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ABSTRACT
�e inference of network topologies from relational data is an
important problem in data analysis. Exemplary applications in-
clude the reconstruction of social ties from data on human inter-
actions, the inference of gene co-expression networks from DNA
microarray data, or the learning of semantic relationships based
on co-occurrences of words in documents. Solving these problems
requires techniques to infer signi�cant links in noisy relational data.
In this short paper, we propose a new statistical modeling frame-
work to address this challenge. �e framework builds on generalized
hypergeometric ensembles, a class of generative stochastic models
that give rise to analytically tractable probability spaces of directed,
multi-edge graphs. We show how this framework can be used to
assess the signi�cance of links in noisy relational data. We illustrate
our method in two data sets capturing spatio-temporal proximity
relations between actors in a social system. �e results show that
our analytical framework provides a new approach to infer signif-
icant links from relational data, with interesting perspectives for
the mining of data on social systems.
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1 MOTIVATION
Advances in data sensing and collection give rise to an increasing
volume of data that capture dyadic relations between elements or
actors in social, natural, and technical systems. While it is common
to apply graph mining and network analysis to such relational data,
it is o�en questionable whether the application of these techniques
is actually justi�ed. Consider, for instance, various forms of time
series data, which not only tell us which elements of a complex
system are related but also when or in which order relations occur.
Such data give rise to temporal networks, which question the ap-
plication of widely used network-based modeling and data mining
techniques [13, 24, 26, 27, 30]. Apart from temporal information,
we o�en have access to data that capture multiple types of relations

MLG’17, Halifax, Nova Scotia - Canada, 2017.

or interactions. �e resulting multi-layer network topologies give
rise to complications that threaten standard techniques, e.g., to
infer and analyze social networks, detect community structures,
or to model and control dynamical processes in networked sys-
tems [3, 7, 16, 28, 35].

�e challenges outlined above are due to the growing availability
of additional information – such as time-stamped, sequential or
multi-dimensional relational data – which must be incorporated
into network-based techniques to model and analyze relational data.
However, we are o�en confronted with situations in which we lack
information that is needed to interpret observed relations. Consider,
for instance, data sets that capture the simultaneous presence of
two users at the same location, the joint expression of two genes in
a DNA microarray, or the co-occurrence of two words in the same
document. Each of these observed relations can either be due to
an underlying social tie, a functional relationship between genes, a
semantic link between two words, or it could simply have occurred
by mere chance. Rather than naı̂vely analyzing such data from
the perspective of graphs or networks, we should thus treat them
as noisy observations that may or may not indicate true relations
between a system’s elements.

Principled and e�cient methods to solve this network inference
problem are of major importance for the modeling and analysis of
social networks, the reconstruction of biological networks, and the
mining of semantic structures in information systems. �e prob-
lem has received signi�cant a�ention from the data mining and
machine learning community, as well as from researchers in graph
theory and network science. Especially in the la�er community, the
problem is commonly addressed using statistical ensembles, i.e., gen-
erative stochastic models of graphs that can be used for inference,
learning and modeling tasks. A common issue of these techniques
is that the underlying statistical ensembles are not analytically
tractable, thus requiring time-consuming numerical simulations
and Monte-Carlo sampling techniques.

To address this problem, in this short paper we propose gen-
eralized hypergeometric ensembles (gHypE), a novel framework of
statistical ensembles to infer signi�cant links in relational data. �e
framework can be viewed as generalization of the con�guration
model, which is commonly used to generate random graph topolo-
gies with a given sequence of node degrees. Our framework extends
this state-of-the-art graph-theoretic approach in two ways. First, it
provides analytically tractable probability spaces of directed and
undirected multi-edge graphs, eliminating the need for expensive
numerical simulations. Second, it allows to account for known
factors that in�uence the occurrence of interactions, such as known
group structures, similarities between elements, or other forms
of biases. We demonstrate our framework in two real-world data
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sets that capture spatio-temporal proximities of actors in a social
system. �e results show that our framework provides interesting
new perspectives for the mining and learning in graphs.

2 BACKGROUND AND RELATEDWORK
�e problem of inferring signi�cant links in relational data has
been addressed in a number of works. In the following, we coarsely
categorize them into three lines of research.

Applying predictive analytics techniques, a �rst set of works
studied the problem from the perspective of link prediction [17].
In [29], a supervised learning technique is used to predict types of
social ties based on unlabeled interactions. �e authors of [25] show
that tensor factorization techniques allow to infer international
relations from data that capture how o�en two countries co-occur
in news reports. In [33], a link-based latent variable model is used
to predict friendship relations using data on social interactions.

