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ABSTRACT
The smallest eigenvalues and the associated eigenvectors
(i.e., eigenpairs) of a graph Laplacian matrix have been
widely used for spectral clustering and community detec-
tion. However, in real-life applications the number of clus-
ters or communities (say, K) is generally unknown a-priori.
Consequently, the majority of the existing methods either
choose K heuristically or they repeat the clustering method
with different choices of K and accept the best clustering re-
sult. The first option, more often, yields suboptimal result,
while the second option is computationally expensive. In
this work, we propose an incremental method for construct-
ing the eigenspectrum of the graph Laplacian matrix. This
method leverages the eigenstructure of graph Laplacian ma-
trix to obtain the K-th eigenpairs of the Laplacian matrix
given a collection of all the K − 1 smallest eigenpairs. Our
proposed method adapts the Laplacian matrix such that the
batch eigenvalue decomposition problem transforms into an
efficient sequential leading eigenpair computation problem.
As a practical application, we consider user-guided spectral
clustering. Specifically, we demonstrate that users can uti-
lize the proposed incremental method for effective eigenpair
computation and determining the desired number of clusters
based on multiple clustering metrics.

1. INTRODUCTION
Over the past two decades, the graph Laplacian matrix

and its variants have been widely adopted for solving vari-
ous research tasks, including graph partitioning [23], data
clustering [14], community detection [5, 28], consensus in
networks [19], dimensionality reduction [2], entity disam-
biguation [33], link prediction [32], graph signal process-
ing [27], centrality measures for graph connectivity [4], in-
terconnected physical systems [24], network vulnerability as-
sessment [7], image segmentation [26], among others. The
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fundamental task is to represent the data of interest as a
graph for analysis, where a node represents an entity (e.g.,
a pixel in an image or a user in an online social network)
and an edge represents similarity between two multivariate
data samples or actual relation (e.g., friendship) between
nodes [14]. More often the K eigenvectors associated with
the K smallest eigenvalues of the graph Laplacian matrix
are used to cluster the entities into K clusters of high simi-
larity. For brevity, throughout this paper we will call these
eigenvectors as the K smallest eigenvectors.

The success of graph Laplacian matrix based methods for
graph partitioning and spectral clustering can be explained
by the fact that acquiring K smallest eigenvectors is equiv-
alent to solving a relaxed graph cut minimization problem,
which partitions a graph into K clusters by minimizing var-
ious objective functions including min cut, ratio cut or nor-
malized cut [14]. Generally, in clustering K is selected to be
much smaller than n (the number of data points), making
full eigen decomposition (such as QR decomposition) unnec-
essary. An efficient alternative is to use methods that are
based on power iteration, such as Arnoldi method or Lanczos
method, which computes the leading eigenpairs through re-
peated matrix vector multiplication. ARPACK [13] library
is a popular parallel implementation of different variants of
Arnoldi and Lanczos method, which is used by many com-
mercial software including Matlab.

However, in most situations the best value of K is un-
known and a heuristic is used by clustering algorithms to
determine the number of clusters, e.g., fixing a maximum
number of clusters Kmax and detecting a large gap in the
values of the Kmax largest sorted eigenvalues or normalized
cut score [16,21]. Alternatively, this value of K can be deter-
mined based on domain knowledge [1]. For example, a user
may require that the largest cluster size be no more than
10% of the total number of nodes or that the total inter-
cluster edge weight be no greater than a certain amount. In
these cases, the desired choice of K cannot be determined
a priori. Over-estimation of the upper bound Kmax on the
number of clusters is expensive as the cost of finding K
eigenpairs using the power iteration method grows rapidly
with K. On the other hand, choosing an insufficiently large
value for Kmax runs the risk of severe bias. Setting Kmax

to the number of data points n is generally computationally
infeasible, even for a moderate-sized graph. Therefore, an
incremental eigenpair computation method that effectively



computes the K-th smallest eigenpair of graph Laplacian
matrix by utilizing the previously computed K − 1 smallest
eigenpairs is needed. Such an iterative method obviates the
need to set an upper bound Kmax on K, and its efficiency
can be explained by the adaptivity to increments in K.

By exploiting the special matrix properties and graph
characteristics of a graph Laplacian matrix, we propose an
efficient method for computing the (K + 1)-th eigenpair
given all of the K smallest eigenpairs, which we call the
Incremental method of Increasing Orders (Incremental-IO).
For each increment, given the previously computed small-
est eigenpairs, we show that computing the next smallest
eigenpair is equivalent to computing a leading eigenpair of
a particular matrix, which transforms potentially tedious
numerical computation (such as the iterative tridiagonal-
ization and eigen-decomposition steps in the Lanczos algo-
rithm [11]) to simple matrix power iterations of known com-
putational efficiency [10]. We then compare the performance
of Incremental-IO with a batch computation method which
computes all of the K smallest eigenpairs in a single batch,
and an incremental method adapted from the Lanczos al-
gorithm, which we call the Lanczos method of Increasing
Orders (Lanczos-IO). For a given number of eigenpairs K
iterative matrix-vector multiplication of Lanczos procedure
yields a set of Lanczos vectors (Q`), and a tridiagonal ma-
trix (T`), followed by a full eigen-decomposition of T` (`
is a value much smaller than the matrix size). Lanczos-IO
saves the Lanczos vectors that were obtained while K eigen-
pairs were computed and use those to generate new Lanczos
vectors for computing (K + 1)-th eigenpair.

