
Adaptive Candidate Generation for Scalable Edge-discovery
Tasks on Data Graphs

Mayank Kejriwal

Information Sciences Institute

USC Viterbi School of Engineering

Marina Del Rey, CA 90292

kejriwal@isi.edu

ABSTRACT
Several ‘edge-discovery’ applications over graph-based data models

are known to have worst-case quadratic time complexity in the

nodes, even if the discovered edges are sparse. One example is

the generic link discovery problem between two graphs, which

has invited research interest in several communities. Speci�c ver-

sions of this problem include link prediction in social networks,

ontology alignment between metadata-rich RDF data, approximate

joins, and entity resolution between instance-rich data. As large

datasets continue to proliferate, reducing quadratic complexity to

make the task practical is an important research problem. Within

the entity resolution community, the problem is commonly referred

to as blocking. A particular class of learnable blocking schemes is

known as Disjunctive Normal Form (DNF) blocking schemes, and

has emerged as state-of-the art for homogeneous (i.e. same-schema)

tabular data. Despite the promise of these schemes, a formalism or

learning framework has not been developed for them when input

data instances are generic, a�ributed graphs possessing both node

and edge heterogeneity. With such a development, the complexity-

reducing scope of DNF schemes becomes applicable to a variety of

problems, including entity resolution and type alignment between

heterogeneous graphs, and link prediction in networks represented

as a�ributed graphs. �is paper presents a graph-theoretic for-

malism for DNF schemes, and investigates their learnability in an

optimization framework. We also brie�y describe an empirical case

study encapsulating some of the principles in this paper.

KEYWORDS
Heterogeneity, Link Discovery, DNF Schemes, Graph Models, At-

tributed Graphs, Learnability, Machine Learning, Blocking

ACM Reference format:
Mayank Kejriwal. 2017. Adaptive Candidate Generation for Scalable Edge-

discovery Tasks on Data Graphs. In Proceedings of ACM KDD conference,
Halifax, Nova Scotia, Canada, August 2017 (MLG Workshop’17), 8 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Constrained edge-discovery tasks constitute an important class

of problems in communities that rely on graph data models [5].

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for pro�t or commercial advantage and that copies bear this notice and the full citation

on the �rst page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MLG Workshop’17, Halifax, Nova Scotia, Canada
© 2017 Copyright held by the owner/author(s). 978-x-xxxx-xxxx-x/YY/MM. . .$15.00

DOI: 10.1145/nnnnnnn.nnnnnnn

Examples include link discovery (e.g. entity resolution and class

matching) in the Semantic Web [10], [20], and a variety of link
prediction tasks in network-oriented communities such as social

media, bioinformatics and advertising [9], [12], [6]. Algorithms

a�empting to solve such tasks take as input either a single graph or

two graphs, and predict a set of edges linking nodes in the graphs.

�e semantics and constraints of the predicted link depends on

the task formulation: when performing entity resolution (ER), for

example, the link is expected to have :sameAs semantics indicating

that the two linked entities refer to the same underlying entity [10].

A real-world observation about many edge-discovery tasks is

that many interesting links are typically sparse in the space of all

possible edges, which is quadratic in the number of nodes [17]. Due

to their quadratic complexity, one-step algorithms that predict a

link by performing expensive computations on each pair of nodes

have gradually been superseded by two-step algorithms, especially

in the ER community (Section 3). In two-step ER, the �rst step is

typically known as blocking [3]. Using an indexing function known

as a blocking scheme, a blocking algorithm clusters approximately

similarly entities into (possibly overlapping) clusters known as

blocks. Only entities sharing a block are candidates for further

analysis in the second similarity step. State-of-the-art similarity

algorithms in various communities are now framed in terms of

machine learning, typically as binary classi�cation [1], [5].

�is basic two-step framework can also be extended to generic

link discovery tasks. As an example, suppose the task is discovery

and prediction of co-authorship links between scientists in a social

network. Rather than exhaustively evaluate all pairs of (scientist)

nodes, we could �rst index scientists based on a simple condition:

the overlap between the keywords used in their papers. Only nodes

with su�cient keyword overlap would undergo more expensive

computations. On highly specialized domains, a domain expert

might be required to hand-cra� appropriate indexing schemes.

Due to expense of manual expertise, automatic discovery of such

indexing schemes, also using machine learning, was motivated as a

research problem in the previous decade [14], [3]. Schemes learned

in a supervised se�ing are able to adapt to available training data,

precluding the need for manual hand-cra�ing. Like in any machine

learning framework, the expressiveness of such a scheme would

depend both on the underlying properties of the class of schemes

(the ‘hypothesis’ space) as well as the learning algorithm optimizing

over this space [4].

In this paper, we develop a class of schemes known as Disjunc-

tive Normal Form (DNF) schemes for a generic data model called a

directed, labeled a�ributed data graph model (Section 4). �e model

MLG Workshop’17, August 2017, Halifax, Nova Scotia, Canada Kejriwal

is designed to be generic enough that several extant graphs of in-

terest, including RDF data and directed, heterogeneous networks,

can be expressed as its instances. In related work (Section 3), we

describe how the current theory on DNF schemes limits their use

to a speci�c data model (homogeneous tables) and a constrained

problem (record deduplication) [14], [3], [7]. Despite their excellent

performance in that se�ing, DNF schemes were never proposed or

developed for generic graph models or for sparse edge-discovery

tasks (on these graph models) that are less constrained than homo-

geneous record deduplication (Section 5). In Section 6, we present

a constructive formalism for DNF schemes that can be applied

on graphs (Section 6.2), followed by results on the learnability of

these schemes (Section 6.3). Speci�c contributions presented in this

paper over current state-of-the-art work in DNF indexing are sum-

marized in Table 1. In Section 7, we use our experience with a recent

case study to illustrate the empirical utility of graph-theoretic DNF

schemes. Although the implementation itself was ad-hoc, and for a

very speci�c problem (entity resolution on Semantic Web datasets),

the underlying theory was subsumed by the formalism in this paper.

�is is also the case for various other DNF schemes proposed in

the literature e.g., for homogeneous tabular data without missing

values.

