used
Hanning window where the metric is the number of edges in
each graph. This serves as a proxy for the amount of activity
at any given time. The DFT of this particular time series
has been used before, e.g. to study Reality Mining [8].

We compare against ADAGE, the method of Soundarajan
et al. [26]. Like them, we use the exponent of the degree
distribution as the metric. We also compare against the
Jaccard-index-based method (Jaccard) of Darst et al. [6]
and the entropy-based method (Entropy) of De Domenico et
al. [7]. Since this last method is really a graph compression
algorithm and allows for graphs with any types of layers, we
treat each time step as a layer and modify their method to
only allow adjacent time steps to be merged.

All of these algorithms can be used in the offline setting,
but only ADAGE, the hand-chosen baseline, and the random
baseline can be used in the online setting.

4 TASKS

Given a candidate windowing, we evaluate its quality by per-
forming a task algorithm on that windowing. We then evalu-
ate the windowing by the performance of the task algorithm
when using that windowing. We consider two tasks: link
prediction and attribute prediction. We treat link prediction

as an online task and attribute prediction as an offline task.
We do this to demonstrate windowing algorithms on both
kinds of tasks. In what follows, we describe the algorithms
we use for each task and how we judge their performances.

4.1 Link prediction

In link prediction, the goal is to predict the edges that are
most likely to appear in the future. In the online setting, at
every time step, our goal is to predict the edges that will
appear in the next time step (the next step in the initial
input sequence before windowing).

While there are many methods for link prediction (see [1]
for a survey), one of the most common is a simple scoring
function that scores every pair of vertices by how likely an
edge is to appear between them. In this paper, we use the
Katzg score, an efficient and well-performing score [15]. B is a
damping parameter that weights shorter paths exponentially
higher than longer paths in the most recent graph in the
input sequence. For our experiment results, we use 5 = 0.005,
which has been used before [9, 15]. We also use the simple
common neighbor score [15] to compare our results across
multiple algorithms for the same task.

The performance of the link prediction algorithm is evalu-
ated using the AUC of the precision-recall curve, as recom-
mended by [29], averaged over all predictions made, one set
of predictions for each graph.

4.2 Attribute prediction

We use the Time Varying Relational Classifier (TVRC) algo-
rithm of Sharan and Neville [24] to determine the unknown
value of a binary vertex attribute (that doesn’t change over
time). The goal is then to infer the missing attribute values
using a Bayesian model that takes advantage of temporal
information. In our implementation, we use add-one smooth-
ing for categorical features and a Gaussian distribution for
continuous features. The goal is then to find a windowing
where TVRC builds the best performing model.

We use a form of leave-one-out testing to measure the
performance of TVRC. In this setting, the target attribute
of one of the vertices is removed from both training and
testing, a model is trained with the training set, and gives
a prediction for the value of the missing attribute using the
test set. To make the problem harder and more realistic,
instead of just removing one target attribute, we remove a
whole batch of them at once, and use the trained model to
predict the values of all of their target attributes. The vertex
set is partitioned into batches using a batch size parameter
b, and this is repeated for each batch. Once a prediction has
been made for all batches, we measure the performance or
TVRC as the standard AUC of the ROC.

5 TASK DEPENDENCE

Ideally, it would be nice to have just one windowing that per-
forms well regardless of whether your goal is link prediction,
attribute prediction, or any other task, which would mean we
would not have to take the task into account. However, we



Table 1: Each row gives the performances of the corresponding task algorithm (as described in Section 4).
Each column corresponds to the data being aggregated at the window size that maximizes the performance for
that column’s task algorithm. For example, the first row and second column is how well the Katz algorithm
performed, if the data was aggregated at the window size that maximized the performance of TVRC, given
all knowledge of the attribute values. Scores are averaged over the different intervals of the data.

Enron ‘

Reality Mining ‘

Badge

Link prediction Attr. prediction ‘

Link prediction Attr. prediction ‘

Link prediction Attr. prediction

Link pred. 0.188 0.599 0.277 0.961 0.438 0.646
Attr. pred. 0.163 0.649 0.220 0.983 0.331 0.740
Table 2: Spearman correlation coefficients and p- ‘natural’ size, i.e. a choice that a data analyst might make,

values between link prediction (Katz) and attribute
prediction (TVRC).

Correlation coefficient  p-value
Enron 0.093 0.005
Reality Mining -0.050 0.493
Badge -0.733 2.282e-85

demonstrate that this does not appear to be feasible while
still maximizing the performance of the task algorithm.

To do this, we score each window size by the performance
of each of the task algorithms when the data set is windowed
at that size, so we have a score representing the quality of
the window size for each of the two tasks. Table 1 shows the
performance for those tasks when the data is aggregated to
maximize the performance of each of the tasks. For example,
choose the best window size for link prediction using Katz by
testing all possible window sizes. At that window size, on the
same data, attribute prediction does not achieve as high a
score as if you had chosen the best window size for attribute
prediction. This means that the windowing algorithm should
choose a different window size for each of the tasks in order
to maximize performance.