Comparing to the batch method, our experimental re-
sults show that for a given order K, Incremental-IO pro-
vides a significant reduction in computation time. Also, as
K increases, the gap between Incremental-IO and the batch
approach widens, providing an order of magnitude speed-
up. Experiments on real-life datasets show that the per-
formance of Lanczos-IO is overly sensitive to the selection
of augmented Lanczos vectors, a parameter that cannot be
optimized a priori—for some of our experimental datasets,
Lanczos-IO performs even worse than the batch method (see
Sec. 6). Moreover, Lanczos-IO consumes significant amount
of memory as it has to save the Lanczos vectors (Q`) for
making the incremental approach realizable. In summary,
Lanczos-IO, although an incremental eigenpair computation
algorithm, falls short in terms of robustness.

To illustrate the real-life utility of incremental eigenpair
computation methods, we design a user-guided spectral clus-
tering algorithm which uses Incremental-IO. The algorithm
provides clustering solution for a sequence of K values effi-
ciently, and thus enable a user to compare these clustering
solutions for facilitating the selection of the most appropri-
ate clustering.

The contributions of this paper are summarized as follows.

1. We propose an incremental eigenpair computation method
(Incremental-IO) for both unnormalized and normal-
ized graph Laplacian matrices, by transforming the
original eigenvalue decomposition problem into an ef-
ficient sequential leading eigenpair computation prob-
lem. Simulation results show that Incremental-IO gen-
erates the desired eigenpair accurately and has supe-
rior performance over the batch computation method
in terms of computation time.

2. We show that Incremental-IO is robust in compari-
son to Lanczos-IO, which is an incremental eigenpair
method that we design by adapting the Lanczos method.

3. We use several real-life datasets to demonstrate the
utility of Incremental-IO. Specifically, we show that
Incremental-IO is suitable for user-guided spectral clus-
tering which provides a sequence of clustering results
for unit increment of the number K of clusters, and
updates the associated cluster evaluation metrics for
helping a user in decision making.

2. RELATED WORKS

2.1 Incremental eigenvalue decomposition
The proposed method (Incremental-IO) aims to incremen-

tally compute the smallest eigenpair of a given graph Lapla-
cian matrix. There are several works that are named as in-
cremental eigenvalue decomposition methods [8,9,17,18,25].
However, these works focus on updating the eigenstructure
of graph Laplacian matrix of dynamic graphs when nodes
(data samples) or edges are inserted or deleted from the
graph, which are different from incremental computation of
eigenpairs of increasing orders.

2.2 Cluster Count Selection for Spectral Clus-
tering

Many spectral clustering algorithms utilize the eigenstruc-
ture of graph Laplacian matrix for selecting number of clus-
ters. In [21], a value K that maximizes the gap between the
K-th and the (K+1)-th smallest eigenvalue is selected as the
number of clusters. In [16], a value K that minimizes the
sum of cluster-wise Euclidean distance between each data
point and the centroid obtained from K-means clustering on
K smallest eigenvectors is selected as the number of clus-
ters. In [31], the smallest eigenvectors of normalized graph
Laplacian matrix are rotated to find the best alignment that
reflects the true clusters. A model based method for deter-
mining the number of clusters is proposed in [22]. Note that
aforementioned methods use only one single clustering met-
ric to determine the number of clusters and often implicitly
assume an upper bound on K (namely Kmax).

3. INCREMENTAL EIGENPAIR COMPUTA-
TION FOR GRAPH LAPLACIAN MATRI-
CES

3.1 Background
Throughout this paper bold uppercase letters (e.g., X)

denote matrices and Xij (or [X]ij) denotes the entry in i-th
row and j-th column of X, bold lowercase letters (e.g., x
or xi) denote column vectors, (·)T denotes matrix or vector
transpose, italic letters (e.g., x or xi) denote scalars, and
calligraphic uppercase letters (e.g., X or Xi) denote sets.
The n × 1 vector of ones (zeros) is denoted by 1n (0n).
The matrix I denotes an identity matrix and the matrix O
denotes the matrix of zeros.

We use two n×n symmetric matrices, A and W, to denote
the adjacency and weight matrices of an undirected weighted
simple graph G with n nodes and m edges. Aij = 1 if there
is an edge between nodes i and j, and Aij = 0 otherwise.
W is a nonnegative symmetric matrix such that Wij ≥ 0 if



Table 1: Utility of the lemmas, corollaries, and theorems.

