
User Action Prediction for Computational Advertisement
Using Local Graph Algorithms

Hongxia Yang
Yahoo! Inc

Sunnyvale, California 94089
hongxia@yahoo-inc.com

Yada Zhu
IBM Research

Yorktown Heights, NY 10598
yzhu@us.ibm.com

Jingrui He
Arizona State University

Tempe, AZ 85281
jingrui.he@asu.edu

ABSTRACT
User behavior modeling is essential in computational adver-
tisement, which builds users’ profiles by tracking their on-
line behaviors and then delivers the relevant ads according
to each user’s interests and needs. Accurate models will lead
to higher targeting accuracy and thus improved advertising
performance. Intuitively, similar users tend to have similar
behaviors towards the displayed ads. However, to the best
of our knowledge, there is not much previous work that ex-
plicitly investigates such similarities and incorporates them
into ad response targeting and prediction, largely due to the
prohibitive scale of the problem.

To bridge this gap, in this paper, we use bipartite graphs
to represent historical user behaviors, which consist of both
user nodes and advertiser campaign nodes, as well as edges
reflecting user-campaign interactions in the past. Based on
this representation, we study random-walk-based local al-
gorithms for user behavior modeling and action prediction,
whose computational complexity depends only on the size
of the output cluster, rather than the entire graph. Our
goal is to improve action prediction by leveraging historical
user-user, campaign-campaign, and user-campaign interac-
tions. In particular, we propose the bipartite graphs Ad-
vUserGraph accompanied with the ADNI algorithm. ADNI
extends the NIBBLE algorithm to AdvUserGraph, and it is
able to find the local cluster consisting of interested users to-
wards a specific advertiser campaign. We also propose two
extensions of ADNI with improved efficiencies. The perfor-
mance of the proposed algorithms is demonstrated on both
synthetic data and a world leading Demand Side Platform
(DSP), showing that they are able to discriminate extremely
rare events in terms of their action propensity.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models; I.5.3 [Pattern Recog-
nition]: Clustering—Algorithm; I.5.4 [Pattern Recogni-
tion]: Applications

Keywords
User Action Prediction, Local Graph Algorithm, Large Scale,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MLG ’16 August 14th, San Francisco, CA, USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

Computational Advertisement

1. INTRODUCTION
Computational advertisement has been the subject of rig-

orous research with extremely fast development in the past
decades. This area has generated billions of revenue, pro-
duced hundreds of scientific papers and patents, saw a broad
variety of implementations, and yet the accuracy of state-of-
the-art prediction technologies leaves to desire more. One
essential component of computational advertisement is user
behavior modeling, which builds users’ profiles by tracking
their online behaviors and then delivers the relevant ads
according to each user’s interests and needs. It is to be
expected that similar users tend to have similar behaviors
towards the displayed ads. Therefore, by taking into con-
sideration the similarity among different users, we may be
able to improve the advertising performance. However, to
the best of our knowledge, there has been very little (if at
all) previous work that explicitly investigates such similar-
ities and incorporates them into ad response targeting and
prediction. This is largely due to the prohibitive scale of the
problem, usually exceeding billions of users.

To address this problem, in this paper, we propose to use
bipartite graphs to represent historical user behaviors. Such
graphs consist of two types of nodes: user nodes and adver-
tiser campaign nodes. The existence of an edge between a
user node and a campaign node indicates that the user inter-
acted with the campaign related ads before either by click-
ing a page (a.k.a., click) or buying the advertiser’s products
(a.k.a., conversion) after seeing the ad (a.k.a., impression).
Therefore, similar users would have similar connections with
the campaign nodes, and they are expected to have simi-
lar behaviors towards future ads. Based on such bipartite
graphs, our task is to identify which users are likely to in-
teract with a new ad in the future. The ultimate goal is to
build predictive models to identify the potential customers
for hundreds of different and concurrent display ad target-
ing campaigns. To this end, we propose to use local graph
algorithms to find the cluster consisting of interested users
centered around the seed node corresponding to the adver-
tiser campaign, as their computational complexity depends
on the size of the cluster, which is significantly smaller than
the entire graph. In particular, we propose the random-
walk-based algorithm named ADNI, which is an adapted
version of the NIBBLE algorithm [18] tailored for bipartite
graphs. We also designed two extensions of ADNI for im-
proved effectiveness and efficiency.

We evaluate the performance of ADNI and its extensions
on a world leading advertising platform, BrightRoll, which
is the flagship of Yahoo!’s programmatic ad buying appli-
cation suite. It offers efficient Real Time Bidding (RTB)

buying platforms and provides access to Yahoo! and third
party inventories. BrightRoll capitalizes on relevant billions
of user data each day and supports campaign management
that capitalizes on maximizing ad campaign’s reach, rele-
vance and exposure frequency. Thus, it is a big challenge to
set up a flexible and complete model framework that consis-
tently integrates information from different dimensions, and
our proposed algorithms are able to fill this gap.