Using the special characteristics of time-stamped social interac-
tions or geographical co-occurrences, a second line of works has
additionally accounted for spatio-temporal information. Studying
data on time-stamped proximities of students at MIT campus, the
authors of [8] show that the temporal and spatial distribution of
proximity events allows to infer social ties with high accuracy. In
[5], a model that captures location diversity, regularity, intensity
and duration is used to predict social ties based on co-location
events. An entropy-based approach taking into account the diver-
sity of interactions’ locations has been used in [22].

Addressing scenarios where neither training data nor spatio-
temporal information is available, a third line of works is based
on generative models for random graphs. Such models can be used
as null models for observed dyadic interactions, which help us to
assess whether the relations between a given pair of elements occur
signi�cantly more o�en than expected. Existing works in this area
typically rely on standard modeling frameworks, such as exponen-
tial random graphs [4, 23], or the con�guration model for graphs
with given degree sequence or distribution [18]. On the one hand,
these approaches provide statistically principled network inference
and learning methods for general relational data [2, 12, 20, 32]. On
the other hand, the underlying generative models are o�en not
analytically tractable, thus requiring expensive numerical simu-
lations [20, 23]. Proposing a framework of analytically tractable
generative models for directed and undirected multi-edge graphs,
in this work we close this research gap.

3 GENERALIZED HYPERGEOMETRIC
ENSEMBLES

In the following we introduce our framework step by step. For
this, let us �rst consider a data set consisting of repeated dyadic
interactions (i, j ), which have been observed between two nodes
i and j. Such a data set can be represented as a multi-edge, or
weighted, network G = (V ,E), where V is a set of n nodes, and
E ⊆ V × V is a multi-set of (directed or undirected) edges. Let
us further de�ne an adjacency matrix Â, where entries Âi j ∈ N0
capture theweight of an edge (i, j ) ∈ V×V , i.e., the multiplicity of an
edge (i, j ) in the multi-set E. For each node i ∈ V we further de�ne
the (weighted) in-degree k̂in (i ) :=

∑
j ∈V Âji and the (weighted)

out-degree k̂out (i ) :=
∑
j ∈V Âi j .

Rather than directly applying graph mining and learning tech-
niques to such a weighted graph G, in the following we are in-
terested in a crucial question: Which of the links between nodes
are signi�cant, i.e., which of the observed weights Ai j go beyond
what is expected at random, given (i) the total number of observed
interactions, and (ii) the number of times individual nodes engage
in interactions? To answer this question, we take the common
approach of de�ning a stochastic model that generates a so-called
statistical ensemble, i.e., a probability space of graphs. Di�erent
from existing approaches, where link weights are assumed to be
continuous (e.g. [1, 6]), we are interested in a statistical ensemble
that (i) can handle directed and multi-edge graphs, (ii) is analyti-
cally tractable, and (iii) thus allows us to assess the signi�cance of
links in a theoretically principled way.

Our construction of a statistical ensemble follows the general
idea of the Molloy-Reed con�guration model, which is to randomly
shu�e the topology of a given network G while preserving the
observed node degrees. For this, the con�guration model generates
edges between randomly sampled pairs of nodes in such a way that
the exact observed degrees of all nodes are preserved. Di�erent from
this approach, we assume a sampling ofm multi-edges such that the
sequence of expected degrees of nodes is preserved. For this, for each
pair of nodes i and j, we �rst de�ne the maximum number Ξi j of
multi-edges that can possibly exist between nodes i and j as Ξi j :=
k̂out (i )k̂in (j ) (cf. [15, 19]). �e maximally possible numbers of links
between all pairs of nodes can then be conveniently represented in
matrix form as Ξ :=

(
Ξi j

)
i, j ∈V

.
Our statistical ensemble is then de�ned by the following sam-

pling procedure: For each pair of nodes i, j, we sample edges from
a set of Ξi j possible multi-edges uniformly at random. �is can be
viewed as an urn problem [14] where the edges to be sampled are
represented by balls in an urn. By representing edges connecting
di�erent pairs of nodes (i, j ) as balls having n2 = |V ×V | di�erent
colours, we obtain an urn with a total of M =

∑
i, j Ξi j di�erently

colored balls. With this, the sampling of a network according to our
model corresponds to drawing exactly m balls from this urn. Each
adjacency matrix A, with entries Ai j such that

∑
i, j Ai j =m, corre-

sponds to one particular realization drawn from this ensemble. �e
probability to draw exactly A = {Ai j }i, j ∈V edges between each pair
of nodes is given by the multivariate hypergeometric distribution 1

Pr(A) =

(
M

m

)−1 ∏
i, j

(
Ξi j
Ai j

)
. (1)

