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ABSTRACT
We present HARP, a novel method for learning low dimensional

embeddings of a graph’s nodes which preserves higher-order struc-

tural features. Our proposed method achieves this by compressing

the input graph prior to embedding it, e�ectively avoiding trouble-

some embedding con�gurations (i.e. local minima) which can pose

problems to non-convex optimization.

HARP works by �nding a smaller graph which approximates the

global structure of its input. This simpli�ed graph is used to learn

a set of initial representations, which serve as good initializations

for learning representations in the original, detailed graph. We

inductively extend this idea, by decomposing a graph in a series of

levels, and then embed the hierarchy of graphs from the coarsest

one to the original graph.

HARP is a general meta-strategy to improve all of the state-of-

the-art neural algorithms for embedding graphs, including Deep-
Walk, LINE, and Node2vec. Indeed, we demonstrate that applying

HARP’s hierarchical paradigm yields improved implementations

for all three of these methods, as evaluated on classi�cation tasks on

real-world graphs such as DBLP, BlogCatalog, and CiteSeer, where

we achieve a performance gain over the original implementations

by up to 14% Macro F1.
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1 INTRODUCTION
From social networks to the World Wide Web, graphs are a ubiqui-

tous way to organize a diverse set of real-world information. Given

a network’s structure, it is often desirable to predict missing infor-

mation (frequently called attributes or labels) associated with each

node in the graph. This missing information can represent a variety

of aspects of the data – for example, on a social network they could
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(a) Can_187 (b) LINE (c) HARP

(d) Poisson 2D (e) LINE (f) HARP

Figure 1: Comparison of two-dimensional embeddings from
LINE and our proposed method, for two distinct graphs. Ob-
serve how HARP’s embedding better preserves the higher
order structure of a ring and a plane.

represent the communities a person belongs to, or the categories

of a document’s content on the web.

Because many information networks can contain billions of

nodes and edges, it can be intractable to perform complex inference

procedures on the entire network. One technique which has been

proposed to address this problem is dimensionality reduction. The

central idea is to �nd a mapping function which converts each node

in the graph to a low-dimensional latent representation. These

representations can then be used as features for common tasks

on graphs such as multi-label classi�cation, clustering, and link

prediction.

Traditional methods for graph dimensionality reduction [2, 15,

19] perform well on small graphs. However, the time complexity of

these methods are at least quadratic in the number of graph nodes,

makes them impossible to run on large-scale networks.

A recent advancement in graph representation learning, Deep-

Walk [13] proposed online learning methods using neural networks

to address this scalability limitation. Much work has since followed

[3, 8, 14, 17]. These neural network-based methods have proven

both highly scalable and performant, achieving strong results on

classi�cation and link prediction tasks in large networks.
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Despite their success, all these methods have several shared

weaknesses. Firstly, they are all local approaches – limited to the

structure immediately around a node. DeepWalk [13] and Node2vec

[8] adopt short random walks to explore the local neighborhoods of

nodes, while LINE [17] is concerned with even closer relationships

(nodes at most two hops away). This focus on local structure im-

plicitly ignores long-distance global relationships, and the learned

representations can fail to uncover important global structural pat-

terns. Secondly, they all rely on a non-convex optimization goal

solved using stochastic gradient descent [7, 11] which can become

stuck in a local minima (e.g. perhaps as a result of a poor initial-

ization). In other words, all previously proposed techniques for

graph representation learning can accidentally learn embedding

con�gurations which disregard important structural features of

their input graph.

In this work, we propose HARP, a meta strategy for embedding

graph datasets which preserves higher-order structural features.

HARP recursively coalesces the nodes and edges in the original

graph to get a series of successively smaller graphs with similar

structure. These coalesced graphs, each with a di�erent granularity,

provide us a view of the original graph’s global structure. Starting

from the most simpli�ed form, each graph is used to learn a set

of initial representations which serve as good initializations for

embedding the next, more detailed graph. This process is repeated

until we get an embedding for each node in the original graph.