The major contributions of this paper can be summarized
as follows:

(1) We propose AdvUserGraph, a novel bipartite graph rep-
resentation for modeling user behaviors in computational
advertisement.

(2) We propose the ADNI algorithm tailored for AdvUser-
Graph with two extensions: Approxi ADNI and Sparse
ADNI for identifying potential customers with respect
to a specific advertisement campaign on such lopsided
bipartite graphs (e.g., user nodes are much more com-
pared to campaign nodes).

(3) We use real-world data from a world leading advertising
platform, BrightRoll, to empirically validate the effec-
tiveness and efficiency of the proposed algorithms. In
particular, we employ these algorithms in a user inter-
est prediction task in cost per action (CPA) model for
several campaigns with satisfactory performance.

The rest of the paper is organized as follows. In Sec-
tion 2, we briefly review the related work on computational
advertisement, conversion rate prediction and graph-based
modeling. Then in Section 3, we introduce AdvUserGraph
accompanied with ADNI and its two sparse versions Approxi
ADNI and Sparse ADNI. Section 4 presents experimental
results on both synthetic data and BrightRoll applications.
Finally, we conclude the paper in Section 5.

2. RELATED WORK
In this section, we briefly review the existing work on com-

putational advertisement, CVR prediction and graph-based
modeling.

2.1 Computational Advertisement
Computational advertisement is the foundation of build-

ing large scale automated systems to select ads in online ad-
vertising applications. An important goal is to find the best
match between a given bid request in a given context and
a suitable ad. Different variations of the problem arise de-
pending on the context considered. For example, one impor-
tant objective of advertisers is to build brand awareness for
promoting future sales, possibly targeting at a user segment.
This is similar in spirit to advertising on television and mag-
azines. Advertisers with this objective in mind usually opt
for the Cost-per-Milli (CPM) model where impressions (user
see ads on publisher pages) are priced in bundles of 1,000.
In this scenario, “delivery” is the goal for publishers. If the
advertisers’ intentions are clicks and conversions(e.g., online
course registration, credit card application or products pur-
chase, etc), they usually adopt cost-per-click(CPC) or cost-
per-action(CPA) models. The corresponding click-through-
rate (CTR) and conversion-rate (CVR) are the two goals
that we would like to optimize.

The CTR of an advertisement is defined as the number
of clicks on an ad divided by the number of times the ad is
shown (impressions), expressed as a percentage. Similarly,
CVR is the proportion of conversions divided by the total
number of impression (post view attribution only), or the

total clicks (post click attribution only) or the total of both
(post view and post click attributions). CVR prediction
is even more challenging compared to CTR prediction since
the data is much sparser. In this paper, we focus on tackling
the CVR prediction problem.

2.2 CVR Prediction
Building conversion models is extremely challenging for

many reasons and only a few papers have explored this
field [10, 16, 3]. Usually, only a very small portion of
the users that click or have been shown ads eventually con-
vert and thus, conversions are very rare events. This con-
strains the modeling techniques to parsimoniously work with
the data. On the other side, user profiles are high dimen-
sional and sparse consisting of several different kinds of ac-
tivities, ranging from user demographics to search queries
and page browsing. Dealing with such different activities in
the presence of limited conversion information is non-trivial.
To add to this, the data is highly volatile due to cookie
churn, changes in campaigns, variability in user interests
and other temporal effects that do not allow accumulating
long-standing data and require the modeling approach to
have a quick start and dynamically adapt over time as new
data accumulates. However CVR prediction is critical in
realizing data driven targeted advertising [15, 20]. Essen-
tially, CVR prediction is a probability regression problem
where the positive instances are extremely sparse. Thus
machine learning models with probability-related loss, such
as logistic loss, are mainly used for user response prediction,
including generalized linear regression [8, 5, 11], factoriza-
tion machines [13], gradient boosting decision tree models
[7] and the recent transfer learning [14, 4].

2.3 Graph-Based Modeling
Toady there exist innumerable applications which require

the analyses of some type of large graphs, e.g., social net-
works, protein interaction networks, co-author networks, etc.
Even more, the world wide web is estimated to contain
at least 4.74 billion pages [1]. Consequently, the analy-
ses of even moderately large networks are on the order of
tens of thousands of vertices and pose significant challenges.
One approach to deal with these problems is to partition
such networks, cutting them into smaller, more manageable
pieces which may be processed in parallel. However, the NP-
complete problem of finding an optimal clustering of vertices
within one of these networks has been under investigation
for over a decade [17].