For each pair of nodes i, j ∈ V , the probability to draw ex-
actly Âi j edges between i and j is given by the marginal distri-
butions of the multivariate hypergeometric distribution. We thus
arrive at a hypergeometric statistical ensemble, which (i) general-
izes the con�guration model to directed, multi-edge graphs, (ii)
has a �xed sequence of expected degrees, and (iii) is analytically
tractable. Moreover, it provides a framework to generalize other
random graph models like, e.g., the multi-edge version of the Erdös-
Rényi model [10], where only n andm are �xed, while there are no

1Note that we do not distinguish between the n ×n adjacency matrix A and the n2 × 1
vector obtained by stacking.
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constraints on the degree sequence. �is corresponds to a de�ni-
tion of Ξ with Ξi j = m2/n2 = const. which directly results from
〈kin (i )〉 = 〈kout (i )〉 =m/n.

�e sampling procedure above gives a stochastic model for
weighted, directed graph in which (i) the expected weighted in- and
out-degree sequence is �xed, and (ii) interactions between nodes
are generated at random. �is provides a null model in which the
probability for a particular pair of nodes to be connected by an edge
is only in�uenced by combinatorial e�ects, and thus only depends
on the node degrees. For scenarios where we have additional in-
formation on factors that in�uence the formation of edges, we can
further generalize the ensemble above as follows: We introduce
a matrix Ω whose entries Ωi j capture relative dyadic propensities,
i.e., the tendency of a node i to form an edge speci�cally to node j.
�ese propensities Ωi j bias the edge sampling process described
above. �is implies that entry Ωi j only captures the propensity
that goes beyond the tendency of a node i to connect to a node j
that is due to combinatorial e�ects, i.e., the in-degree of j and the
out-degree of i . In analogy to the urn model, here a biased sam-
pling implies that the probability of drawing balls of a given color
(representing all possible edges between a given pair of nodes) does
not only depend on their number but also on the respective relative
propensities. �e probability distribution resulting from such a
biased sampling process is given by the multivariate Wallenius’
non-central hypergeometric distribution [11, 31]:

Pr(A) =



∏
i, j

(
Ξi j
Ai j

)

∫ 1

0

∏
i, j

(
1 − z

Ωi j
SΩ

)Ai j
dz (2)

with SΩ =
∑
i, j Ωi j (Ξi j −Ai j ).

Similar to the unbiased sampling described above,the probability
to observe a particular number Âi j of edges between a pair of nodes
i and j can again be calculated from the marginal distribution as

Pr(Ai j = Âi j ) =

(
Ξi j

Âi j

) (
M − Ξi j

m − Âi j

)
·

∫ 1

0

[

(
1 − z

Ωi j
SΩ

)Âi j
*
,
1 − z

Ω̄\(i, j )
SΩ +

-

m−Âi j ]
dz

(3)

where Ω̄\(i, j ) = (M − Ξi j )
−1 ∑

(l,m)∈V×V \(i, j ) ΞlmΩlm .
Note that for the special case of a uniform dyadic propensity ma-

trix Ω ≡ const, we recover Eq. 1 for the unbiased case, i.e., where all
dyadic propensities are identical. We thus obtain a general frame-
work of statistical ensembles which (i) allows to encode arbitrary
a priori tendencies of nodes to interact, and (ii) provides an ana-
lytical expression for the probability to observe a given number of
interactions between any pair of nodes.

4 INFERRING SIGNIFICANT SOCIAL TIES
In the following, we demonstrate how our framework can be used
to infer signi�cant links in two relational data sets. (RM) cap-
tures time-stamped proximities between students and faculty at
MIT [9] recorded via smart devices. (ZKC) covers frequencies of
self-reported encounters between members of a university Karate
club collected by Wayne Zachary [34]. We denote the weighted
adjacency matrix capturing observed dyadic interactions as Â. For
a given signi�cance threshold α , we then identify signi�cant links

by �ltering matrix Â by a threshold Pr(Ai j ≤ Âi j ) > 1 − α based
on Eq. 3. �is can be seen as assigning p-values to dyads (i, j ), ob-
taining a high-pass noise �lter for entries in the adjacency matrix.