2 INTUITION
We use Figure 1 to provide some intuition behind the need for

adaptive candidate generation. We are looking to discovery ‘collab-

orator’ links in a knowledge graph describing artists and artistic

creations. Due to space limitations, the graph only shows a frag-

ment from the Movies domain, but we can imagine the coverage

to extend to other artistic domains like songs and screenplays. It

is not uncommon for actors, for example, to serve as directors or

producers on other projects. In the music domain, many singers

write their own songs.

Note that the overall link discovery problem either requires

domain knowledge, or is supervised (requires training data), since a

system cannot know what it is looking for otherwise. For arbitrary

links, only the la�er ‘data-driven’ option is feasible. We assume the

supervised link discovery framework in the rest of this work.

To motivate candidate generation, suppose we already know

the link discovery function f . Such a function is applied on a

pair of nodes, and returns the probability that the link in question

exists between the pair. Even so, one would have to apply the link

discovery function to every pair of nodes, which is infeasible due

to its quadratic complexity.

In theory, for an arbitrary link discovery function, quadratic

complexity is unavoidable. In practice, as the small example in

Figure 1 intuits, it is usually unnecessary for real-world link types.

We could hypothesize, for example, that a collaborator link (either

in the past or the future) is unlikely to exist between two nodes

unless they are linked to a common artistic work. However, a link

may also exist if the two artists are still active and share a close

relative.

�e research question addressed by this paper is, given a set of

su�ciently representative training examples, where each (negative)

positive example is a pair of (non-) linked nodes, how can we learn
a function that operates in near-linear time to generate a candidate

set of promising node pairs that could be further processed by an

expensive link discovery algorithm?

Note that candidate generation is independent from the mech-

anism of the link discovery algorithm itself. In recent years, link

discovery has witnessed a lot of progress due to the advent of deep

neural networks e.g., knowledge graph embedding methods, relying

on latent space representations of nodes and edges in the knowledge

graph, have become quite powerful [11], [22]. �ese algorithms

are expensive to train and evaluate, which further motivates the

development of adaptive, scalable methods for ‘good’ candidate

generation algorithms that signi�cantly reduce the quadratic space

without degrading recall.

3 RELATEDWORK
Link prediction and entity resolution (ER) were both recognized

as important steps in the overall link mining community about a

decade ago [5]. In the Semantic Web community, instance match-

ing [10], link discovery [15], [21] and class matching [20] are spe-

ci�c examples of such sparse edge-discovery tasks. Other appli-

cations include protein structure prediction (bioinformatics) [9],

click-through rate prediction (advertising) [6], social media and

network science [12], [18].

�e sparsity of positive edges (equivalently known as the class
imbalance problem in machine learning [4]) is well-known in sev-

eral communities [17]. Blocking methods for ER have continued

to be extensively researched, with more recent research in the Se-

mantic Web focused on data-driven approaches [16]. �is work

presents graph-theoretic formalism and learnability results for a

speci�c class of blocking schemes called Disjunctive Normal Form

(DNF) blocking schemes that have rapidly emerged as state-of-the-

art for deduplicating homogeneous tables [14], [3]. We believe this

is due to both their strong theoretical foundations, as well as their

recently demonstrated experimental robustness, even with noisy

training data [7]. �e formalism in prior work is brie�y reviewed

in Section 6.1.

Blocking, as a preprocessing complexity-reduction step, is not

the only avenue for addressing scalability. In networks with no edge

labels, or otherwise informative property values, structural features

are important for predicting missing links [12]. In large networks,

techniques like matrix factorization [13], stochastic optimization

[23] and message passing [6] are more important than complexity-

reduction techniques. Such techniques are complementary, not

competitive, with the DNF schemes proposed herein. For example,

one could use the blocking techniques to �rst reduce the pairwise

complexity space, se�ing 0 for any element pairs in the matrix that

were not retrieved by the blocking. �is results in a sparser matrix

and faster computation. Similarly, where edge weight computation

is required in a graph, one would only compute weights for edges in

the candidate set of node pairs retrieved by blocking, which yields

a much sparser graph and faster analytics.

We also note that such techniques are orthogonal to the Semantic

Web, where edge-labels are given by property URIs. Furthermore,

on the Web of Linked Data, the usefulness of labels and property

values for link discovery problems is well-known, particularly when

the data has loose schema bindings [16]. Such datasets are becoming

increasingly common [19]. Case-study results presented in Section

Adaptive Candidate Generation for Scalable Edge-discovery Tasks on Data GraphsMLG Workshop’17, August 2017, Halifax, Nova Scotia, Canada

Figure 1: Illustration of link discovery, used as the running
example throughout this work. Dotted lines (labeled type)
and nodes respectively represent attributes and attribute
mappings (Section 4).

7 demonstrate that, on real-world graph data, the DNF schemes

presented in this work can signi�cantly reduce complexity in data-

driven link discovery applications.

4 DATA MODEL
�e speci�c data model adopted for this work is a labeled, directed
a�ributed data graph model. Let Σ denote a �nite alphabet (e.g.

Unicode characters). We refer to an instance of this graph model as

a data graph (in the spirit of [24]):

De�nition 4.1. Data graphA data graph G is a labeled, multi-

relational graph encoded by the 7-tuple G = (V ,E, lV ,AV , ΣV ,
ΣE , ΣA), where V is the set of nodes, E ⊆ V × V × ΣE is the set

of directed, labeled edges, ΣE ⊆ Σ∗ is a �nite set denoted as the

edge vocabulary, lV is a function mapping a node v ∈ V to a label

in ΣV ⊆ Σ∗, ΣV is a �nite set denoted as the node vocabulary, AV
is a partially ordered mapping known as the a�ribute mapping
AV : V → ΣA

∗
, and ΣA ⊆ Σ∗ is a �nite a�ribute vocabulary.

Per De�nition 4.1, let AV (v) represent the a�ribute set of node

v ∈ V , and let lV (v) represent the label of node v . In slight abuse

of notation, we typically refer to a node by its label. We note that

Semantic Web data models like Resource Description Framework

(RDF) can be expressed graph-theoretically in terms of the de�ned

model, as an RDF graph is just a directed, labeled graph with con-
straints. By way of example, one such intuitive constraint is that

there does not exist an edge (v1,v2, l) ∈ E such that lV (v1) is a

literal, per some pre-speci�ed predicate (e.g. isLiteral) that distin-

guishes literal elements in ΣV from URI elements. In the same vein,

ΣV is constrained so that all non-literal elements (i.e. for which

isLiteral returns False) are necessarily (blank or non-blank) URIs
1
,

and ΣE only contains URIs.