We illustrate the e�ectiveness of this multilevel paradigm in

Figure 1, by visualizing the two-dimension embeddings from an

existing method (LINE [17]) and our improvement to it,HARP(LINE).
Each of the small graphs we consider has an obvious global structure

(that of a ring (1a) and a grid (1d)) which is easily exposed by a force

direced layout [9]. The center �gures represent the two-dimensional

embedding obtained by LINE for the ring (1b) and grid (1e). In these

embeddings, the global structure is lost (i.e. that is, the ring and

plane are unidenti�able). However, the embeddings produced by

using our meta-strategy to improve LINE (right) clearly capture

both the local and global structure of the given graphs (1c, 1f).

Our contributions are the following:

• NewRepresentationLearningParadigm.We proposeHARP,

a novel multilevel paradigm for graph representation which

seamlessly blends ideas from the graph drawing [6] and graph

representation learning [8, 13, 17] communities to build sub-

stantially better graph embeddings.

• Improved Optimization Primitives. We introduce the Mul-

tilevel Hierarchical Softmax, and Multilevel Negative Sampling.

Our improvements on these popular methods for learning la-

tent representations illustrate the broad applicability of our

hierarchical approach. We demonstrate that our approach leads

to improved implementations of all state-of-the-art graph rep-

resentation learning methods, namely DeepWalk (DW), LINE
and Node2vec (N2V).

• Better Embeddings for Downstream Tasks. We demon-

strate that our HARP(DW), HARP(LINE) and HARP(N2V) em-

beddings consistently outperform the originals on multi-label

classi�cation tasks on several real-world networks, with im-

provements as large as 14% Macro F1.

2 PROBLEM FORMULATION
We desire to learn latent representations of nodes in a graph. For-

mally, letG = (V ,E) be a graph, whereV is the set of nodes and E is

the set of edges. The goal of graph representation learning is to de-

velop a mapping function Φ : V 7→ R |V |×d ,d � |V |. This mapping

Φ de�nes the latent representation (or embedding) of each node

v ∈ V . Popular methods for learning the parameters of Φ [8, 13, 17]

su�er from two main disadvantages: (1) higher-order graph struc-

tural information is not modeled, and (2) their stochastic optimiza-

tion can fall victim to poor initialization.

In light of these di�culties, we introduce the hierarchical repre-
sentation learning problem for graphs. At its core, we seek to �nd

a graph, Gs = (Vs ,Es ) which captures the essential structure of G,

but is smaller than our original (i.e. |Vs | << |V |, |Es | << |E |). It is

likely that Gs will be easier to embed for two reasons. First, there

are many less pairwise relationships (|Vs |
2

versus |V |2) which can

be expressed in the space. As the sample space shrinks, there is less

variation in training examples – this can yield a smoother objective

function which is easier to optimize. Second, the diameter of Gs
may be smaller than G , so algorithms with a local focus can exploit

the graph’s global structure.

In summary, we de�ne the hierarchical representation learning

problem in graphs as follows:

Given a large graph G (V ,E) and a function f , which embeds

G using initialization θ , f : G × θ 7→ ΦG ,

SimplifyG to a series of successively smaller graphsG0 . . .GL ,

Learn a coarse embedding ΦGL = f (GL , ∅),
Re�ne the coarse embedding into ΦG by iteratively applying

ΦGi = f (Gi ,ΦGi+1 ), 0 ≤ i < L.

3 METHOD
Here we present our hierarchical paradigm for graph representa-

tion learning. After discussing the method in general, we present

a structure-preserving algorithm for its most crucial step, graph

coarsening.

3.1 Algorithm: HARP
Our method for multi-level graph representation learning, HARP,

is presented in Algorithm 1. It consists of three parts - graph coars-

ening, graph embedding, and representation re�nement - which

we detail below:

(1) Graph Coarsening (line 1): Given a graph G, graph coarsening

algorithms create a hierarchy of successively smaller graphs

G0,G1, · · · ,GL , where G0 = G. The coarser (smaller) graphs

preserve the global structure of the original graph, yet have

signi�cantly fewer nodes and edges. Algorithms for generating

this hierarchy of graphs are discussed in Section 3.2.

(2) Graph Embedding on the Coarsest Graph (line 2-3): The graph

embedding is obtained on the coarsest graph GL with the pro-

vided graph embedding algorithm. As the size of GL is usually

very small, it is much easier to get a high-quality graph repre-

sentation.