Graph Type / Laplacian Matrix Unnormalized Normalized

Connected Graphs
Lemma 1
Theorem 1

Corollary 1
Corollary 3

Disconnected Graphs
Lemma 2
Theorem 2

Corollary 2
Corollary 4

Aij = 1 and Wij = 0 if Aij = 0. Let si =
∑n
j=1 Wij denote

the strength of node i. Note that when W = A, the strength
of a node is equivalent to its degree. S = diag(s1, s2, . . . , sn)
is a diagonal matrix with nodal strength on its main diagonal
and the off-diagonal entries being zero.

The (unnormalized) graph Laplacian matrix is defined as

L = S−W. (1)

One popular variant of the graph Laplacian matrix is the
normalized graph Laplacian matrix defined as

LN = S−
1
2 LS−

1
2 = I− S−

1
2 WS−

1
2 , (2)

where S−
1
2 = diag( 1√

s1
, 1√

s2
, . . . , 1√

sn
). The i-th smallest

eigenvalue and its associated unit-norm eigenvector of L
are denoted by λi(L) and vi(L), respectively. That is, the
eigenpair (λi,vi) of L has the relation Lvi = λivi, and
λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L). The eigenvectors have unit
Euclidean norm and they are orthogonal to each other such
that vTi vj = 1 if i = j and vTi vj = 0 if i 6= j. The eigen-
values of L are said to be distinct if λ1(L) < λ2(L) < . . . <
λn(L). Similar notations are used for LN .

3.2 Theoretical foundations of the proposed
method (Incremental-IO)

The following lemmas and corollaries provide the corner-
stone for establishing the proposed incremental eigenpair
computation method (Incremental-IO). The main idea is
that we utilize the eigenspace structure of graph Laplacian
matrix to inflate specific eigenpairs via a particular pertur-
bation matrix, without affecting other eigenpairs. Incremental-
IO can be viewed as a specialized Hotelling’s deflation method
[20] designed for graph Laplacian matrices by exploiting
their spectral properties and associated graph characteris-
tics. It works for both connected, and disconnected graphs
using both normalized and unnormalized graph Laplacian
matrices. For illustration purposes, in Table 1 we group the
established lemmas, corollaries, and theorems under differ-
ent graph types and different graph Laplacian matrices. Be-
cause of the page limit, the proofs of the established lemmas,
theorems and corollaries are given in the extended version1.

Lemma 1. Assume that G is a connected graph and L is
the graph Laplacian with si denoting the sum of the entries
in the i-th row of the weight matrix W. Let s =

∑n
i=1 si

and define L̃ = L+ s
n
1n1Tn . Then the eigenpairs of L̃ satisfy

(λi(L̃),vi(L̃)) = (λi+1(L),vi+1(L)) for 1 ≤ i ≤ n − 1 and

(λn(L̃),vn(L̃)) = (s, 1n√
n

).

Corollary 1. For a normalized graph Laplacian matrix

LN , assume G is a connected graph and let L̃N = LN +
2
s
S

1
2 1n1TnS

1
2 . Then (λi(L̃N ),vi(L̃N )) = (λi+1(LN ),vi+1(LN ))

for 1 ≤ i ≤ n− 1 and (λn(L̃N ),vn(L̃N )) = (2, S
1
2 1n√
s

).

1http://arxiv.org/abs/1512.07349

Lemma 2. Assume that G is a disconnected graph with
δ ≥ 2 connected components, and let s =

∑n
i=1 si, let V =

[v1(L),v2(L), . . . ,vδ(L)], and let L̃ = L + sVVT . Then

(λi(L̃),vi(L̃)) = (λi+δ(L),vi+δ(L)) for 1 ≤ i ≤ n − δ,

λi(L̃) = s for n−δ+1 ≤ i ≤ n, and [vn−δ+1(L̃),vn−δ+2, (L̃),

. . . ,vn(L̃)] = V.

Corollary 2. For a normalized graph Laplacian matrix
LN , assume G is a disconnected graph with δ ≥ 2 connected
components. Let Vδ = [v1(LN ),v2(LN ), . . . ,vδ(LN )], and

let L̃N = LN+2VδV
T
δ . Then (λi(L̃N ),vi(L̃N )) = (λi+δ(LN )

,vi+δ(LN )) for 1 ≤ i ≤ n − δ, λi(L̃N ) = 2 for n − δ + 1 ≤
i ≤ n, and [vn−δ+1(L̃N ),vn−δ+2, (L̃N ), . . . ,vn(L̃N )] = Vδ.

Remark 1. note that the columns of any matrix V′ =
VR with an orthonormal transformation matrix R (i.e.,

RTR = I) are also the largest δ eigenvectors of L̃ and L̃N
in Lemma 2 and Corollary 2. Without loss of generality
we consider the case R = I.

3.3 Incremental method of increasing orders
Given the K smallest eigenpairs of a graph Laplacian ma-

trix, we prove that computing the (K+1)-th smallest eigen-
pair is equivalent to computing the leading eigenpair (the
eigenpair with the largest eigenvalue in absolute value) of a
certain perturbed matrix. The advantage of this transforma-
tion is that the leading eigenpair can be efficiently computed
via matrix power iteration methods [11,13].