Example 4.2. Figure 1 illustrates a data graph that resembles an

RDF graph. �e do�ed type edge, which is not formally an edge

per De�nition 4.1, indicates an a�ribute mapping, with a�ributes

represented as do�ed ovals. For example,AV (John Doe) returns the

a�ribute set {Actor, Guitarist}. Note also that, per RDF convention,

1AV returns an empty a�ribute set for nodes lacking class information. It is partially
ordered to enable representation of class hierarchies.

we have placed the literal “03-01-1980” in a rectangle; De�nition 4.1

does not actually distinguish between literal and non-literal nodes.

In the context of RDF/OWL
2

data, Example 4.2 illustrates that

a�ributes in De�nition 4.1 typically serve the same role as a set

of ontological classes. Since class hierarchies (i.e. super-classes

and sub-classes) are prevalent in expressive ontologies, a node is

permi�ed multiple a�ributes (i.e. an a�ribute set). In the model

proposed in [24], only a single a�ribute per node was permi�ed,

and edges were necessarily undirected and unlabeled. Such graphs

are special cases of De�nition 4.1, and the �ndings in that paper
3

are

complementary to the formalism presented herein. Note also that

all three vocabularies in De�nition 4.1 may be empty. Essentially,

nodes and edges are allowed to be unlabeled and untyped.

Whenever two graphs are indicated, subscripts on the relevant

notation will be used to make a distinction. A speci�c caveat is

the usage of the term a�ribute. In graph-theoretic terminology,

adopted herein for the sake of generality, nodes are a�ributed [24],

meaning that an a�ribute is like an RDF class. �is is in contrast to

[16], where an a�ribute was a set of pairs, with each pair consisting

of an edge-label (i.e. an RDF property URI) and an object value.

Finally, note that the �niteness of the various elements in G is

motivated primarily by real-world applications on �nite data graphs.

Technically, permi�ing the sets to be countably in�nite does not

fundamentally alter the subsequent formalism, but does make it

unnecessarily more involved.

5 PROBLEM FORMULATION
With the data model in place, there are two problem scenarios

within the scope of this paper. �e �rst, denoted as the one-graph
scenario, concerns sparse edge-discovery tasks on a single data

graph input. Given a data graphG , let there be an unknown partition

of the quadratic spaceV ×V into two sets P (links) andN (non-links).

We assume a sparsity condition i.e. |N | = ρ(|N |+ |P |) (ρ ≈ 1.0, but is

strictly less than 1.0), and an available training set (sampled i.i.d)T =
PT ∪ NT , where PT ⊂ P and NT ⊂ N . We denote ρ as the optimal
reduction ratio (RR). �e pairwise complexity-reduction problem is

to learn a su�ciently expressive scheme that, when executed on G ,

results in a candidate set C of node-pairs such that the empirical
RR (1.0 − |C |/|V |2) is maximized while ensuring that the positive

link coverage (the Pairs Completeness or PC), de�ned as |C ∩ P |/|P |,
is above a minimum pre-speci�ed threshold in expectation. �is

learning problem is formally expressed as an optimization program

in Section 6.3.

Concerning the two-graph scenario, the problem is similarly

de�ned as above, except that all links must be in the set V1 × V2,

with V1,V2 being the node sets of the two data graph inputs G1,G2

respectively. Rather than adopt separate formalisms in Section 6.2

for the two scenarios, we frame the de�nitions, where relevant, in a

way such that (1) two data graphs are never required to be distinct

and can therefore be the same graph, and (2) two nodes are always

required to be distinct. By maintaining (1) and (2) throughout the

construction, the one-graph and two-graph treatments are uni�ed,

unlike in prior work on the subject [3], [14], [16]. �eoretically,

self-link discovery is also avoided.

2
Web Ontology Language [2]

3
Namely, building e�cient index data structures for speedy query processing.

MLG Workshop’17, August 2017, Halifax, Nova Scotia, Canada Kejriwal

Table 1: Contributions in this paper compared to prior work.

DNF schemes in prior work DNF schemes in this work
Speci�c to homogeneous tables Proposed for heterogeneous graphs

Speci�c to the deduplication task Applicable to any sparse edge-discovery task where training data

is available

Handling missing values not evident Addresses the missing value problem

Entities (i.e. tabular records) must necessarily have the same type Nodes can have di�erent (and even multiple) types

A single tabular instance assumed as input Proposed for edge-discovery tasks in both one-graph and two-

graph scenarios

Learning as single-step optimization Learning as multi-step optimization

No reduction results from extant blocking schemes A�ribute Clustering [16] shown to be a special case (�eorem 7.1)

No robustness results Empirically robust to noisy training data

Figure 2: Example of a DNF blocking scheme for the dedu-
plication task on a tabular Restaurants benchmark. �e
scheme takes as input a pair of tabular records and returns
True (otherwise False) if they should be included in the can-
didate set C (Section 5).

Most importantly, the complexity-reduction problem studied in

this paper is agnostic to the underlying link speci�cation function

(LSF), since the ground-truth partitioning of the quadratic node-pair

space (into links and non-links) is unknown (and can be arbitrary).

�is is in contrast to existing complexity-reduction systems in the

literature wherein either the LSF itself or its semantics, is known
[15], [21], [16].