(3) Graph Representation Prolongation and Re�nement (line 4-7): We

prolong and re�ne the graph representation from the coarsest

to the �nest graph. For each graph Gi , we prolong the graph

representation of Gi+1 as its initial embedding Φ′Gi
. Then, the
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(a) Edge Collapsing. (b) Edge Collapsing fails to collapse stars. (c) Star Collapsing.

Figure 2: Illustration of graph coarsening algorithms. 2a: Edge collapsing on a graph snippet. 2b: How edge collapsing fails to
coalesce star-like structures. 2c: How star collapsing scheme coalesces the same graph snippet e�ciently.

Algorithm 1 HARP(G,Embed (), Prolonдate ())

Input:
graph G (V ,E)
arbitrary graph embedding algorithm Embed()
embedding prolongation algorithm Prolongate()

Output: matrix of vertex representations Φ ∈ R |V |×d

1: G0,G1, · · · ,GL ← GraphCoarsening(G )
2: Initialize Φ′GL

by assigning zeros

3: ΦGL ← Embed(GL ,Φ
′
GL

)

4: for i = L − 1 to 0 do
5: Φ′Gi

← Prolongate(ΦGi+1 ,Gi+1,Gi )

6: ΦGi ← Embed(Gi ,Φ
′
Gi

)

7: end for
8: return ΦG0

Algorithm 2 GraphCoarsening(G)

Input: graph G (V ,E)
Output: Series of Coarsened Graphs G0,G1, · · · ,GL

L ← 0

G0 ← G
while |VL | ≥ threshold do

L ← L + 1
GL ← EdgeCollapsing(StarCollapsing(G ))

end while
return G0,G1, · · · ,GL

embedding algorithm Embed () is applied to (Gi ,Φ
′
Gi

) to further

re�ne Φ′Gi
, resulting in the re�ned embedding ΦGi . We discuss

this step in detail in Section 4.

(4) Graph Embedding of the Original Graph (line 8): We return ΦG0
,

which is the graph embedding of the original graph.

We can easily see that this paradigm is algorithm independent,

relying only on the provided functions Embed () and Prolonдate ().
Thus, with minimum e�ort, this paradigm can be incorporated into

any existing graph representation learning methods, yielding a

multilevel version of that method.

3.2 Graph Coarsening
In Algorithm 2, we develop a hybrid graph coarsening scheme

which preserves global graph structural information at di�erent

scales. Its two key parts, namely edge collapsing and star collapsing,

preserve �rst-order proximity and second-order proximity [17] re-

spectively. First-order proximity is concerned with preserving the

observed edges in the input graph, while second-order proximity

is based on the shared neighborhood structure of the nodes.

Edge Collapsing. Edge collapsing [9] is an e�cient algorithm

for preserving �rst-order proximity. It selects E ′ ⊆ E, such that

no two edges in E ′ are incident to the same vertex. Then, for each

(ui ,vi ) ∈ E ′, it merges (ui ,vi ) into a single node wi , and merge

the edges incident to ui and vi . The number of nodes in the coarser

graph is therefore at least half of that in the original graph. As

illustrated in Figure 2a, the edge collapsing algorithm merges node

pairs (v1,v2) and (v3,v4) into supernodesv1,2 andv3,4 respectively,

resulting in a coarser graph with 2 nodes and 1 edge. The order

of merging is arbitrary; we �nd di�erent merging orders result in

very similar node embeddings in practice.

Star Collapsing. Real world graphs are often scale-free, which

means they contain a large number of star-like structures. A star

consists of a popular central node (sometimes referred to as hubs)
connected to many peripheral nodes. Although the edge collapsing

algorithm is simple and e�cient, it cannot su�ciently compress

the star-like structures in a graph. Consider the graph snippet in

Figure 2b, where the only central node v7 connects to all the other

nodes. Assume the degree of the central node is k , it is clear that

the edge collapsing scheme can only compress this graph into

a coarsened graph with k − 1 nodes. Therefore when k is large,

the coarsening process could be arbitrarily slow, takes O (k ) steps

instead of O (logk ) steps.

One observation on the star structure is that there are strong

second-order similarities between the peripheral nodes since they

share the same neighborhood. This leads to our star collapsing

scheme, which merges nodes with the same neighbors into supern-

odes since they are similar to each other. As shown in Figure 2c,

(v1,v2), (v3,v4) and (v5,v6) are merged into supernodes as they

share the same neighbors (v7), generating a coarsened graph with

only k/2 nodes.