Partitioning large graphs is indeed a computationally in-
tensive problem: few methods exist which can partition a
graph with n vertices and m edges in time that is close
to even O(n2) or O(m). A breakthrough in recent years
has been the advent of local methods for graph partition-
ing, achieving a time complexity that is close to linear in
the number of edges. The first of these methods was made
possible by a local clustering algorithm called NIBBLE [18].
NIBBLE attempts to minimize the clustering quality metric
cut conductance for undirected unweighted graphs. Given a
starting vertex, it provably finds a cluster near that vertex
in time (O(2b log6m)/φ4)) that is proportional to the size
of the output cluster. Finding a cluster in time proportional
to its size is an extremely valuable routine in itself, and the
authors show how NIBBLE can be used as a subroutine to
repeatedly remove small clusters from a large graph in order
to obtain a nearly-linear time graph partitioning algorithm.

Later [2] extended NIBBLE using PageRank vectors and
showed that a sweep over a single PageRank vector can find

a cut with conductance φ, provided there exists a cut with
conductance at most Ω(φ2/ logm) where m is the number of
edges in the graph. By extending this result to approximate
PageRank vectors, they develop an algorithm for local graph
partitioning that can be used to find a cut with conductance
at most φ, whose small side has volume at least 2b in time
O(2b log3m/φ2).

Convex optimization has become an increasingly popu-
lar way of modeling graphs in different fields. However, as
datasets get larger and more intricate, classical convex op-
timizations usually fail due to a lack of scalability. Recently
[6] proposed the network Lasso and developed a fast, scal-
able and distributed solver and saw several successful appli-
cations in the graph related problems.

Besides the above mentioned directions, breakthroughs
are also made from using physical models [19]. This work
presents a method that allows for the discovery of commu-
nities within graphs of arbitrary size in times that scale lin-
early with their size. This method avoids edge cutting and
is based on notions of voltage drops across networks that are
both intuitive and easy to solve regardless of the complexity
of the graph involved. It is also showed how this algorithm
allows for the swift discovery of the community surrounding
a given node without having to extract all the communi-
ties out of a graph. The computational complexity of this
algorithm is O(m+ n).

Both NIBBLE and PageRank NIBBLE are local algo-
rithms, which find a solution containing or near a given ver-
tex without looking at the whole graph. The running time
of local algorithms, when finding a non-empty local cluster,
is nearly linear in the size of the output cluster. [18] and [2]
focus on unweighted and undirected massive graphs. [6] and
[19] are global algorithms. In global clustering, each node of
the graph is assigned a cluster in the output of the method.
For large graphs such as social networks and web content
graph, global approaches that require the entire graph to be
accessible simultaneously do not scale well. In such settings,
a more desirable approach is to use local clustering algo-
rithms. However, neither NIBBLE nor PageRank NIBBLE
directly fits our needs where the Size of the recommended
users is required beforehand.

3. THE PROPOSED FRAMEWORK
In this section, we first introduce the bipartite graph(AdvUserGraph)

representation of historical user behaviors together with the
action importance defined on such graphs; then we present
the proposed local algorithm(ADNI) for finding potentially
interested users with respect to a specific advertiser cam-
paign, followed by further sparse extensions(Approxi ADNI
and Sparse ADNI).

3.1 Bipartite Graphs and Action Importance
In order to predict users’ actions with respect to a spe-

cific campaign, in this paper, we propose to use bipartite
graphs to represent historical user behaviors in terms of
their interactions with advertiser campaigns. Such graphs
are named AdvUserGraph. It contains two types of nodes,
user nodes and campaign nodes. There is an edge between
a user node and a campaign node if and only if the user
interacted with the campaign before via impression, click or
conversion. Therefore, given a campaign node, our goal is
to find a good cluster in the bipartite graph near this node
with low conductance (introduced in the next subsection),
such that the user nodes within this cluster are highly likely
to interact with the campaign (if not in the past).