6 DISJUNCTIVE NORMAL FORM SCHEMES
6.1 Background: DNF blocking schemes for

tabular deduplication
�e theory (i.e. formalism and learnability) for an adaptive class

of complexity-reduction schemes, called Disjunctive Normal Form
(DNF) blocking schemes, is especially well-developed for the task

of homogeneous tabular deduplication [14], [3]. Figure 2 illustrates

such a scheme by way of an example. �e scheme is given by a

Boolean DNF expression that can be arbitrarily complex
4

in princi-

ple, although in practice, the complexity of the scheme is curbed

by a speci�ed parameter. As the mnemonic notation suggests, the

scheme takes a pair of entities (tabular records in this case) as input

4
With a �nite set of n predicates (e.g. CommonTokenName in Figure 2), there are

2
2
n

canonical (i.e. arrangement-insensitive) positive DNF formulae. Negated literals

are not allowed in blocking constructions.

and returns True if they share a token in their Name column or

an integer in their Address column. �e predicates that comprise

the atoms in the DNF expression are compositions of a function

(e.g. CommonToken) and a column (e.g. Name). Given a set of д
such functions (known as general predicates [3]) and a table with c
columns, a legal DNF scheme is expressible over дc atoms. Given

training sets of duplicates and non-duplicates, learning a scheme

can be framed in terms of solving an optimization problem over

the training sets (Section 6.3) [3], [14].

6.2 Constructive formalism for sparse
edge-discovery on data graphs

�e basic treatment of DNF blocking schemes in Section 6.1 illus-

trates that, at the highest level, there are two crucial components

to their construction. �e �rst is akin to the feature design phase

(of typical machine learning), and corresponds to the choice of

predicate functions (e.g. CommonToken in Figure 2). �e second

is the learning algorithm itself (i.e. choosing and combining the

atomic predicates into a complete DNF expression), akin to the pa-
rameter estimation (e.g. by applying statistical inference techniques

on available training data) phase [4].

In the graph model, these two components are not, in themselves,

adequate because of the presence of both node and edge heterogene-

ity. Node heterogeneity arises because nodes may have di�erent

sets of a�ributes associated with them, while edge heterogeneity

arises because of edge labels. Di�erent entities may have di�erent

sets of ‘properties’ or edge labels associated with them. A naive

adoption of the treatment in Section 6.1 to the graph-theoretic case

runs into the missing value problem
5
.

To accommodate heterogeneity and missing values at the con-

ceptual level, additional technical machinery is needed. In the rest

of this section, we ‘construct’ the formalism by de�ning some of

these concepts and illustrating them using the running example in

Figure 1. In keeping with practical constraints and intuitions, we

impose �niteness constraints on the relevant de�nitions.

As in the rest of this paper, we assume an alphabet Σ. Given

a data graph G = (V ,E, lV ,AV , ΣV , ΣE , ΣA), recall that each of

ΣV , ΣE and ΣA is a subset of Σ∗. Using standard terminology from

formal automata theory, an arbitrary element from Σ∗ is referred

5
�is becomes apparent if each column in the table in Figure 2 is thought of as

a ‘property’ or edge label. Every entity is constrained to possess this exact set of

properties (the table schema) in the homogeneous tabular deduplication task.

Adaptive Candidate Generation for Scalable Edge-discovery Tasks on Data GraphsMLG Workshop’17, August 2017, Halifax, Nova Scotia, Canada

to as a string. An arbitrary element from ΣV , ΣE and ΣA is referred

to as a node label, edge label and a�ribute respectively.

With these assumptions, we start by de�ning shallow and deep

extractors, which are the most basic (‘primitive’) units in construct-

ing a DNF scheme:

De�nition 6.1. Primitive shallowextractor (PSE)Given a graph

G and an alphabet Σ, a primitive shallow extractor (PSE) Ps : ΣL →
2
Σ∗

is de�ned as a mapping that takes a node label from ΣL as input

and returns (‘extracts’) a �nite set of strings (⊂ Σ∗) as output.

Example 6.2. An example of a PSE would be tokenizing a string

into a set (of tokens) based on standard delimiters. For example,

using the delimiter - on the date literal “03-01-1980” in Figure 1, a

set {“03”, “01”, “1980”} is obtained. A useful practice is to represent

such extractors mnemonically (e.g. TokenizeString).

De�nition 6.3. Primitive deep extractor (PDE) Given a graph

G and an alphabet Σ, a primitive deep extractor (PDE) Pd : 2
Σ∗ →

2
Σ∗

is de�ned as a mapping that takes a �nite set of strings as input

and returns (‘extracts’) a �nite set of strings as output.

Example 6.4. Continuing from Example 6.2, an example of a PDE

would be AddOneToIntegers. It takes a set as input, and for every

integer in the set, parses and increments the integer and adds it

back to the set (designed for more robust performance against noisy

integer inputs [3]). On the input set {“03”, “01”, “1980”}, the output

would be {“03”, “01”, “1980”, “04”, “02”, “1981”}. Another example,

designed for text, is to remove stop-words (e.g. the) from the set
6
.

�e examples above indicate that the PSEs and PDEs must nec-

essarily be speci�ed by the user. Typically, this is not a bo�leneck;

authors in several communities have already proposed a wide va-

riety of practical functional classes (e.g. phonetic, token-based,

set-based and numeric) [3], [8], [12]. Henceforth, we assume the

availability of �nite sets Ps and Pd of PSEs and PDEs respectively.

De�nition 6.5. Feature extraction operator (FEO) Given a

graphG , and extractor sets Ps and Pd , a feature extraction operator
(FEO) is a mapping that takes a node v ∈ V as input, computes its

label lV (v), and performs a �nite, non-empty sequence of extraction

operations to output a set of strings.

Given an FEO parameterized by n extractors, it is necessarily the

case (per De�nitions 6.1 and 6.3) that the �rst extraction, which

always exists per De�nition 6.5, is shallow, and the following n − 1

extractions (if n > 1) are deep.

Example 6.6. Consider a free-text literal “Died on 03-03-1943”. A

�rst step, as discussed in Example 6.1, is to derive a set of tokens

from the literal. Next, as discussed in Example 6.3, the integers

could be supplemented with increments
7
, but also the stop-word

‘on’ should be removed, and the word ‘died’ should be stemmed to

its canonical form ‘die’. Functionally, this FEO is represented by the

composite mapping StemWords(RemoveStopWords(AddOneToIntegers(
TokenizeString(lV (.))))).

6
�us, the output set can potentially be smaller (even empty) than the input set.

7
If a token cannot be parsed as an integer, we design the PDE AddOneToIntegers to

ignore it.