Hybrid Coarsening Scheme. By combining edge collapsing

and star collapsing, we present a hybrid scheme for graph coars-

ening in Algorithm 2, which is adopted on all test graphs. In each

coarsening step, the hybrid coarsening scheme �rst decomposes the

input graph with star collapsing, then adopts the edge collapsing

scheme to generate the coalesced graph. We repeat this process

until a small enough graph (with less than 100 vertices) is obtained.

4 USE CASE: THE SKIP-GRAMMODEL
In this section, we discuss the application of HARP to a speci�c

class of representation learning models (without loss of generality).

First, we describe the Skip-gram model’s details in Section 4.1, since

it is the basis of many previous graph representation learning algo-

rithms, such as DeepWalk, LINE and Node2vec. Next, we present
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Algorithm 3 ProlongateMHS (Gi+1,ΦGi+1 ,Bi+1,Gi )

Input:
the coarser graph Gi+1
node representations ΦGi+1 of Gi+1
hierarchical softmax tree Bi+1 of Gi+1
the �ner graph Gi

Output: node representations ΦGi prolonged from ΦGi+1

1: M ← GetNodeMappings(Gi+1,Gi )
2: Bi ← Bi+1
3: for v ∈ Gi+1 do
4: ExtendSubTree(Bi+1,v,Bi ,M (v ))
5: for u ∈ M (v ) do
6: ΦGi (u) ← ΦGi+1 (v )
7: end for
8: end for
9: return ΦGi

our improvements to its two popular optimization strategies: the

Multilevel Hierarchical Softmax (Section 4.2) and Multilevel Nega-

tive Sampling (Section 4.3).

4.1 Model Details
Skip-gram is a probabilistic model which has been extended to learn

node representations in a graph [13]. Given a node v ∈ G , the Skip-

gram model maximizes the probability of generating its context

nodes C (v ). The de�nition of context nodes varies with di�erent

graph representation learning algorithms. For random walk-based

algorithms like DeepWalk and Node2vec, C (v ) is de�ned as the

nodes within window size w of v in a truncated random walk. For

LINE �rst order,C (v ) is simply the nodes adjacent tov . Speci�cally,

the Skip-gram model minimizes the following objective:

J = −
∑

u ∈C (v )

loд Pr (u |v ) (1)

Where Pr (u |v ) is de�ned by the softmax function:

Pr (u |v ) =
exp (Φ(u) · Φ′(v ))∑

u ∈V exp (Φ(u) · Φ′(v ))
(2)

Here Φ′(v ) is the representation of v when served as the context

node. However, calculating the denominator requires the probabil-

ity summation over all vertices, which is computationally expensive.

To solve this problem, two strategies for faster model optimization

have been proposed: the hierarchical softmax and negative sam-

pling [7]. The hierarchical softmax creates a Hu�man tree, where

each leaf node corresponds to a node in the original graph. Then,

it learns a binary classi�er on each inner node of the binary tree

to maximize the probability of reaching the desired leaf node. This

reduces the time complexity of calculating the denominator from

O ( |V |) to O (loд |V |). This approach is used by DeepWalk [13]. The

negative sampling method �rst constructs negative edges which do

not exist in the graph. Then, it jointly minimizes the probability of

generating negative samples and maximizes the probability of gen-

erating samples in the training data. This is the approach adopted

by LINE [17] and Node2vec [8].

Figure 3: Visualization of ExtendSubTree ().

4.2 Multilevel Hierarchical Softmax
In our paradigm, a graph embedding method requires a Prolonдate ()
function - an approach for extending representations from a coarse

graph to a �ner one. Here we detail one such function for the

hierarchical softmax.