Let VK = [v1(L),v2(L), . . . ,vK(L)] be the matrix with
columns being the K smallest eigenvectors of L and let
ΛK = diag(s − λ1(L), s − λ2(L), . . . , s − λK(L)) be the di-
agonal matrix with {s − λi(L)}Ki=1 being its main diago-
nal. The following theorems show that given the K smallest
eigenpairs of L, the (K+ 1)-th smallest eigenpair of L is the
leading eigenvector of the original graph Laplacian matrix
perturbed by a certain matrix.

Theorem 1. (connected graphs) Given VK and ΛK , as-
sume that G is a connected graph. Then the eigenpair (λK+1(L)

,vK+1(L)) is a leading eigenpair of the matrix L̃ = L +
VKΛKVT

K + s
n
1n1Tn − sI. In particular, if L has distinct

eigenvalues, then (λK+1(L),vK+1(L)) = (λ1(L̃)+s,v1(L̃)).

The next theorem describes an incremental eigenpair com-
putation method when the graph G is a disconnected graph
with δ connected components. The columns of the ma-
trix Vδ are the δ smallest eigenvectors of L. Note that
Vδ has a canonical representation that the nonzero entries
of each column are a constant and their indices indicate
the nodes in each connected component [6, 14], and the
columns of Vδ are the δ smallest eigenvectors of L with
eigenvalue 0 [6]. Since the δ smallest eigenpairs with the
canonical representation are trivial by identifying the con-
nected components in the graph, we only focus on com-
puting the (K + 1)-th smallest eigenpair given K small-
est eigenpairs, where K ≥ δ. The columns of the ma-
trix VK,δ = [vδ+1(L),vδ+2(L), . . . ,vK(L)] are the (δ + 1)-
th to the K-th smallest eigenvectors of L and the matrix
ΛK,δ = diag(s−λδ+1(L), s−λδ+2(L), . . . , s−λK(L)) is the
diagonal matrix with {s− λi(L)}Ki=δ+1 being its main diag-
onal. If K = δ, VK,δ and ΛK,δ are defined as the matrix
with all entries being zero, i.e., O.



Theorem 2. (disconnected graphs) Assume that G is a
disconnected graph with δ ≥ 2 connected components, given
VK,δ, ΛK,δ and K ≥ δ, the eigenpair (λK+1(L),vK+1(L))

is a leading eigenpair of the matrix L̃ = L+VK,δΛK,δV
T
K,δ+

sVδV
T
δ − sI. In particular, if L has distinct nonzero eigen-

values, then (λK+1(L),vK+1(L)) = (λ1(L̃) + s,v1(L̃)).

Following the same methodology for proving Theorem 1
and using Corollary 1, for normalized graph Laplacian ma-
trices, let VK = [v1(LN ),v2(LN ), . . . ,vK(LN )] be the ma-
trix with columns being the K smallest eigenvectors of LN
and let ΛK = diag(2−λ1(LN ), 2−λ2(LN ), . . . , 2−λK(LN )).
The following corollary provides the basis for incremental
eigenpair computation for normalized graph Laplacian ma-
trix of connected graphs.

Corollary 3. For the normalized graph Laplacian ma-
trix LN of a connected graph G, given VK and ΛK , the
eigenpair (λK+1(LN ),vK+1(LN )) is a leading eigenpair of

the matrix L̃N = LN + VKΛKVT
K + 2

s
S

1
2 1n1TnS

1
2 − 2I. In

particular, if LN has distinct eigenvalues, then (λK+1(LN ),

vK+1(LN )) = (λ1(L̃N ) + 2,v1(L̃N )).

For disconnected graphs with δ connected components, let
VK,δ = [vδ+1(LN ),vδ+2(LN ), . . . ,vK(LN )] with columns
being the (δ+1)-th to the K-th smallest eigenvectors of LN
and let ΛK,δ = diag(2 − λδ+1(LN ), 2 − λδ+2(LN ), . . . , 2 −
λK(LN )). Based on Corollary 2, the following corollary
provides an incremental eigenpair computation method for
normalized graph Laplacian matrix of disconnected graphs.

Corollary 4. For the normalized graph Laplacian ma-
trix LN of a disconnected graph G with δ ≥ 2 connected
components, given VK,δ, ΛK,δ and K ≥ δ, the eigenpair
(λK+1(LN ),vK+1(LN )) is a leading eigenpair of the matrix

L̃N = LN +VK,δΛK,δV
T
K,δ+ 2

s
S

1
2 1n1TnS

1
2 −2I. In particu-

lar, if LN has distinct eigenvalues, then (λK+1(LN ),vK+1(LN ))

= (λ1(L̃N ) + 2,v1(L̃N )).

3.4 Computational complexity analysis
Here we analyze the computational complexity of Incremental-

IO and compare it with the batch computation method.
Incremental-IO utilizes the existing K smallest eigenpairs
to compute the (K + 1)-th smallest eigenpair as described
in Sec. 3.3, whereas the batch computation method recom-
putes all eigenpairs for each value of K. Both methods can
be easily implemented via well-developed numerical compu-
tation packages such as ARPACK [13].