This effect is not limited to just the top-scoring window size.
More generally, the scores between two tasks do not positively
correlate with each other, so that a higher score for a given
window size on the first task does not necessarily mean a
higher score for that window size on the second task. In order
to demonstrate this, we use Spearman’s correlation coefficient,
which tests the monotonicity between two variables. Table 2
show the correlation coefficients and their associated p-values
for each pair of tasks: they are all close to zero or actually
negative. This is further evidence that the quality of window
sizes depend on the task, and hence that we should use the
task as supervision for windowing.

6 DATA SETS

We use five data sets: Enron, MIT Reality Mining, Badge,
Hypertext09, and Haggle. We treat all of these as undirected
dynamic networks. For both convenience and uniformity,
we bin each of these data sets at a initial window size at a

ot

such as an hour or a day. This is so that a window size
of w =1 is a baseline representing how well a hand-chosen
windowing would perform. We only consider window sizes at
least as large as this baseline.

Each of these are suitable for link prediction. Of these,
Enron, Reality Mining, and Badge are equipped with vertex
attributes in order to test attribute prediction.

Enron is an email network between employees of Enron Inc.
from January 1999 to July 2002, during the period of Enron’s
market manipulation scandal and subsequent collapse [13].
We use the number of occurrences of the top fifty words used
in all emails in each employee’s outgoing emails (a list of stop
words were excluded from the top fifty words) as attributes.
For attribute learning, we determine whether the employee
was a manager or not, which we took from [5]. The initial
bin size is one day.

Reality Mining is a proximity network of 90 MIT students
and faculty using data taken from cell phones from September
2004 to May 2005 [8]. We use as edges both phone calls
between participants and whenever two participants are close
to each other. Each of the participants filled out a survey
about their cell phone usage, which we use as the categorical
attributes for each vertex. The attribute we use for testing
attribute prediction is whether they are part of the business
school or the MIT Media Lab. The initial bin size is one day.

Badge is a proximity network of 23 employees at a data
server configuration firm for a month [17]. Each edge rep-
resents when two employees are in close proximity to each
other, representing an interaction. Each employee was as-
signed a certain number of tasks, and data about these tasks
was recorded, e.g. average completion time, whether they
took on a difficult task or not, etc. For attribute prediction,
we predict whether or not they made an error in one of their
tasks. The initial bin size is one hour.

Haggle INFOCOM is a proximity network consisting of
interactions, recorded using Bluetooth, among attendees at an
IEEE INFOCOM conference over four days [23]. 41 attendees
participated in this network. The initial bin size is 10 minutes.

Hypertext09 is another proximity network of attendees
at the ACM Hypertext 2009 conference, held over three
days [10]. Each vertex is one of the 113 attendees, and an
edge represents a interaction between two attendees that



Table 3: Performance (PR-AUC) of each of the algorithms on five data sets with respect to link prediction

using Katz.

Enron Reality Mining Badge Hypertext Haggle

Random 0.099 0.205 0.208 0.049 0.215
Hand-picked 0.148 0.266 0.619 0.146 0.485
Weighted Algorithm 1  0.186 0.256 0.521 0.122 0.471
Algorithm 1 0.183 0.266 0.472 0.103 0.474
Training only 0.159 0.240 0.418 0.065 0.437
ADAGE 0.149 0.198 0.394 0.044 0.298

Table 4: Performance (PR-AUC) of each of the algorithms on five data sets with respect to link prediction

using common neighbors.

Enron Reality Mining Badge Hypertext Haggle

Random 0.075 0.181 0.167 0.030 0.138
Hand-picked 0.039 0.183 0.346 0.037 0.230
Weighted Algorithm 1  0.106 0.210 0.325 0.039 0.233
Algorithm 1 0.104 0.209 0.302 0.037 0.196
Training only 0.097 0.191 0.294 0.027 0.172
ADAGE 0.094 0.179 0.266 0.031 0.152

was active for at least 20 seconds. The initial bin size is 10
minutes.

7 EXPERIMENTAL SETUP

Before we can actually compare our windowing algorithm
to others, we must describe how we test the performance of
windowing algorithms. In the offline setting, we set aside a
previous interval of the dynamic network for training, and
the next interval for testing. The training interval includes
ground-truth information. For example for attribute pre-
diction, it includes all known attribute values on vertices
included in the training interval. A windowing algorithm
may use this information to decide on a window size to use in
the test set. A windowing algorithm, uniform or otherwise,
is also allowed to see the edges in the test set to determine
the windowing for the test set, but of course no ground truth
information about the task.

Once the test set is windowed, we perform our task on the
windowed data and measure its performance, as described in
Section 4. The windowing algorithm’s score is then just the
score that the task algorithm received. For each data set, we
split it up into six consecutive intervals, and then do training
and testing on consecutive intervals, where the previous test
set becomes the next training set, so there are five total tests.
We do this in order to promote generalizability of our results.
For attribute prediction, we use pooling: we take the AUC as
described in Section 4 over all vertices in all test sets, instead
of averaging the individual AUC’s of each test set, because
the population, i.e. the vertices, is the same in each test set.