One issue with the de�nition of an FEO is that it only operates

on the label of the node. In RDF graphs, in particular, the label

does not contain enough discriminative information
8
. It becomes

necessary to seek out information that is one or more edges (i.e. a

trail9) away. Given a graph G, a node v ∈ V and a sequence s of n
edge labels, let a trail t , de�ned as an alternating sequence of nodes

and edges in G , be denoted as being valid if (1) the starting node in

t is v , (2) the subsequence of edges in the trail corresponds exactly

to s .

Example 6.7. In Figure 1, the starting node John Doe and edge-

label sequence (actedIn) yields a valid trail: (John Doe, actedIn,
Jurassic Park 4). If John Doe acted in multiple movies, there would

be multiple valid trails.

In general, given an edge-label sequence and a starting node,

a (possibly empty) set of valid trails can be constructed. Let the

terminating node in a trail t be denoted by the symbol last(t). In

a slight abuse of notation, let the set of all edge-label sequences

of length exactly n be denoted by the symbol ΣnE . Similarly, let

Tn denote the set of all trails with exactly n edges
10

. Using these

symbols, let trails(v, s) represent the mapping that takes a starting

node v ∈ V and an edge-label sequence s ∈ ΣnE as input, and

returns a (possibly empty) set of valid trails Tn ⊂ T ∗, where T ∗ is

the (countably in�nite, in the general case) set of all possible trails

in graph G.

De�nition 6.8. Trail-sensitive feature extraction operator
(t-FEO) Given a graph G and an FEO f , a trail-sensitive feature
extraction operator (t-FEO) is a mapping that takes a node v ∈ V
and a �nite sequence s ∈ ΣnE with exactly n ≥ 0 edge labels as input,

and for n = 0, returns f (v). For n > 0, the operator constructs the

set Tn = trails(v, s) and returns (1) the empty set if Tn is empty,

(2)

⋃
t ∈T n f (last(t)) if Tn is non-empty.

Notationally, we denote a t-FEO as being parameterized11
by

FEO f , and with a nodev and �nite edge-label sequence s as inputs.

Example 6.9. Consider a t-FEO parameterized by the FEO f
de�ned in Example 6.6 on the data graph in Figure 1. Given the node

John Doe and the simple unit-length edge-label sequence (bornOn)
as inputs, the t-FEO returns the same output as in Example 6.6. On

the input Christine Doe and the same sequence, the t-FEO returns

{}.

Henceforth, we assume a �nite set F ≤n of t-FEOs (with hyper-

parameters that do not exceed n), which can be constructed by

bounding n and using a �nite set of FEOs. De�nition 6.8 gracefully

handles missing values by returning the empty set when the set T
of valid trails is also empty. Furthermore, allowing an edge-label

sequence to be empty (n = 0) enables an FEO in De�nition 6.5 to

be cast as a special case of a trail-sensitive FEO in De�nition 6.8.

8
In cases such as Freebase, the ‘label’ as de�ned here is usually an opaque URI repre-

senting the subject of the entity.

9
�e data graph, as de�ned in Section 4, is not required to be acyclic. �is is why, in

the subsequent formalism, we refer to trails (which may have cyclical subsequences)

and not paths. For practical purposes, this subtlety applies more to networks, where

cycles are common, than to RDF graphs.

10
�ese symbols assume a graph G . For more than one graph, subscripts will be used

to make a distinction.

11
Given a graphG (context) and a non-negative integer n (hyperparameter), the t-FEOs

represent a class of mappings with one degree of freedom (the parameter f).

MLG Workshop’17, August 2017, Halifax, Nova Scotia, Canada Kejriwal

A t-FEO always operates on a single node, while edge-discovery

is a pairwise operation. Given two (not necessarily distinct) t-FEOs

from two distinct nodes, either from a single graph (one-graph

scenario) or two di�erent graphs (two-graph scenario), parameter-

ized t-FEOs can be applied on the respective nodes to obtain two

feature-sets Z1 and Z2.

A set-based relation can now be used to derive a Boolean value

from these two sets. Such a relation takes the two sets as inputs and

maps them to True or False based on some condition. While any

condition can be used, in theory, the motivation behind developing

DNF schemes is to avoid quadratic comparisons, and the relation

must be amenable to e�cient execution. A speci�c example of

such a relation is the thresholded Jaccard, de�ned as the condition

|Z1 ∩ Z2 |/|Z1 ∪ Z2 | > θ , where θ is a speci�ed threshold. An

important, highly e�ective case in the blocking community is θ =
0, as checking for a single element common to the sets becomes

su�cient (and inverted indexing techniques become applicable). �e

rest of this section assumes this simple case; the case of arbitrary

real-valued thresholds is le� for future work.

Using a set-based relation R, and the de�nitions thus far, a trail-
sensitive predicate is de�ned below. Such predicates eventually

serve as the atoms in the �nal DNF construction (similar to the role

served by CommonTokenName in Figure 2).

De�nition 6.10. Trail-sensitive predicate (t-P) Given a set-

based relation R, two t-FEOs f1 and f2 and two �nite sets S1 ⊂ Σ∗E1

and S2 ⊂ Σ∗E2

of edge-label sequences, de�ned respectively on

two graphs G1 and G2, a trail-sensitive predicate (t-P) is a binary

relation parameterized as a 5-tuple (R, f1, f2, S1, S2). A t-P takes as

input two distinct nodes v1 ∈ V1 and v2 ∈ V2, computes the set

Z1 =
⋃
s ∈S1

f1(v1, s) (and similarly, set Z2), and returns R(Z1,Z2).

By bounding any sequence in the edge-label sequence sets S1 and

S2 in the de�nition above
12

, the set of all trail-sensitive predicates

(denoted as the predicate universe U) is also �nite
13

. Intuitively,

these predicates serve as atoms, which can now be used to construct

general DNF expressions.

One issue is that, so far, the a�ributes of the nodes involved (i.e.

node heterogeneities) have been neglected. �is issue is addressed

by de�ning an a�ribution relation below:

De�nition 6.11. Attribution Relation Given two (not necessar-

ily distinct) graphs G1 and G2, an a�ribution relation is a binary

relation de�ned on the a�ribute mappings AV1
and AV2

. Function-

ally, it takes as input two distinct nodes v1 ∈ V1 and v2 ∈ V2, and

returns True i� some a�ribute pair in AV1
(v1) × AV2

(v2) is in the

relation, and returns False otherwise.