Following the analysis in [10], the average relative error
of the leading eigenvalue from the Lanczos algorithm [11]

has an upper bound of the order O
(

(lnn)2

t2

)
, where n is the

number of nodes in the graph and t is the number of iter-
ations for Lanczos algorithm. Therefore, when one sequen-
tially computes from k = 2 to k = K smallest eigenpairs,
for Incremental-IO the upper bound on the average rela-

tive error of K smallest eigenpairs is O
(
K(lnn)2

t2

)
since in

each increment computing the corresponding eigenpair can
be transformed to a leading eigenpair computation process
as described in Sec. 3.3. On the other hand, for the batch
computation method, the upper bound on the average rel-

ative error of K smallest eigenpairs is O
(
K2(lnn)2

t2

)
since

for the k-th increment (k ≤ K) it needs to compute all k
smallest eigenpairs from scratch. These results also imply
that to reach the same average relative error ε for sequential
computation of K smallest eigenpairs, Incremental-IO re-

quires Ω

(√
K
ε

lnn

)
iterations, whereas the batch method

requires Ω
(
K lnn√

ε

)
iterations. It is difficult to analyze the

computational complexity of Lanczos-IO, as its convergence
results heavily depend on the quality of previously generated
Lanczos vectors.

4. APPLICATION: USER-GUIDED SPECTRAL
CLUSTERING WITH INCREMENTAL-IO

Based on the developed incremental eigenpair computa-
tion method (Incremental-IO) in Sec. 3, we propose an in-
cremental algorithm for user-guided spectral clustering as
summarized in Algorithm 1. This algorithm sequentially
computes the smallest eigenpairs via Incremental-IO (steps
1-3) for spectral clustering and provides a sequence of clus-
ters with the values of user-specified clustering metrics.

The input graph is a connected undirected weighted graph
W and we convert it to the reduced weighted graph WN =

S−
1
2 WS−

1
2 to alleviate the effect of imbalanced edge weights.

The entries of WN are properly normalized by the nodal

strength such that [WN ]ij =
[W]ij√
si·sj

. We then obtain the

graph Laplacian matrix L for WN and incrementally com-
pute the eigenpairs of L via Incremental-IO (steps 1-3) until
the user decides to stop further computation.

Starting from K = 2 clusters, the algorithm incrementally
computes the K-th smallest eigenpair (λK(L),vK(L)) of L
with the knowledge of the previous K − 1 smallest eigen-
pairs via Theorem 1 and obtains matrix VK containing
K smallest eigenvectors. By viewing each row in VK as a
K-dimensional vector, K-means clustering is implemented
to separate the rows in VK into K clusters. For each in-

crement, the identified K clusters are denoted by {Ĝk}Kk=1,

where Ĝk is a graph partition with n̂k nodes and m̂k edges.
In addition to incremental computation of smallest eigen-

pairs, for each increment the algorithm can also be used to
update clustering metrics such as normalized cut, modular-
ity, and cluster size distribution, in order to provide users
with clustering information to stop the incremental com-
putation process. The incremental computation algorithm
allows users to efficiently track the changes in clusters as the
number K of hypothesized clusters increases.

Note that Algorithm 1 is proposed for connected graphs
and their corresponding unnormalized graph Laplacian ma-
trices. The algorithm can be easily adapted to disconnected
graphs or normalized graph Laplacian matrices by modify-
ing steps 1-3 based on the developed results in Theorem 2,
Corollary 3 and Corollary 4.

5. IMPLEMENTATION
We implement the proposed incremental eigenpair com-

putation method (Incremental-IO) using Matlab R2015a’s
“eigs” function, which is based on ARPACK package [13].
Note that this function takes a parameter K and returns K
leading eigenpairs of the given matrix. The eigs function is
implemented in Matlab with a Lanczos algorithm that com-
putes the leading eigenpairs (the implicitly-restarted Lanc-
zos method [3]). This Matlab function iteratively generates



Algorithm 1 Incremental algorithm for user-guided spec-
tral clustering using Incremental-IO (steps 1-3)

Input: connected undirected weighted graph W

Output: K clusters {Ĝk}Kk=1

Initialization: K = 2. V1 = Λ1 = O. Flag = 1.

S = diag(W1n). WN = S−
1
2 WS−

1
2 .

L = diag(WN1n)−WN . s = 1TnWN1n.
while Flag= 1 do

1. L̃ = L + VK−1ΛK−1V
T
K−1 + s

n
1n1Tn − sI.

2. Compute the leading eigenpair (λ1(L̃),v1(L̃))

and set (λK(L),vK(L)) = (λ1(L̃) + s,v1(L̃)).
3. Update K smallest eigenpairs of L by

VK = [VK−1 vK ] and [ΛK ]KK = s− λK(L).
4. Perform K-means clustering on the rows of VK

to obtain K clusters {Ĝk}Kk=1.
5. Compute user-specified clustering metrics.
if user decides to stop then Flag= 0

Output K clusters {Ĝk}Kk=1

else
Go back to step 1 with K = K + 1.

end if
end while

Lanczos vectors starting from an initial vector (the default
setting is a random vector) with restart. Following The-
orem 1, Incremental-IO works by sequentially perturbing
the graph Laplacian matrix L with a particular matrix and

computing the leading eigenpair of the perturbed matrix L̃

(see Algorithm 1) by calling eigs(L̃, 1). For the batch com-
putation method, we use eigs(L,K) to compute the desired
K eigenpairs from scratch as K increases.