We consider both binary and continuous bipartite graphs,

where edge weights can only be 0 or 1 in binary graphs
and between 0 and 1 in continuous graphs. For binary
graphs, we add an edge between two nodes (i.e., a user node
and a campaign node) if any interaction (i.e., impression,
click or conversion) exists in historical records. For con-
tinuous graphs, we simultaneously consider three types of
edges, i.e., impressions, clicks and conversions. The raw
weights of each edge will be the absolute number of impres-
sions, clicks and conversions between users and campaigns.
There are usually a few tens of impressions but with a wide
range, a few clicks with a smaller range and only one or two
conversions if at all. However, the values of impressions,
clicks and conversions are in the opposite direction, i.e.,
values(impression) � values(clicks) � values(conversion)
(� stands for much smaller). To deal with the above prob-
lem induced by the highly imbalanced distributions and val-
ues of the three edge types, we borrow the idea of tf-idf
and make the following modifications. We assume the edges
between each pair of user and campaign nodes to be a docu-
ment and the three types of edges to be three unique terms.
Denote f(eij , di) the raw frequency of a term eij in a docu-
ment di for i = 1, . . . , N where N is the total number of pairs
of users and campaigns, and j = 1, 2, 3 the index of the three
types of edges. We use the logarithmic scaled frequency to
define the term frequency (tf) as follows:

tf(eij , di) =

{
1 + log f(eij , di), f(eij , di) 6= 0

0, else.

Then the inverse document frequency (idf) is defined ac-
cordingly as follows:

idf(eij , D) = log
I

|{di ∈ D : eij ∈ di}|
where |{di ∈ D : eij ∈ di}| denotes the number of documents
where term eij appears. The final tf-idf is calculated as

tfidf(eij , di) = tf(eij , di)× idf(eij , D). (1)

Later we use Equation (1) to define weights in the continu-
ous AdvUserGraph and find more promising results by dis-
criminating different edge values compared to the binary
AdvUserGraph.

3.2 ADNI Algorithm
In this subsection, we introduce the proposed ADNI algo-

rithm for finding potentially interested customers with re-
spect to a specific advertiser campaign. Formally, we study
the clustering problem where the data set is given as an
undirected graph represented by a similarity matrix: given
an undirected graph G = (V,E), we want to find a set S
that minimizes the relative number of edges going out of S
with respect to the size of S (or the size of S̄ if S is larger
than S̄, where (S, S̄) is a partition of G). To capture this
concept rigorously, [18] proposed the cut conductance of a
set S as:

φc(S) =
|E(S, S̄)|

min{vol(S), vol(S̄)}
, (2)

where vol(S) =
∑
v∈S d(v), d(v) represents the degree of the

nodes and E(S, S̄) is the set of edges connecting a vertex in
S with a vertex in S̄. So vol(V) = 2|E|. For binary graphs,
degree of a node is defined as the number of edges connect-
ing to the node; and for continuous graphs, it is defined as
the sum of weights of connected edges. Finding S with the
smallest φc(S) is called conductance minimization which is
equivalent to finding the “best” cluster in the graph, if we
rank clusters by their conductance.

The change in probability mass after one step of the ran-
dom walk is a linear operator that is realized by multiplying

the column vector of probabilities by the matrix

M = (AD−1 + I)/2, (3)

where A is the adjacency matrix of the graph, D is the
diagonal matrix with diagonal entries (d(1), . . . , d(n)), with
each diagonal element equals the row sum of A. Following
[18], we define

I(p, x) = max
w∈[0,1]n

w(u)d(u)=x

∑
u∈V

w(u)p(u). (4)

One can easily check that I(p, 0) = 0 and I(p, 2m) = 1. De-
note Ix(p, x) as the partial derivative of I(p, x) with respect
to x, we have

Ix(p, x) = lim
δ→0

Ix(p, x− δ) =
p(π(j))

d(π(j))
, (5)

where π is the permutation function such that
p(π(i))

d(π(i))
≥ p(π(i+ 1))

d(π(i+ 1))
(6)

and π(j) = Sj(p) − Sj−1(p). As p(π(i))/d(π(i)) is non-
increasing, Ix(p, x) is a non-increasing function in x and
I(p, x) is a concave function in x. I(p, x) is used as one con-
vergence measure and Ix(p, x) characterizes the probability
mass.

We generalize the ADNI in Algorithm 1. It is adapted
from the NIBBLE algorithm proposed in [18], and is tai-
lored for bipartite graphs. Constants c1 to c4 are defined
in the same way as [18]. ADNI works as follows. It takes
as input the bipartite graph G, the campaign node va, the
lower bound k on the number of potentially interested cus-
tomers, as well as the upper bound φ on the conductance of
the local cluster, and outputs the set of k user nodes within
the identified local cluster. In Steps 1 and 2, we initialize
the parameters in the same way as [18]. Notice that in the
bipartite graph G with n nodes, for an n × 1 vector p and
a positive constant ε, define [p]ε to be an n× 1 vector such
that [p]ε(v) = p(v) if and only if p(v) ≥ d(v)ε, where d(v) is
the degree of node v, and 0 otherwise. In other words, [p]ε
is a truncated version of p. Next, Steps 4 and 5 generate a
sequence of vectors starting at r0 by the following rule