Example 6.12. A good (in a data-driven sense) a�ribution rela-

tion for the example in Figure 1 is {(Actor, Director), (Guitarist,
Guitarist)}. A safer (in a coverage sense) but more coarse-grained

(i.e. less discriminative) relation is {(Person, Person)}. Note that, for

either relation, including (Movie, Person) in the relation is inappro-

priate, since discovering only collaborator links is of interest.

12
�is requirement is less restrictive than it seems, since every data graph is assumed

to have �nite diameter, which can serve as the theoretical bound, and ΣE was declared

�nite (De�nition 4.1).

13R is presently �xed, and both t-FEOs are necessarily drawn from �nite sets per

De�nition 6.8 and the note following it.

Technically, discovering an appropriate a�ribution relation is

within the scope of the multi-step optimization problem outlined

in Section 6.3. In practice (for reasons described in that section),

the problem is constrained enough for an inexpensive external

algorithm (e.g. ontology matching) to be used instead [20].

De�nition 6.13. Attribute-aware DNF scheme Given a predi-

cate universeU , two (not necessarily distinct) graphsG1 andG2 and

an a�ribution relation A, an a�ribute-aware Disjunctive Normal
Form (DNF) scheme DA is a positive

14
DNF expression D composed

of the atoms in U . It takes as input two distinct nodes v1 ∈ V1 and

v2 ∈ V2, and returns True i� D is True and either A is empty or

A(v1,v2) is True, and returns False otherwise.

De�nition 6.14. Composite DNF scheme A Composite DNF
scheme C is de�ned as a �nite set of a�ribute-aware DNF schemes

that takes as input two distinct nodes v1 ∈ V1 and v2 ∈ V2, and

returns True (otherwise False) i� there exists a scheme DA ∈ C
that returns True for the pair (v1,v2).

Example 6.15. Assuming two a�ribution relations {(Actor, Direc-
tor)} and {(Guitarist, Guitarist)}, an a�ribute-aware DNF scheme

could be devised for each of the two relations. If the training data

is representative, the two schemes would presumably be di�erent.

�e composite scheme may be thought of as a ‘commi�ee’ of these

two schemes. Given two distinct nodes as input, it returns True
i� either one of the a�ribute-aware schemes returns True, and the

corresponding a�ribution relation is satis�ed.

Concerning execution of a given DNF blocking scheme on two

(not necessarily distinct) graphs G1 and G2 to derive a highly re-

duced candidate set of node-pairs (recall the original problem in

Section 5), it can be shown that, under practical constraints (e.g.

�niteness and boundedness), a near linear-time indexing algorithm

can be applied on the graphs using a given scheme. In the Semantic

Web, an example of one such algorithm is block purging [16].

6.3 Learnability
Section 6.2 presented a formalism for constructing (composite) DNF

schemes on entire graphs. Given graph inputs, and training sets

PT and NT of links and non-links, we would ideally like to learn a

DNF scheme from the training data. �is section formally explores

the learnability of unconstrained DNF schemes.

As with many learning problems, learning a composite DNF

scheme can be framed in terms of solving an optimization prob-

lem. We assume as inputs two (not necessarily distinct) graphsG1 =

(V1,E1, lV1
,AV1
, ΣV1
, ΣE1
, ΣA1
) andG2 = (V2,E2, lV2

,AV2
, ΣV2
, ΣE2
, ΣA2
),

training sets PT and NT and a �nite predicate universe U . Let C,

denoted as the hypothesis space, be the set of all composite DNF

schemes that can be legally composed on graphs G1 and G2, using

the predicate universe U . �e optimization problem is stated as:

arдminC∈C |{(v1,v2) ∈ NT |C(v1,v2)}| (1)

subject to the condition that,

|{(v1,v2) ∈ PT |C(v1,v2)}| ≥ ϵ |PT | (2)

14
�at is, negated atoms from U are not permi�ed in the construction.

Adaptive Candidate Generation for Scalable Edge-discovery Tasks on Data GraphsMLG Workshop’17, August 2017, Halifax, Nova Scotia, Canada

We denote ϵ as theminimum Expected Pairs Completeness (mEPC).
Intuitively, the optimization program states that an ‘optimal’ com-

posite scheme minimizes the number of negative training examples

(the non-links) covered (Eqn. 1), while exceeding a required level

of recall (i.e. ϵ) with respect to the positive examples (links), at

least in expectation
15

. Note that, like other optimization problems,

the problem above can be stated as a decision problem, by asking

if a composite scheme exists, such that the fraction of negative

examples covered does not exceed (a speci�ed parameter) η.

�e composite scheme C is necessarily a �nite set by virtue of

U , ΣA1
and ΣA2

being �nite. Intuitively, any solution to Eqns. (1)-(2)

may be thought of as a multi-step procedure. First, the a�ribution

relations governing the scope of each a�ribute-aware DNF scheme

in the composite scheme need to be determined. Next, for each such

relation, an a�ribute-aware DNF scheme needs to be learned. In the

worst case, the two steps would not be independent: choosing the

wrong relations could result in a sub-optimal composite scheme,

even if each individual a�ribute-aware DNF scheme is optimal with

respect to the training examples ‘covered’ by its corresponding

a�ribution relation.

Given this dependency and the expressiveness of DNF schemes,

a natural question is if a tractable solver for Eqns. (1)-(2) exists.

�e following theorem provides strong evidence against such an

existence.

Theorem 6.16. �e decision version of Eqns. (1)-(2) is NP-hard.

Proof Intuition: In prior work on DNF blocking scheme learning

for homogeneous tabular deduplication [3], a simpler version of the

decision problem was shown to be NP-hard, by demonstrating a

reduction from a known NP-hard problem. In an extended report
16

,

we demonstrate a similar reduction.

�eorem 6.16 illustrates a natural tradeo� between the expressive-
ness of DNF schemes (when they are not subject to any constraints)

and their learning properties. Generally, edge-discovery tasks are

rarely unconstrained. For example, if the task is entity resolution

in the Semantic Web, a �rst step is to use ontology alignment to

bound the possible a�ribute relations [20]. In the next step, an ap-

proximate a�ribute-aware DNF scheme learning (for each a�ribute

relation output by the ontology aligner) can be learned. In prior

work on DNF schemes, a variety of greedy approximation algo-

rithms have already been proposed for the homogeneous tabular

deduplication task, including beam search [14], greedy set covering

[3], and feature selection [7]. In recent work, we developed and

evaluated an approximation algorithm for entity resolution on RDF

graphs [8]. �e empirical results are discussed in Section 7.