For implementing Lanczos-IO, we extend the Lanczos al-
gorithm of fixed order (K is fixed) using the PROPACK
package [12]. As we have stated earlier, Lanczos-IO works
by storing all previously generated Lanczos vectors and us-
ing them to compute new Lanczos vectors for each incre-
ment in K. The general procedure of computing K leading
eigenpairs of a real symmetric matrix M using Lanczos-IO
is described in Algorithm 2. The operation of Lanczos-IO
is similar to the explicitly-restarted Lanczos algorithm [29],
which restarts the computation of Lanczos vectors with a
subset of previously computed Lanczos vectors. Note that
the Lanczos-IO consumes additional memory for storing all
previously computed Lanczos vectors when compared with
the proposed incremental method in Algorithm 1, since the
eigs function uses the implicitly-restarted Lanczos method
that spares the need of storing Lanczos vectors for restart.

To apply Lanczos-IO to spectral clustering of increasing
orders, we can set M = L + s

n
1n1Tn − sI to obtain the

smallest eigenvectors of L. Throughout the experiments the
parameters in Algorithm 2 are set to be Zini = 20 and
Tolerence = ε · ‖M‖, where ε is the machine precision, ‖M‖
is the operator norm of M, and these settings are consis-
tent with the settings used in eigs function [13]. The num-
ber of augmented Lanczos vectors Zaug is set to be 10, and
the effect of Zaug on the computation time is discussed in
Sec. 6.2. The Matlab implementation of the aforementioned
batch method, Lanczos-IO, and Incremental-IO are available
at https://sites.google.com/site/pinyuchenpage/codes.

Algorithm 2 Lanczos method of Increasing Orders
(Lanczos-IO)

Input: real symmetric matrix M, # of initial Lanczos
vectors Zini, # of augmented Lanczos vectors Zaug
Output: K leading eigenpairs {λi,vi}Ki=1 of M
Initialization: Compute Zini Lanczos vectors as
columns of Q and the corresponding tridiagonal matrix
T of M. Flag = 1. K = 1. Z = Zini.
while Flag= 1 do

1. Obtain the K leading eigenpairs {ti,ui}Ki=1 of T.
U = [u1, . . . ,uK ].

2. Residual error = |T(Z − 1, Z) ·U(Z,K)|
while Residual error > Tolerence do

2-1. Z = Z + Zaug
2-2. Based on Q and T, compute the next Zaug

Lanczos vectors as columns of Qaug and
the augmented tridiagonal matrix Taug

2-3. Q← [Q Qaug] and T←
[
T O
O Taug

]
2-4. Go back to step 1

end while
3. {λi}Ki=1 = {ti}Ki=1. [v1, . . . ,vK ] = QU.
if user decides to stop then Flag= 0

Output K leading eigenpairs {λi,vi}Ki=1

else
Go back to step 1 with K = K + 1.

end if
end while

6. EXPERIMENTAL RESULTS
We perform several experiments: first, compare the com-

putation time between Incremental-IO, Lanczos-IO, and the
batch method; second, numerically verify the accuracy of
Incremental-IO; third, demonstrate the usages of Incremental-
IO for user-guided spectral clustering. For the first experi-
ment, we generate synthetic Erdos-Renyi random graphs of
various sizes. For the second experiment, we compare the
consistency of eigenpairs obtained from Incremental-IO and
the batch method. For the third experiment, we use six
popular graph datasets as summarized in Table 2.

6.1 Comparison of computation time on sim-
ulated graphs

To illustrate the advantage of Incremental-IO, we compare
its computation time with the other two methods, the batch
method and Lanczos-IO, for varying order K and varying
graph size n. The Erdos-Renyi random graphs that we
build are used for this comparison. Fig. 1 (a) shows the
computation time of Incremental-IO, Lanczos-IO, and the
batch computation method for sequentially computing from
K = 2 to K = 10 smallest eigenpairs. It is observed that the
computation time of Incremental-IO and Lanczos-IO grows
linearly as K increases, whereas the computation time of the
batch method grows superlinearly with K.