qt =

{
r0, if t = 0,
Mrt−1, otherwise,

where rt = [qt]ε, t > 0. That is, at each time stamp, we
let the random walk proceed by one step from the current
distribution and then round every qt(u) that is less than
d(u)ε to 0. Notice that qt and rt are not necessarily proba-
bility vectors, as their components may sum to less than 1.
Then Step 7 finds the set Sj(qt) consisting of j nodes whose
corresponding elements in qt are the largest, and Step 8
determines if this set contains the desired user nodes that
correspond to potentially interested customers. In particu-
lar, it checks the following 3 conditions: condition Size in
Step 9 guarantees that the output set has at least k recom-
mended user nodes; condition Volume in Step 10 ensures
that it contains a good amount of volume (e.g., not too much
and not too little); condition Large Prob Mass in Step 11
guarantees that the output user nodes have a large proba-
bility mass. Notice that in condition Large Prob Mass,
according to the definition of Ix(p, x), Ix(qt, 2

b) can be com-
puted as follows.

Remark 3.1. Assuming that j′ satisfies λj′(qt) ≤ 2b ≤
λj′+1(qt), then

Ix(qt, 2
b) =

qt(π(j′))

d(π(j′))
. (7)

Lemma 3.2. The time complexity for ADNI is bounded by

Algorithm 1 ADNI Algorithm

Input: G, va, k, φ, b
Output: The set of k user nodes within the local cluster
1: Compute tlast and initialize ε according to [18] using φ.
2: Initialize r0 to be an n× 1 all zero vector except for the

element that corresponds to va.
3: for t = 1:tlast do
4: Set qt = Mrt−1, where M is defined as 1

2
(AD−1 + I),

A is the n × n adjacency matrix of G, D is the n ×
n diagonal matrix whose elements are set to be the
degree of each node in G, and I is the n× n identity
matrix.

5: Set rt = [qt]ε.
6: for j = k : n do
7: Let Sj(qt) denote the set of j nodes whose corre-

sponding elements in qt are the largest.
8: Return the k user nodes in Sj(qt) as the ranked list,

and quit if the following conditions are satisfied
9: – Size: the number of user nodes in Sj(qt) is at

least k.
10: – Volume: 2b ≤ λj(qt) < 5

6
vol(G).

11: – Large Prob Mass Ix(qt, 2
b) ≥ 1

c4
(l + 2)2b.

12: end for
13: end for
14: Return an empty set.

O(2b log
6m
φ4).

Proof. Similar to the NIBBLE algorithm, Algorithm 1
will run for up to tlast iterations. We will now show that
each iteration takes time O((k/γ − k+ 1) logm/ε), where γ
denotes the fraction of user nodes among all the nodes in
the graph. tlast and ε are defined in the same way as [18]:

tlast = (l + 1)

⌈
2

φ2
log(c1(l + 2)

√
µ(V)/2)

⌉
(8)

ε = 1/(c3(l + 2)tlast2
b) (9)

Let Vt represent the set of vertices such that ∀u ∈ Vt, rt(u) >
0, which can be computed in time O(|Vt|) in Step 5. Given
the knowledge of Vt−1, the multiplication in Step 4 can be
performed in time proportional to

µ(Vt−1) =
∑

u∈Vt−1

d(u) ≤
∑

u∈Vt−1

rt(u)/ε ≤ 1/ε. (10)

Steps 7 to 11 require sorting the vectors in Vt according
to rt, which takes time at most O(|Vt| logn). Thus, the
running time for the inner loop of Algorithm 1 is bounded by
O((k/γ − k + 1) logm/ε). In our application, γ ≈ 1. Thus,
putting everything together, the running time of ADNI is
bounded by

O (tlast(k/γ − k + 1) logn/ε)) ≈ O
(

2b
log6m

φ4

)
. (11)

There are two major differences between the proposed
ADNI algorithm and the NIBBLE algorithm in [18]. First,
in ADNI, the identified local cluster Sj(qt) does not neces-
sarily have a conductance lower than φ, and yet it is the first
identified local cluster that satisfies all 3 conditions (Size,
Volume, Large Prob Mass) via truncated diffusions. When
applying the ADNI algorithm, φ is typically chosen based
on the known advertiser campaign/user interactions similar
to the target advertiser campaign va, and it is only used to
compute tlast and ε according to [18]. Second, in ADNI,
instead of using the local cluster size b as the input, we use

the number of user nodes k in the local cluster. In this way,
we allow other advertiser nodes to be included in the local
cluster, which may provide us with more insights regarding
the similarity of advertiser campaigns with respect to users’
interactions.