7 CASE STUDY
Although the primary developments in this work were theoretical,

they were motivated by practical large-scale issues in graph-based

ecosystems such as the Semantic Web. Recently, we designed an

unsupervised entity resolution (ER) system for schema-free (i.e.

heterogeneous) RDF data [8]. Using bounded parameters and a

set of 28 manually cra�ed extractors (De�nitions 6.1 and 6.3), we

presented an approximation algorithm to learn DNF schemes from

15
�e empirical PC of any scheme C on a given training set is, in fact, the expected

PC relative to a full ground-truth, since the training set is sampled i.i.d (Section 5).

16
Accessed at the author’s arXiv page: h�ps://arxiv.org/pdf/1605.00686.pdf

training data. Note that, because the system was designed to be

unsupervised, a heuristics-based component called a training set
generator (TSG) was also a part of the system; the training exam-

ples used to bootstrap the learning processes in the entire system

were output by this TSG. Due to its unsupervised nature, the TSG

could make mistakes: in many cases, the precision of the generated

training set was well below 80%. �is, in turn, imposed a strong

robustness requirement on the entire system, especially blocking

scheme learning [8].

To evaluate DNF blocking scheme learning, we gathered a set of

ten RDF test cases
17

, and used a token-based blocking algorithm

known as token-based A�ribute Clustering18
(AC) as a baseline

[16]. �e AC algorithm was designed for the two-graph scenario

mentioned in Section 5. It is non-adaptive; the algorithm uses a pre-

de�ned similarity model to cluster edge-label sets ΣE1
and ΣE2

. An

example of a similarity model is using instance-based measures (like

cosine similarity) on corresponding object-values. Once the clusters

are obtained, entities can be assigned to blocks based on whether

they share common tokens (or by extension, other features) in at

least two object values corresponding to edges that were assigned

to the same cluster [16].

Experimental results were reported in [8], with the metrics being

Pairs Completeness (PC), Reduction Ratio (RR) and their harmonic

mean (F-score). PC and RR were earlier de�ned in Section 5. �e

results in [8] showed that, due to its adaptive nature, the DNF

approximation algorithm (1) was able to outperform AC on the

F-score metric on six out of ten test cases, (2) achieved a mean RR

that was over 7.5% higher than that achieved by AC, with a mean

loss in PC just below 2.6%, and (3) had stable RR performance, with

2.42% standard deviation across all ten test cases, compared with

13.13% deviation for AC . (3), in particular, shows that adaptive DNF

learning is reliable compared to AC, which can be an important

concern in real-world linkage scenarios that exhibit dynamicity,

such as Linked Open Data [19]. Even with noisy training data,

the learner continued to exhibit stable RR
19

. �e competitive per-

formance with AC shows that the DNF schemes are applicable to

schema-free data.

Concerning the run-time of the blocking itself, both blocking

methods above had similar run-times, which were much smaller

than the full edge discovery problem (involving feature computa-

tion as well as application of a machine learning-based similarity

function).

Post-hoc error analyses suggested at least two possible reasons

behind the case study performance numbers reported in [8]. First, it

could be the case that AC is not as expressive as DNF blocking. �e

following theorem formalizes this intuition, with a proof provided

in the extended report:

Theorem 7.1. �ere exists a �nite predicate universeU such that
an A�ribute Clustering (AC) blocking scheme, as presented in [16],

17
�ese test cases are detailed in the original journal article where we described the

overall unsupervised entity resolution system [8].

18
As indicated at the end of Section 4, an ‘a�ribute’ in [16] was de�ned as a set of edge

label-object value pairs associated with an entity (a node in the data graph). Herein,

the word was used in the traditional graph-theoretic sense.

19
Importantly, high, stable RR is essential for high volume tasks because RR grows

quadratically with the number of nodes, and even small improvements or variations

(less than a percent) disproportionately impact candidate set size.

https://arxiv.org/pdf/1605.00686.pdf

MLG Workshop’17, August 2017, Halifax, Nova Scotia, Canada Kejriwal

can be expressed as a single a�ribute-aware DNF scheme (De�nition
6.13) that is a disjunction of all the predicates inU .

�is theorem shows that, given a particular ‘reasonable’ predi-

cate universe, AC does not take into account node a�ribution (and

is hence expressible as a single a�ribute-aware DNF scheme). On

this account, a general (i.e. composite) DNF expression is strictly

more expressive.

A second issue is that AC schemes are non-adaptive, and cannot

be learned from training data (whether manually or automatically

constructed). �is implies that its performance may not be as com-

petitive for ‘peculiar’ datasets and domains. On the other hand, DNF

schemes, in the formulation presented in this paper, can be learned

using approximation techniques from the complexity-theory litera-

ture. Finally, unlike AC, which requires access to the entire dataset

to formulate its predicates [16], DNF schemes only need access to

limited training data. �is gives them an advantage of scale in cases

where the entire dataset, but not the required fraction of training

examples, is too large to �t in memory.

8 CONCLUSION
In this paper, we presented a graph-theoretic construction for DNF

schemes, applicable to a directed, labeled a�ributed data graph

model. �e presented schemes are functions that are useful for

reducing pairwise (i.e. quadratic) complexity in sparse supervised

machine learning-based edge-discovery on either a single data

graph or between two data graphs. Previously, the DNF schemes

had only been proposed for homogeneous tabular deduplication.

Table 1 summarizes the technical contributions in this work. An

optimization-based framework can be used for learning the schemes.

�e empirical promise of these schemes (in terms of high volume,

dynamicity and stability) was demonstrated in real-world se�ings

against the competitive A�ribute Clustering baseline.

Future Work. Given the general applicability of DNF schemes,

there are several (theoretical and practical) avenues for future work.