Fig. 1 (b) shows the computation time of all three meth-
ods with respect to different graph size n. It is observed
that the difference in computation time between the batch
method and the two incremental methods grow exponen-
tially as n increases, which suggests that in this experiment
Incremental-IO and Lanczos-IO are more efficient than the
batch computation method, especially for large graphs. It is



Table 2: Statistics of datasets

Dataset Nodes Edges Density
Minnesota
Road2

2640
intersections

3302
roads

0.095%

Power
Grid3

4941
power stations

6594
power lines

0.054%

CLUTO4 7674
data points

748718
kNN edges

2.54%

Swiss
Roll5

20000
data points

81668
kNN edges

0.041%

Youtube6
13679
users

76741
interactions

0.082%

BlogCatalog7 10312
bloggers

333983
interactions

0.63%
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Figure 1: Sequential eigenpair computation time on Erdos-
Renyi random graphs with edge connection probability p =
0.1. The marker represents averaged computation time of
50 trials and the error bar represents standard deviation.
(a) Computation time with n = 10000 and different number
of eigenpairs K. (b) Computation time with K = 10 and
different number of nodes n.

worth noting that although Lanczos-IO has similar perfor-
mance in computation time as Incremental-IO, it requires
additional memory allocation for storing all previously com-
puted Lanczos vectors.

6.2 Comparison of computation time on real-
life datasets

Fig. 2 shows the time improvement of Incremental-IO
relative to the batch method for the real-life datasets listed
in Table 2, where the difference in computation time is dis-
played in log scale to accommodate large variance of time im-
provement across datasets that are of widely varying size. It
is observed that the gain in computational time via Incremental-
IO is more pronounced as cluster count K increases, which
demonstrates the merit of the proposed incremental method.

On the other hand, although Lanczos-IO is also an incre-
mental method, in addition to the well-known issue of requir-
ing memory allocation for storing all Lanczos vectors, the ex-
perimental results show that it does not provide performance
robustness as Incremental-IO does, as it can perform even
worse than the batch method for some cases. Fig. 3 shows
that Lanczos-IO actually results in excessive computation
time compared with the batch method for four out of the
six datasets, whereas in Fig. 2 Incremental-IO is superior
than the batch method for all these datasets, which demon-

2
http://www.cs.purdue.edu/homes/dgleich/nmcomp/matlab/minnesota

3
http://www-personal.umich.edu/ mejn/netdata

4
http://glaros.dtc.umn.edu/gkhome/views/cluto

5
http://isomap.stanford.edu/datasets.html

6
http://socialcomputing.asu.edu/datasets/YouTube

7
http://socialcomputing.asu.edu/datasets/BlogCatalog

Figure 2: Computation time
improvement of Incremental-
IO relative to the batch
method. Incremental-IO
outperforms the batch
method for all cases, and
has improvement w.r.t. K.

Figure 3: Computation time
improvement of Lanczos-IO
relative to the batch method.
Negative values mean that
Lanczos-IO requires more
computation time than the
batch method.

strates the robustness of Incremental-IO over Lanczos-IO.
The reason of lacking robustness for Lanczos-IO can be ex-
plained by the fact the previously computed Lanczos vectors
may not be effective in minimizing the Ritz approximation
error of the desired eigenpairs. In contrast, Incremental-IO
and the batch method adopt the implicitly-restarted Lanc-
zos method, which restarts the Lanczos algorithm when the
generated Lanczos vectors fail to meet the Ritz approxima-
tion criterion, and may eventually lead to faster convergence.
Furthermore, Fig. 4 shows that Lanczos-IO is overly sen-
sitive to the number of augmented Lanczos vectors Zaug,
which is a parameter that cannot be optimized a priori.

Theorem 1 establishes that the proposed incremental
method exactly computes the K-th eigenpair using 1 to
(K − 1)-th eigenpairs, yet for the sake of experiments with
real datasets, we have computed the normed eigenvalue dif-
ference and eigenvector correlation of the K smallest eigen-
pairs using the batch method and Incremental-IO as dis-
played in Fig. 5. The K smallest eigenpairs are identical
as expected; to be specific, using Matlab library, on the
Minnesota road dataset for K = 20, the normed eigenvalue
difference is 7 × 10−12 and the associated eigenvectors are
identical up to differences in sign. Results for the other
datasets are reported in the extended version1.

6.3 Clustering metrics for user-guided spec-
tral clustering

In real-life, an analyst can use Incremental-IO for clus-
tering along with a mechanism for selecting the best choice
of K starting from K = 2. To demonstrate this, in the
experiment we use five clustering metrics that can be used
for online decision making regarding the value of K. These
metrics are commonly used in clustering unweighted and
weighted graphs and they are summarized as follows.
1. Modularity: modularity is defined as

Mod =

K∑
i=1

(
W (Ci, Ci)
W (V,V)

−
(
W (Ci,V)

W (V,V)

)2)
, (3)

where V is the set of all nodes in the graph, Ci is the i-th
cluster, W (Ci, Ci) (W (Ci, Ci)) denotes the sum of weights of
all internal (external) edges of the i-th cluster, W (Ci,V) =
W (Ci, Ci) +W (Ci, Ci), and W (V,V) =

∑n
j=1 sj = s denotes

the total nodal strength.
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Figure 4: The effect of number of augmented Lanczos vectors Zaug of Lanczos-IO in Algorithm 2 on computation time
improvement relative to the batch method. Negative values mean that the computation time of Lanczos-IO is larger than that
of the batch method. The results show that Lanczos-IO is not a robust incremental eigenpair computation method. Intuitively,
small Zaug may incur many iterations in the second step of Algorithm 2, whereas large Zaug may pose computation burden
in the first step of Algorithm 2, and therefore both cases lead to the increase in computation time.