3.3 Two Further Extensions
The following two steps are most time consuming when

applying ADNI on large graphs: (1) ranking qt to obtain
the largest j nodes in Sj(qt) and Ix(qt, 2

b); (2) the inner
loop between Steps 6 and 12 of ADNI if k � n. To fur-
ther improve the running time of ADNI, we revise the inner
loop of ADNI and propose Approxi ADNI. In ADNI, Sj(qt)
is obtained by fully sorting the n nodes with time complex-
ity at least O(n log(n)). Instead in Approxi ADNI, we use
the partition algorithm introselect [12] to determine Sj(qt)
in Step 7 and select j nodes whose corresponding nonzero
elements in qt are largest without sorting all the elements.
This approximation greatly reduces the time complexity to
O(|Vt|), where Vt is the set of nodes at which rt(u) > 0 and
O(|Vt|) ≤ O(n).

On the other hand, due to the cold-start property of the
motivating application, the input graph G = (V,E) can
be very sparse. To further improve the computational ef-
ficiency, we modify the implementation of Approxi ADNI to
a sparse version, named Sparse ADNI. In particular, we de-
fine D as a sparse n×n diagonal matrix and I as the sparse
n × n identity matrix. As a result M becomes a truncated
sparse matrix and rt is a sparse vector. All the computation
in the inner loop only involves non-zero elements in qt and
rt.

0
20

40
60

80

Time Consumption For Synthetic Data

Tim
e(s
eco

nd
s)

NIB
BLE AD

NI

Approxi ADNI

Sparse ADNI

(a)

10
0

20
0

30
0

40
0

50
0

60
0

Median Time Consumption For Brightroll Applications

Tim
e(s
eco

nd
s)

NIB
BLE AD

NI

Approxi ADNI

Sparse ADNI

PageRank NIBBLE

network Lasso
Vol
tag
e

(b)
Figure 1: Efficiency Comparison on Both Synthetic and

BrightRoll Data

4. EXPERIMENTAL RESULTS
In this section, we demonstrate the performances of the

proposed ADNI algorithm and its extensions with both bi-
nary and continuous bipartite graphs AdvUserGraph. In
particular, we aim to answer the following two questions:

1. What are the benefits that we bring in for ADNI, Ap-
proxi ADNI and Sparse ADNI from adapting the orig-
inal NIBBLE on the applications of user action pre-
diction through studying AdvUserGraph? We answer
this question in Section 4.1.

2. How do the performances of ADNI and its extensions
compare with state-of-the-art techniques, including NIB-
BLE [18], PageRank NIBBLE [2], network Lasso [6]
and Voltage [19] on real massive graphs? We provide
detailed analyses in Section 4.2.

4.1 Synthetic Data
We generate a synthetic bipartite graph of 10M user nodes

and 1K campaign nodes that share similar characteristics as
real data. For each user and campaign pair, the generation
of impressions, clicks, and conversions are consistent with
real data: # impressions � # clicks � #conversions; the
campaign CTR is around 1% and CVR around 0.1%. For
the synthetic binary bipartite graph, the existence of an edge
depends on whether there is any interaction (a.k.a., impres-
sion, click or conversion) between the user and campaign
nodes. For the synthetic continuous bipartite graph, edge
weight is calculated using Equation (1).

To test both the effectiveness and efficiency of ADNI, Ap-
proxi ADNI and Sparse ADNI, we use a three by three fac-
torial design. One experimental factor is if replacing the cut
conductance condition in the original NIBBLE by the Size
requirement as in ADNI will boost the algorithm efficiency
while still achieving similar effectiveness in massive bipartite
graphs. The second design factor represents “sorting exclu-
sive” variant. For the “sorting exclusive” variant, we adopt
ADNI and for the “no sorting exclusive” variant, we use Ap-
proxi ADNI. The third design factor is the sparse estimation
of M . For the “sparse” variant, we use the sparse version of
ADNI, or Sparse ADNI and for the “non-sparse” variant, we
will again use ADNI. Both Approxi ADNI and Sparse ADNI
are approximated versions of ADNI on some aspects and we
would like to see if they can lead to improved efficiency with
little side effect of effectiveness.

In order to comprehensively investigate both the efficiency
and effectiveness of ADNI and its extensions, we focus on 3
measures. We use running time to compare the efficiency,
cut conductance and precision/recall to characterize the ef-
fectiveness. We denote each learnt subgraph as S and the
underlying ground truth as A, and define precision and recall
as follows:

precision =
|A
⋂
S|

|S| , recall =
|A
⋂
S|

|A| .