One aspect that we are looking to investigate is to approximate a

good DNF blocking scheme when the link speci�cation function

(e.g., friendship links between nodes) or LSF is known. �us far in

this paper, we only covered the adaptive case when the LSF itself is

unknown and will likely be approximated through an independent

feature extraction and supervised machine learning pipeline (using

the same training data as the DNF learner). In the general case,

this problem is infeasible if the LSF is just treated as a black box.

Some work has a�empted solutions when the LSF is in a metric

space e.g., Locality Sensitive Hashing has been used for complexity

reduction with respect to LSFs such as Jaccard similarity. However,

the problem is still relatively under-studied for non-metric LSFs.

On an empirical front, we are also looking to expand beyond

the case study in Section 7 and implement the principles in this

paper for blocking large datasets in unusual domains e.g., human

tra�cking and securities fraud. In recently processed datasets in

these domains, we found severe entity resolution issues. Because

each dataset contains many millions of nodes, scalable candidate

generation is an important concern, for which we are looking to

apply some of the adaptive methods described in this work.

Acknowledgements. �e author conducted this work in 2016

in the �nal semester of his PhD at the University of Texas at Austin.

He gratefully acknowledges the support of his advisor, Daniel P.

Miranker, and the fruitful discussions that ultimately led to the

writing of the paper.

REFERENCES
[1] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. 2006.

Link prediction using supervised learning. In SDM06: Workshop on Link Analysis,
Counter-terrorism and Security.

[2] Sean Bechhofer. 2009. OWL: Web ontology language. In Encyclopedia of Database
Systems. Springer, 2008–2009.

[3] Mikhail Bilenko, Beena Kamath, and Raymond J Mooney. 2006. Adaptive block-

ing: Learning to scale up record linkage. In Data Mining, 2006. ICDM’06. Sixth
International Conference on. IEEE, 87–96.

[4] Christopher M Bishop and others. 2006. Pa�ern recognition and machine learning.

Vol. 4. springer New York.

[5] Lise Getoor and Christopher P Diehl. 2005. Link mining: a survey. ACM SIGKDD
Explorations Newsle�er 7, 2 (2005), 3–12.

[6] �ore Graepel, Joaquin Q Candela, �omas Borchert, and Ralf Herbrich. 2010.

Web-scale bayesian click-through rate prediction for sponsored search adver-

tising in microso�’s bing search engine. In Proceedings of the 27th International
Conference on Machine Learning (ICML-10). 13–20.

[7] Mayank Kejriwal and Daniel P Miranker. 2013. An unsupervised algorithm for

learning blocking schemes. In Data Mining (ICDM), 2013 IEEE 13th International
Conference on. IEEE, 340–349.

[8] Mayank Kejriwal and Daniel P Miranker. 2015. An unsupervised instance matcher

for schema-free RDF data. Web Semantics: Science, Services and Agents on the
World Wide Web 35 (2015), 102–123.

[9] Lawrence A Kelley and Michael JE Sternberg. 2009. Protein structure prediction

on the Web: a case study using the Phyre server. Nature protocols 4, 3 (2009),

363–371.

[10] Hanna Köpcke and Erhard Rahm. 2010. Frameworks for entity matching: A

comparison. Data & Knowledge Engineering 69, 2 (2010), 197–210.

[11] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning

Entity and Relation Embeddings for Knowledge Graph Completion.. In AAAI.
2181–2187.

[12] Linyuan Lü and Tao Zhou. 2011. Link prediction in complex networks: A survey.

Physica A: Statistical Mechanics and its Applications 390, 6 (2011), 1150–1170.

[13] Aditya Krishna Menon and Charles Elkan. 2011. Link prediction via matrix fac-

torization. In Machine Learning and Knowledge Discovery in Databases. Springer,

437–452.

[14] Ma�hew Michelson and Craig A Knoblock. 2006. Learning blocking schemes for

record linkage. In Proceedings of the National Conference on Arti�cial Intelligence,
Vol. 21. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999,

440.

[15] Axel-Cyrille Ngonga Ngomo. 2011. A time-e�cient hybrid approach to link

discovery. Ontology Matching (2011), 1.

[16] George Papadakis, Ekaterini Ioannou, �emis Palpanas, Claudia Niederée, and

Wolfgang Nejdl. 2013. A blocking framework for entity resolution in highly

heterogeneous information spaces. Knowledge and Data Engineering, IEEE Trans-
actions on 25, 12 (2013), 2665–2682.

[17] Ma�hew J Ra�igan and David Jensen. 2005. �e case for anomalous link discov-

ery. ACM SIGKDD Explorations Newsle�er 7, 2 (2005), 41–47.

[18] Salvatore Scellato, Anastasios Noulas, and Cecilia Mascolo. 2011. Exploiting

place features in link prediction on location-based social networks. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and
data mining. ACM, 1046–1054.

[19] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim. 2014. Adoption

of the linked data best practices in di�erent topical domains. In �e Semantic
Web–ISWC 2014. Springer, 245–260.

[20] Pavel Shvaiko and Jérôme Euzenat. 2013. Ontology matching: state of the art

and future challenges. Knowledge and Data Engineering, IEEE Transactions on 25,

1 (2013), 158–176.

[21] Julius Volz, Christian Bizer, Martin Gaedke, and Georgi Kobilarov. 2009. Discov-

ering and maintaining links on the web of data. In �e Semantic Web-ISWC 2009.

Springer, 650–665.

[22] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge

Graph Embedding by Translating on Hyperplanes.. InAAAI. Citeseer, 1112–1119.

[23] Kai Yu, Wei Chu, Shipeng Yu, Volker Tresp, and Zhao Xu. 2006. Stochastic rela-

tional models for discriminative link prediction. InAdvances in neural information
processing systems. 1553–1560.

[24] Linhong Zhu, Wee Keong Ng, and James Cheng. 2011. Structure and a�ribute

index for approximate graph matching in large graphs. Information Systems 36,

6 (2011), 958–972.

	Abstract
	1 Introduction
	2 Intuition
	3 Related Work
	4 Data Model
	5 Problem Formulation
	6 Disjunctive Normal Form Schemes
	6.1 Background: DNF blocking schemes for tabular deduplication
	6.2 Constructive formalism for sparse edge-discovery on data graphs
	6.3 Learnability

	7 Case Study
	8 Conclusion
	References