Our prolongation scheme, the Multilevel Hierarchical Softmax,

is presented in Algorithm 3. In line 1, the node mappings M from

each node in Gi+1 to a list of nodes in Gi is obtained. Then, the

binary hierarchical softmax tree Bi+1 is copied to Bi (line 2), and

further extended (lines 3-8). Speci�cally, each node v ∈ Gi+1 is

merged from a list of nodesM (v ) inGi . Thus, we call the subroutine

ExtendSubTree () to extend node Bi+1 (v ) to a subtree consisting of

nodes in M (v ). Finally, node representation of v is copied to each

u ∈ M (v ) (line 6). Figure 3 shows an example of this process. In the

graph coarsening phase, (v3,v4) and (v5,v6) are merged into v3,4
and v5,6 respectively. Thus, ExtendSubTree () splits B2 (v3,4) to a

subtree consisting of B1 (v3),B1 (v4) and an inner node. The repre-

sentation of v3 and v4 are both initialized with the representation

of v3,4. For B2 (v5,6) it is the same.

4.3 Multilevel Negative Sampling
Negative sampling is an alternate method to hierarchical softmax

for speeding up Skip-gram. The representation prolongation for

Skip-gram with negative sampling is simpler than that for the

hierarchical softmax, but we sketch it here for completeness.

After the graph representation for Gi+1 is learned, we prolong it

into the initial representation for Gi . We observe that each node

v ∈ Gi+1 is either a member of the �ner representation (v ∈ Gi ),

or the result of a merger, (v1,v2, · · · ,vk ) ∈ Gi . In both cases, we

can simply reuse the representation of the parent node v ∈ Gi - the

children are quickly separated by gradient updates.

4.4 Complexity Analysis
In this section, we discuss the time complexity of HARP(DW) and

HARP(LINE) and compare with the time complexity of DeepWalk
and LINE respectively. HARP(N2V) has the same time complexity

as HARP(DW), thus it is not included in the discussion below.

HARP(DW): The time complexity of DeepWalk is linear to the

number of nodes in the graph and the number of walks γ , which

is O (γ |V |). For HARP(DW), coarsening a graph with |V | nodes

produces a coarser graph with about |V |/2 nodes. The total number

of nodes in all levels is approximately |V |
∑loд2 |V |
i=0 ( 1

2
)i = 2|V |.

Therefore, the time complexity is O ( |V |) for copying binary tree

andO (γ |V |) for random walking. Thus, the overall time complexity

of HARP(DW) is also O (γ |V |).
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Name DBLP Blogcatalog CiteSeer

# Vertices 29,199 10,312 3,312

# Edges 133,664 333,983 4,732

# Classes 4 39 6

Task Classi�cation Classi�cation Classi�cation

Table 1: Statistics of the graphs used in our experiments.

HARP(LINE): The time complexity of LINE is linear to the number

of edges in the graph and the number of iterations r over edges,

which is O (r |E |). For HARP(LINE), coarsening a graph with |E |
nodes produces a coarsened graph with about |E |/2 edges. The total

number edges in all levels is approximately |E |
∑loд2 |E |
i=0 ( 1

2
)i = 2|E |.

Thus, the time complexity of HARP(LINE) is also O (r |E |).

5 EXPERIMENT
In this section, we provide an overview of the datasets and methods

used for experiments and evaluate the e�ectiveness of our method

on challenging multi-label classi�cation tasks in several real-life

networks. We further illustrate the scalability of our method and

discuss its performance with regard to several important parame-

ters.

5.1 Datasets
Table 1 gives an overview of the datasets used in our experiments.

• DBLP [14] – DBLP is a co-author graph of researchers in

computer science. The labels indicate the research areas a re-

searcher publishes his work in. The 4 research areas included

in this dataset are DB, DM, IR, and ML.

• BlogCatalog [18] – BlogCatalog is a network of social relation-

ships between users on the BlogCatalog website. The labels

represent the categories a blogger publishes in.

• CiteSeer [16] – CiteSeer is a citation network between publica-

tions in computer science. The labels indicate the research areas

a paper belongs to. The papers are classi�ed into 6 categories:

Agents, AI, DB, IR, ML, and HCI.

5.2 Baseline Methods
We compare our model with the following graph embedding meth-

ods:

• DeepWalk — DeepWalk is a two-phase method for embedding

graphs. Firstly, DeepWalk generates random walks of �xed

length from all the vertices of a graph. Then, the walks are

treated as sentences in a language model and the Skip-Gram

model for learning word embeddings is utilized to obtain graph

embeddings. DeepWalk uses hierarchical softmax for Skip-gram

model optimization.

• LINE — LINE is a method for embedding large-scale networks.