We learn the subgraph of each campaign node with the
size requirement (500K recommended user nodes) and each
of the following reported measure is based on the median
values over the 1K campaign nodes. Here we report the
running time (Figure 1a) for the synthetic bipartite graph
which has around 10M nodes and 1M edges. On average
ADNI consumes around 2/3 of the time needed by NIBBLE.
Furthermore, Approxi ADNI and Sparse ADNI reduce the
running time by approximately 10% compared with ADNI;
and Sparse ADNI is also more efficient compared to Approxi
ADNI. Notice that it is very hard for NIBBLE to control the
size of the output sets and we have to loop and relax over
φ to achieve the size requirement. This is detrimental to its
efficiency and even more severe in practice. In conclusion,
we observed significant efficiency improvement of Approxi
ADNI and Sparse ADNI over NIBBLE.

Next we report pairwise comparisons of the cut conduc-
tance in Figure 2a for the binary bipartite graph and Figure
2b for the continuous bipartite graph. For each campaign
node, let A denote the ground truth graph, S the subgraph
learnt from NIBBLE, S0 from ADNI, S1 from Approxi ADNI
and S2 from Sparse ADNI respectively. Notice that it is
possible to see an output set S to have smaller cut conduc-
tance than A, because A is not necessarily the sparest cut in
the graph. Recall that smaller cut conductance represents a
sparer cut in the graph or better performance. Compared to
NIBBLE, ADNI achieves sparser cuts (or φ(S0)/φ(S) < 1)
for around 50% campaign nodes in the binary synthetic
graph and 80% in the continuous synthetic graph. ADNI
achieves around 10% more sparser cuts compared to Ap-
proxi ADNI (or φ(S0)/φ(S1) < 1) and 15% more sparser
cuts compared to Sparse ADNI (or φ(S0)/φ(S2) < 1). In
general, φ(S2) < φ(S1) < φ(S0) < φ(S). We also observe
the way that we define the edge weights in the continuous
graph brings us even more improvements, where ADNI and
its extensions show more advancements in continuous bipar-
tite graphs compared to binary bipartite graphs (in Figure
2b). To conclude, even we do not explicitly require the con-
straint of φ in ADNI and its two extensions, the outputs still
achieve similar φ in the binary bipartite graph and better φ
in the continuous bipartite graph.

We report precision/recall in Figure 3a for the binary
graph and Figure 3b for the continuous graph. In our sce-
nario precision is the conversion rate of the recommended
users while recall is the fraction of the converters that are
included in the recommended users out of the total convert-
ers. Precision/Recall range between 0 and 1 and the larger
the better. Again, ADNI, Approxi ADNI and Sparse ADNI
all achieve very promising results. There is almost no perfor-
mance difference between ADNI and NIBBLE. ADNI per-
forms better compared to Approxi ADNI and Sparse ADNI
on average. Similar as before we see more improvement by
using the continuous graph compared to the binary graph.

In conclusion, ADNI, Approxi ADNI and Sparse ADNI
algorithms greatly outperform NIBBLE regarding efficiency
which is critical in real time deployment. Besides, they
achieve similar effectiveness regarding cut conductance and
precision/recall for both binary and continuous graphs. All
three exhibit even more improvements in the continuous
graph than the binary graph. If we think about these meth-
ods as global strategies for all campaigns, we can conclude
with strong confidence that ADNI and its extensions achieve
the same or even better results in massive graphs compared
to NIBBLE though we replace the cut conductance condition
in our scenario to guarantee the practical Size requirement.

4.2 Brightroll Applications
In the second experiment, we test AdvUserGraph on the

real motivating problem of action prediction in computa-
tional advertisement and show benefits induced by the bi-
partite graph in different campaign categories. We expect
that some campaign categories will benefit more if they
have more user stickiness. We first collect 7 days of the
users’ interaction history from 50 campaigns that are cur-
rently served by BrightRoll. These campaigns belong to
10 different categories, including Entertainment, Automo-
tive, Business, Education, Parenting, Health, Food/Drink,
Home/Garden, Law/Politics and News. For ADNI and its
extensions, we report results from the continuous bipartite
graph since in reality they show much better performance
compared to the binary version, as accounting for the im-

portance of different kinds of edges is critical.
We test ADNI, Approxi ADNI and Sparse ADNI together