To perform attribute prediction, TVRC requires training
data to build a model. We therefore need to make sure to

decouple the training data for the model and the training
data used to find the best window size. To do this, we split
the training data into two, use the first half as the training
data for the TVRC model, and the second half of the training
data to test out how well the model does when windowed at
each window size. We perform this test by taking the vertices
that still have the value of the target attribute and using the
same process as when we use the model on test data: remove
the remaining attribute values in batches, build the model at
each window size, and then test which values TVRC predicts
on the second half of the training data. As described above,
we then use the AUC as the quality of that window size.

In the online setting, a new graph from the initial in-
put sequence is given to the windowing algorithm, and the
windowing algorithm must make a decision as to how to
incorporate the new graph into the windowing so far. After
windowing, a prediction is made, and then the process is
repeated. Since the link prediction algorithms we use only
ranks the likelihood of an edge appearing rather than de-
termining the number of new links, we only do this process
for those time steps where at least one new edge appears.
The score for the windowing algorithm is the average over all
scores received for each prediction. As in the offline setting,
we split each data set into six consecutive intervals and then
do training and testing on each pair of intervals, where the
testing phase is online.

8 RESULTS AND DISCUSSION

Tables 3, 4, and 5 show our results on link prediction and
attribute prediction.



Table 5: Performance (AUC) of each of the algo-
rithms on three data sets with respect to attribute
prediction.

Enron Reality Mining Badge

Random 0.566 0.966 0.583
Hand-picked 0.560 0.960 0.646
Supervised  0.587 0.974 0.656
No time 0.584 0.971 0.568
Fourier 0.567 0.967 0.568
Jaccard 0.576 0.973 0.571
Entropy 0.555 0.970 0.562
ADAGE 0.564 0.973 0.572

The supervised approach does do well, but there are cer-
tainly caveats. In attribute prediction, the supervised ap-
proach is the best performing algorithm, although the abso-
lute difference over the others is sometimes rather small. On
the other hand for link prediction, the ‘hand-picked’ window
size is often the best performer when using the Katz score,
probably due to the fact that these are well-studied data
sets with natural periodicities dictated by human activity,
and those window sizes reflect that. Nonetheless, this is not
universal: using the common neighbor score, our supervised
method almost always outperformed the hand-picked window
size. In addition, in general, we will want to have windowing
algorithms that do not rely on an analyst’s knowledge of the
data set: acquiring domain-specific knowledge like this can
be time-consuming, expensive, or difficult. Outside of this
approach, at least one of the supervised methods does the
best for all of the data sets. The weighted version is the
overall winner, with a caveat: in a few cases the unweighted
version outperforms the weighted version, perhaps because
the weighted version may be overfitting to more recent data
that is not representative of future data. To what degree this
is the case, however, we leave for future work.

We also test the effect of the hyperparameters B and M,
shown in Figure 1. As would be expected, by increasing B
or M (which increases the number of window sizes tested)
performance is generally improved. This effect, however, is
extremely weak on the Reality Mining data set. That and
our ability to perform relatively well even for small values of
B and M validates our choice to use small constant values
of B and M to use for Algorithm 1 and forego any attempt
to optimize their values in the course of the windowing algo-
rithm.

Our approach also reveals other differences between the
tasks. Figure 2 shows the quality of every window size on each
of the first four intervals of Reality Mining (we don’t use the
last interval because each interval needs a subsequent interval
for testing attribute prediction). TVRC is more stable under
changes to window size compared with link prediction. Such
sensitivity makes it much more difficult to speed up the
process by testing fewer window sizes. Indeed, our results
do not appear as good on link prediction, where we don’t

PR-AUC
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0.27
026 ><7‘<
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Figure 1: The effect of the hyperparameters B and
M on quality for link prediction (Katz), where we fix
B=10 and vary M, and fix M = 10 and vary B. The
figure on the top is the results on the Badge data
set, while the bottom is the results on the Reality
Mining dataset.

test all window sizes. We leave for future work determining
if there is a way to test a fewer number of window sizes.

9 CONCLUSION AND FUTURE WORK

In this paper, we have provided a simple and easy-to-use
framework for directly comparing the quality of windowing
algorithms and moreover, introduced windowing algorithms
that leverage our ability to test a windowing in order to do a
hyperparameter search. Nonetheless, we leave for future work
several challenges: Like any supervised machine learning, the
quality of the learner depends on the quantity and quality of
training data. Improving windowing algorithms in the face of
environments with little training data remains an issue. Even
with training data, this can be a computationally-expensive
procedure if the windowing algorithm has to repeatedly in-
voke an expensive task algorithm. We leave for future work
finding heuristics that approximate well how a windowing
will perform for a given task.
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