The objective function of LINE is designed for preserving both

�rst-order and second-order proximities, and we use �rst-order

LINE for comparison. Skip-gram with negative sampling is used

to solve the objective function.

• Node2vec — Node2vec proposes an improvement to the random

walk phase of DeepWalk. By introducing the return parameter

p and the in-out parameter q, Node2vec combines DFS-like

and BFS-like neighborhood exploration. Node2vec also uses

negative sampling for optimizing the Skip-gram model.

0 2 4 6 8
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0.2

0.4

0.6
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(a) DBLP
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(b) BlogCatalog
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(c) CiteSeer

Figure 4: The ratio of nodes/edges of the coarsened graphs to
that of the original test graphs. For disconnected graphs, the
graph coarsening result on the largest connected component
is shown.

For each baseline method, we combine it with HARP and compare

their performance.

5.3 Parameter Settings
Here we discuss the parameter settings for our models and baseline

models. Since DeepWalk, LINE and Node2vec are all sampling based

algorithms, we always ensure that the total number of samples seen

by the baseline algorithm is the same as that of the corresponding

HARP enhanced algorithm.

DeepWalk. For DeepWalk and HARP(DW), we need to set the

following parameters: the number of random walks γ , walk length

t , window sizew for the Skip-gram model and representation size d .

In HARP(DW), the parameter setting is γ = 40, t = 10,w = 10,d =
128. For DeepWalk, all the parameters except γ are the same as in

HARP(DW). Speci�cally, to ensure a fair comparison, we increase

the value of γ for DeepWalk. This gives DeepWalk a larger training

dataset (as large as all of the levels of HARP(DW) combined). We

note that failure to increase γ in this way resulted in substantially

worse DeepWalk (and Node2vec) models.

LINE. For HARP(LINE), we run 50 iterations on all graph edges

on all coarsening levels. For LINE, we increase the number of itera-

tions over graph edges accordingly, so that the amount of training

data for both models remain the same. The representation size d is

set to 64 for both LINE and HARP(LINE).
Node2vec. For HARP(N2V), the parameter setting is γ = 40, t =

10,w = 10,d = 128. Similar to DeepWalk, we increase the value of γ
in Node2vec to ensure a fair comparison. We use Node2vec in an un-

supervised way by setting both in-out and return hyperparameters

to 1.0.

For all models, the initial learning rate and �nal learning rate

are set to 0.025 and 0.001 respectively.

5.4 Graph Coarsening
Figure 4 demonstrates the e�ect of our hybrid coarsening method

on all test graphs. The �rst step of graph coarsening for each graph

eliminates about half the nodes, but the number of edges only

reduce by about 10% for BlogCatalog. This illustrates the di�culty

of coarsening real-world graphs. However, as the graph coarsening

process continues, the scale of all graphs drastically decrease. At

level 8, all graphs have less than 10% nodes and edges left.

5.5 Visualization
To show the intuition of the HARP paradigm, we set d = 2, and

visualize the graph representation generated by HARP(LINE) at

each level. Figure 5 shows the level-wise 2D graph embeddings
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(a) Level 7 (b) Level 6 (c) Level 5

(d) Level 4 (e) Level 3 (f) Level 2

(g) Level 1 (h) Level 0 (i) Input

Figure 5: Two-dimensional embeddings generated with
HARP(LINE) on di�erent coarsening levels on Poisson 2D.
Level 7 denotes the smallest graph, while level 0 denotes the
original graph. The last sub�gure is the graph layout gener-
ated by a force-direct graph drawing algorithm.

obtained with HARP(LINE) on Poisson 2D. The graph layout of level

5 (which has only 21 nodes) already highly resembles the layout of

the original graph. The graph layout on each subsequent level is

initialized with the prolongation of the previous graph layout, thus

the global structure is kept.

5.6 Multi-label Classi�cation
We evaluate our method using the same experimental procedure in

[13]. Firstly, we obtain the graph embeddings of the input graph.

Then, a portion (TR ) of nodes along with their labels are randomly

sampled from the graph as training data, and the task is to predict

the labels for the remaining nodes. We train a one-vs-rest logistic

regression model with L2 regularization on the graph embeddings

for prediction. The logistic regression model is implemented by

LibLinear [5]. To ensure the reliability of our experiment, the above

process is repeated for 10 times, and the average Macro F1 score

is reported. The other evaluation metrics such as Micro F1 score

and accuracy follow the same trend as Macro F1 score, thus are not

shown.