2. Scaled normalized cut (SNC): NC is defined as [30]

NC =

K∑
i=1

W (Ci, Ci)
W (Ci,V)

. (4)

SNC is NC divided by the number of clusters, i.e., NC/K.
3. Scaled median (or maximum) cluster size: Scaled
medium (maximum) cluster size is the medium (maximum)
cluster size of K clusters divided by the total number of
nodes n of a graph.
4. Scaled spectrum energy: scaled spectrum energy is
the sum of the K smallest eigenvalues of the graph Laplacian
matrix L divided by the sum of all eigenvalues of L, which
can be computed by

scaled spectrum energy =

∑K
i=1 λi(L)∑n
j=1 Ljj

, (5)

where λi(L) is the i-th smallest eigenvalue of L and
∑n
j=1 Ljj

=
∑n
i=1 λi(L) is the sum of diagonal elements of L.

These metrics provide alternatives for gauging the quality
of the clustering method. For example, Mod and NC reflect
the trade-off between intracluster similarity and intercluster
separation. Therefore, the larger the value of Mod, the bet-
ter the clustering quality, and the smaller the value of NC,
the better the clustering quality. Scaled spectrum energy
is a typical measure of cluster quality for spectral cluster-
ing [16, 21, 31], and smaller spectrum energy means better
separability of clusters. For Mod and scaled NC, a user
might look for a cluster count K such that the increment
in the clustering metric is not significant, i.e., the clustering
metric is saturated beyond such a K. For scaled median
and maximum cluster size, a user might require the cluster
count K to be such that the clustering metric is below a de-
sired value. For scaled spectrum energy, a user might look
for a noticeable increase in the clustering metric between
consecutive values of K.

6.4 Demonstration
Here we use Minnesota Road data to demonstrate how

users can utilize the clustering metrics in Sec. 6.3 to deter-
mine the number of clusters. The five metrics evaluated for
Minnesota Road clustering with respect to different cluster
counts K are displayed in Fig. 6. Starting from K = 2
clusters, these metrics are updated by the incremental user-
guided spectral clustering algorithm (Algorithm 1) as K
increases. If the user imposes that the maximum cluster
size should be less than 30% of the total number of nodes,
then the algorithm returns clustering results with a number
of clusters of K = 6 or greater. Inspecting the modularity
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Figure 5: Consistency of
eigenpairs computed by the
batch computation method
and Incremental-IO for Min-
nesota Road dataset.
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Figure 6: Five clustering
metrics computed incre-
mentally via Algorithm 1
for Minnesota Road.

(a) K = 7 (b) K = 8 (c) K = 9 (d) K = 10

Figure 7: Visualization of user-guided spectral clustering on
Minnesota Road with respect to selected cluster count K.
Colors represent different clusters.

one sees it saturates at K = 7, and the user also observes a
noticeable increase in scaled spectrum energy when K = 7.
Therefore, the algorithm can be used to incrementally gen-
erate four clustering results for K = 7, 8, 9, and 10. The
selected clustering results in Fig. 7 are shown to be consis-
tent with geographic separations of different granularity.

We also apply the proposed incremental user-guided spec-
tral clustering algorithm (Algorithm 1) to Power Grid,
CLUTO, Swiss Roll, Youtube, and BlogCatalog. In Fig.8,
we show how the value of clustering metrics changes with
K, for each dataset. The incremental method enables us to
efficiently generate all clustering results with K = 2, 3, 4 . . .
and so on. Due to space limitation, for each dataset we only
show the trend of the three clustering metrics that exhibit
the highest variation for different K; thus, the chosen clus-
tering metrics can be different for different datasets. This
suggests that selecting the correct number of clusters is a
difficult task and a user might need to use different cluster-
ing metrics for a range of K values, and Incremental-IO is
an effective tool to support such an endeavor.

7. CONCLUSION
In this paper we present Incremental-IO, an efficient incre-

mental eigenpair computation method for graph Laplacian
matrices which works by transforming a batch eigenvalue
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Figure 8: Three selected clustering metrics of each dataset. The complete clustering metrics can be found in the extended
version (available at http://arxiv.org/abs/1512.07349).

decomposition problem into a sequential leading eigenpair
computation problem. The method is elegant, robust and
easy to implement using a scientific programming language,
such as Matlab. We provide analytical proof of its correct-
ness. We also demonstrate that it achieves significant re-
duction in computation time when compared with the batch
computation method. Particularly, it is observed that the
difference in computation time of these two methods grows
exponentially as the graph size increases.

To demonstrate the effectiveness of Incremental-IO, we
also show experimental evidences that obtaining such an in-
cremental method by adapting the existing leading eigenpair
solvers (such as, the Lanczos algorithm) is non-obvious and
such efforts generally do not lead to a robust solution.

Finally, we demonstrate that the proposed incremental
eigenpair computation method (Incremental-IO) is an effec-
tive tool for a user-guided spectral clustering task, which
effectively updates clustering results and metrics for each
increment of the cluster count.
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