To illustrate our approach, Figure 1(a) shows the entries of the
(original) adjacency matrix A for (RM). �e high-pass noise �lter
resulting from our methodology (using α = 0.01) is shown in Fig-
ure 1(c), where black entries correspond to pairs of nodes with
non-signi�cant links. �e application of this �lter to the original
matrix yields the noise-�ltered matrix shown in Fig. 1(e). While in
the full network there are 721, 889 observed multi-edges amounting
to 2, 952 distinct links, a�er �ltering there are 626 (21.2%) signif-
icant links le� (617, 069 multi-edges, 85.5% of the original). We
validate the bene�t of �ltering the original interactions in (RM) by
comparing the output of a standard community detection algorithm
– the degree-corrected block model [21] – in (i) the original, un�l-
tered graph shown in Fig. 1(b), and (ii) the �ltered, signi�cant graph
shown in Fig 1(f). Using known classes of students and a�liations
of sta� members as ground truth allows us to compare the quality
of the community detection. Figure 1(d) shows the set overlaps be-
tween the ground truth labels (middle row) and detected partitions
in the un�ltered (top row) and �ltered graph (bo�om row). Due to
the high number of non-signi�cant links in the un�ltered graph,
the algorithm only detects three partitions, each spanning multiple
labs and classes. In contrast, applying the algorithm to the �ltered
graph yields six partitions that be�er capture the ground truth lab
and class structure (cf. Fig. 1(d)). As expected, detected partitions do
not perfectly correspond to the ground truth, since labs and classes
are likely not the only driving force behind observed proximities.

A major advantage of gHypEs is that, by specifying a non-
uniform matrix Ω, we can additionally encode known factors that
in�uence the occurrence of interactions between nodes, while still
obtaining an analytically tractable ensemble. In our second illus-
trative example, we use this to encode the known structure of two
separate Karate classes in the (ZKC) data. �ese two classes natu-
rally in�uence the frequency of encounters between actors beyond
what would be expected “at random”. We incorporate this prior
knowledge via a block matrix Ω that assigns higher dyadic propen-
sities to pairs of actors in the same class (cf. [3]). �is approach
allows to establish a “random baseline” accounting both (i) for com-
binatorial e�ects due to heterogeneous node degrees, and (ii) the
known group structure in the data. Using a signi�cance threshold
of α = 0.01, for (ZKC) this yields the striking result that only 8
out of 78 observed links are signi�cant (∼ 90% of 231 observed
multi-edges are �ltered out, cf. �g. 2). In other words, taking into
account the partitioning of members in two classes for (ZKC) almost
all encounters between club members can simply be explained by
random e�ects. Figure 2 compares the original weighted network,
illustrated in �g. 2(a), and the �ltered network, in �g. 2(b).

5 CONCLUSION
In this short paper we introduce gHypEs, a broad class of statistical
ensembles of graphs that can be used to infer signi�cant links from
noisy data. Our work makes three important contributions: First,
we provide an analytically tractable statistical model of directed and
undirected multi-edge graphs that can be used for inference and
learning tasks. Second, the formulation of our ensemble highlights
a – to the best of our knowledge – previously unknown relation



MLG’17, August 13–17, Halifax, Nova Scotia - Canada Giona Casiraghi, Vahan Nanumyan, Ingo Scholtes, and Frank Schweitzer

0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192

node index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

no
de

 in
de

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g1

0(
1+

A i
j)

(a) un�ltered weighted adjacency ma-
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tom row) graph

0 1 2 3 4 5 6 7 8 91011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192

node index

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

no
de

 in
de

x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g1

0(
1+

 n
um

be
r o

f l
in

ks
)
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Figure 1: Illustration of our approach in the (RM) data set
capturing proximity of students and sta� at MIT campus.
For the observed weighted adjacency matrix (a) and a given
signi�cance threshold, our framework allows to establish a
high-pass noise �lter matrix (c), which can be used to obtain
a �ltered adjacencymatrix containing only signi�cant links
(e). A visual comparison of the output of a community de-
tection algorithmon the un�ltered (b) and �ltered (f) graphs
shows that detected partitions in the �ltered one better cor-
respond to ground truth lab a�liations and classes (d).

between random graph theory and Wallenius‘ non-central hyperge-
ometric distribution. And �nally, di�erent from existing statistical
ensembles such as, e.g., the con�guration model, our framework
can be used to encode prior knowledge on factors that in�uence the
formation of relations. �is �exible approach allows for a tuning

of the “random baseline”, opening perspectives for a statistically
principled network inference that accounts for e�ects that are not
purely random. We thus argue that our work advances the theoret-
ical foundation for the mining of relational data on social systems.
It further highlights that principled model selection and hypothesis
testing are crucial prerequisites that should precede the application
of network-based data mining and modeling techniques.
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Figure 2: Observed (a) and �ltered (b) weighted graphs for
the (ZKC) data set, capturing encounters between members
of a Karate club. �e �ltered graph shows that most of the
observed encounters can be explained by random e�ects re-
sulting from the club members’ separation into two classes.
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