Table 2 reports the Macro F1 scores achieved on DBLP, BlogCat-
alog, and CiteSeer with 5%, 50%, and 5% labeled nodes respectively.

The number of class labels of BlogCatalog is about 10 times that of

the other two graphs, thus we use a larger portion of labeled nodes.

We can see that our method improves all existing neural embedding

techniques on all test graphs. In DBLP, the improvements intro-

duced by HARP(DW), HARP(LINE) and HARP(N2V) are 7.8%, 3.0%

and 0.3% respectively. Given the scale-free nature of BlogCatalog,

graph coarsening is much harder due to a large amount of star-

like structures in it. Still, HARP(DW), HARP(LINE) and HARP(N2V)
achieve gains of 4.0%, 4.6% and 4.7% over the corresponding baseline

methods respectively. For CiteSeer, the performance improvement is

Algorithm Dataset
DBLP BlogCatalog CiteSeer

DeepWalk 57.29 24.88 42.72

HARP(DW) 61.76∗ 25.90∗ 44.78∗

Gain of HARP[%] 7.8 4.0 4.8

LINE 57.76 22.43 37.11

HARP(LINE) 59.51∗ 23.47∗ 42.95∗

Gain of HARP[%] 3.0 4.6 13.6

Node2vec 62.64 23.55 44.84

HARP(N2V) 62.80 24.66∗ 46.08∗

Gain of HARP[%] 0.3 4.7 2.8

Table 2: Macro F1 scores and performance gain of HARP
on DBLP, BlogCatalog, and CiteSeer in percentage. * indi-
cates statistically superior performance to the correspond-
ing baselinemethod at level of 0.001 using a standard paired
t-test. Our method improves all existing neural embedding
techniques.

also striking: HARP(DW), HARP(LINE) and HARP(N2V) outperforms

the baseline methods by 4.8%, 13.6%, and 2.8%.

To have a detailed comparison between HARP and the baseline

methods, we vary the portion of labeled nodes for classi�cation,

and present the macro F1 scores in Figure 6. We can observe that

HARP(DW), HARP(LINE) and HARP(N2V) consistently perform bet-

ter than the corresponding baseline methods.

DBLP. In DBLP, the relative gain of HARP(DW) is over 9% with

4% labeled data. With only 2% labeled data, HARP(DW) achieves

higher macro F1 score thanDeepWalk with 8% label data.HARP(LINE)
also consistently outperforms LINE given any amount of training

data, with macro F1 score gain between 1% and 3%. HARP(N2V)
and Node2vec have comparable performance with less than 5% la-

beled data, but as the ratio of labeled data increases, HARP(N2V)
eventually distances itself to a 0.7% improvement over Node2vec.
We can also see that Node2vec generally has better performance

when compared to DeepWalk, and the same holds for HARP(N2V)
and HARP(DW). The di�erence in optimization method for Skip-

gram (negative sampling for Node2vec and hierarchical softmax for

DeepWalk) may account for this di�erence.

BlogCatalog. As a scale-free network with complex structure,

BlogCatalog is challenging for graph coarsening. Still, by consid-

ering both �rst-order proximity and second-order proximity, our

hybrid coarsening algorithm generates an appropriate hierarchy of

coarsened graphs. With the same amount of training data,HARP(DW)
always leadsHARP(DW) by at least 3.0%. ForHARP(LINE), it achieves

a relative gain of 4.8% with 80% labeled data. For HARP(N2V), its

gain over Node2vec reaches 4.7% given 50% labeled nodes.

Citeseer. For CiteSeer, the lead of HARP(DW) on Macro F1 score

varies between 5.7% and 7.8%. For HARP(LINE), its improvement

over LINE with 4% labeled data is an impressive 24.4%. HARP(N2V)
also performs better than Node2vec on any ratio of labeled nodes.

5.7 Scalability
In Section 4.4, we show that introducing HARP does not a�ect the

time complexity of the underlying graph embedding algorithms.
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Figure 6: Detailed multi-label classi�cation result on DBLP, BlogCatalog, and CiteSeer.
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Figure 7: Runtime analysis.

Here, we compare the actual run time ofHARP enhanced embedding

algorithms with the corresponding baseline methods on all test

graphs. All models run on a single machine with 128GB memory,

24 CPU cores at 2.0GHZ with 20 threads. As shown in Figure 7a,

applying HARP typically only introduces an overhead of less than

10% total running time. The time spent on sampling and training

the Skip-gram model dominates the overall running time.

Additionally, we learn graph embeddings on Erdos-Renyi graphs

with node count ranging from 100 to 100,000 and constant average

degree of 10. In Figure 7b, we can observe that the running time

of HARP increases linearly with the number of nodes in the graph.

Also, when compared to the corresponding baseline method, the

overhead introduces by the graph coarsening and prolongation

process in HARP is negligible, especially on large-scale graphs.

6 RELATEDWORK
The related work is in the areas of graph representation learning

and graph drawing, which we brie�y describe here.

Graph Representation Learning. Most early methods treated

representation learning as performing dimension reduction on the

Laplacian and adjacency matrices [2, 4, 19]. These methods work
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well on small graphs, but the time complexity of these algorithms is

too high for the large-scale graphs commonly encountered today.

Recently, neural network-based methods have been proposed

for constructing node representation in large-scale graphs. Deep-

walk [13] presents a two-phase algorithm for graph representation

learning. In the �rst phase, Deepwalk samples sequences of neigh-

boring nodes of each node by random walking on the graph. Then,

the node representation is learned by training a Skip-gram model

[11] on the random walks. A number of methods have been pro-

posed which extend this idea. First, several methods use di�erent

strategies for sampling neighboring nodes. LINE [17] learns graph

embeddings which preserve both the �rst-order and second-order

proximities in a graph. Walklets [14] captures multiscale node rep-

resentation on graphs by sampling edges from higher powers of

the graph adjacency matrix. Node2vec [8] combines DFS-like and

BFS-like exploration within the random walk framework. Second,

matrix factorization methods and deep neural networks have also

been proposed [1, 3, 12, 23] as alternatives to the Skip-gram model

for learning the latent representations.

Although these methods are highly scalable, they all rely on opti-

mizing a non-convex objective function. With no prior knowledge

of the graph, the latent representations are usually initialized with

random numbers or zero. With such an initialization scheme, these

methods are at risk of converging to a poor local minima. HARP
overcomes this problem by introducing a multilevel paradigm for

graph representation learning.

Graph Drawing. Multilevel layout algorithms are popular meth-

ods in the graph drawing community, where a hierarchy of ap-

proximations is used to solve the original layout problem [6, 9, 21].

Using an approximation of the original graph has two advantages -

not only is the approximation usually simpler to solve, it can also

be extended as a good initialization for solving the original prob-

lem. In addition to force-directed graph drawing, the multilevel

framework [22] has been proved successful in various graph theory

problems, including the traveling salesman problem [20], and graph

partitioning [10].

HARP extends the idea of the multilevel layout to neural repre-

sentation learning methods. We illustrate the utility of this para-

digm by combining HARP with three state-of-the-art representation

learning methods.

7 CONCLUSION
Recent literature on graph representation learning aims at optimiz-

ing a non-convex function. With no prior knowledge of the graph,

these methods could easily get stuck at a bad local minima as the

result of poor initialization. Moreover, these methods mostly aim

to preserve local proximities in a graph but neglect its global struc-

ture. In this paper, we propose a multilevel graph representation

learning paradigm to address these issues. By recursively coalesc-

ing the input graph into smaller but structurally similar graphs,

HARP captures the global structure of the input graph. By learning

graph representation on these smaller graphs, a good initialization

scheme for the input graph is derived. This multilevel paradigm is

further combined with the state-of-the-art graph embedding meth-

ods, namely DeepWalk, LINE, and Node2vec. Experimental results

on various real-world graphs show that introducing HARP yields

graph embeddings of higher quality for all these three methods.

In the future, we would like to combine HARP with other graph

representation learning methods. Speci�cally, as Skip-gram is a

shallow method for representation learning, it would be interesting

to see if HARP also works well with deep representation learn-

ing methods. For the On the other hand, our method could also

be applied to language networks, possibly yielding better word

embeddings.
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