with NIBBLE, PageRank NIBBLE, network Lasso and Volt-
age to recommend the top 10M users for each campaign. To
briefly recap (refer to Section 2.3 for more details), NIBBLE
[18] attempts to optimize cut conductance for undirected
unweighted graphs and it provably finds a cluster near the
starting vertex in time that is proportional to the size of
the output cluster. [2] extends NIBBLE and improves the
efficiency of the original NIBBLE using PageRank vectors.
[6] proposed the network Lasso and developed a fast, scal-
able and distributed solver that saw several successful ap-
plications on large graphs. [19] proposed the Voltage model
which avoids edge cutting and is based on notions of volt-
age drops across networks. It also allows for the discovery
of communities within graphs of arbitrary size with running
time that scales linearly with respect to their size. Both
NIBBLE and PageRank NIBBLE are local algorithms and
the network Lasso and Voltage model are global algorithms.
In order to compare efficiency and effectiveness, we focus on
the following measures that are most critical for online per-
formances: (1) Running time; (2) AUC: the algorithms’ area
under the ROC (Receiver Operating Characteristic) curve,
which is usually used to quantify the quality of the predicted
ranking that results from the algorithm according to the
predicted probability; (3) CVR: we recommend 10M users
for each campaign and calculate the proportion that will be
converted in the next 3 days; (4)BPI: in online A/B test-
ing, total spending and eCPA (expected Cost Per Action)
are the two most important criteria to characterize revenue.
In order to quantify the performance that can reflect these
two measures in a consistent way, we propose the following
Business Performance Index (BPI):

BPI =
rev.test + (cost.ctrl− cost.test)

rev.ctrl
. (12)

where rev.test and rev.ctrl are calculated through number
of conversions multiplied by CPA goal and cost.test and
cost.ctrl are mainly inventory costs. BPI is proportional
to the profit margin lift.

First we report the median running time of the 50 cam-
paigns in Figure 1b from the 7 competitors. Notice that
NIBBLE, PageRank NIBBLE, ADNI and its two extensions
are local algorithms. Voltage and network Lasso are global
algorithms that take into consideration the entire graph.
Overall, local algorithms are much more efficient compared
to global algorithms on the massive bipartite graphs of com-
putational advertisement. Among the local algorithms, Sparse
ADNI achieves the most efficiency. Among the global algo-
rithms, network Lasso almost triples the running time of
Approxi ADNI and Sparse ADNI. Among the 7 algorithms,
Voltage is the least efficient.

Besides the efficiency, we also report AUC, CVR and BPI
to characterize the effectiveness of different algorithms. These
results are reported in Table 1. We use blue colors to high-
light wins and red colors losses. ADNI beats the other 6
regarding all three measures, and its two extensions Approxi
ADNI and Sparse ADNI rank next. Global algorithms that
require the entire graph to be accessible simultaneously do
not perform well, since it is extremely hard for global algo-
rithms to control the size of output sets, which is detrimen-
tal for the performance. Voltage again achieves the worst
results and this is probably because voltage drops do not
fit well for the user-campaign linkage study. In conclusion,
local algorithms not only achieve the best efficiency but also
the promising effectiveness as well.

To further test the effectiveness induced by the bipar-
tite graph AdvUserGraph for different campaign categories,
we also study the performance by categories. There are
two observations here: 1. Different campaign categories in-
deed show different improvements by including the AdvUser-
Graph. And we believe that the more user stickiness (e.g.,
Food/Drink, Auto, Entertain), the more improvements Ad-
vUserGraph can bring; 2. The quality of the AdvUserGraph
is improved as more data becomes available.

5. CONCLUSIONS
Motivated by applications of large-scale action prediction

for billions of users in computational advertising, we pro-
pose AdvUserGraph, a novel bipartite graph representation
to tackle the CVR prediction problem.. In particular, we
propose an ADNI algorithm with two further extensions
Approxi ADNI and Sparse ADNIwith running time propor-
tional to the size of the output cluster. Experimental results
on both synthetic data and real data from BrightRoll show
that the proposed easily-implemented, random-walk based
local algorithms strike a good balance between effectiveness
and efficiency, thus is more appropriate for today’s data-
intensive applications.

6. REFERENCES
[1] The size of the world wide web.

https://www.worldwidewebsize.com.

[2] R. Andersen, F. Chung, and K. Lang. Local graph
partitioning using pagerank vectors. In Proceedings of
the 47th Annual IEEE Symposium on Foundations of
Computer Science, FOCS ’06, pages 475–486, 2006.

[3] O. Chapelle, E. Manavoglu, and R. Rosales. Simple
and scalable response prediction for display
advertising. ACM Trans. Intell. Syst. Technol.,
5(4):61:1–61:34, 2015.

[4] B. Dalessandro, D. Chen, T. Raeder, C. Perlich,
M. Han Williams, and F. Provost. Scalable hands-free
transfer learning for online advertising. In Proceedings
of the 20th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’14,
pages 1573–1582, 2014.

[5] T. Graepel, J. Candela, T. Borchert, and R. Herbrich.
Web-scale bayesian click-through rate prediction for
sponsored search advertising in microsoft’s bing search
engine. In Proceedings of the 27th International
Conference on Machine Learning, ICML ’27, 2010.

[6] D. Hallac, J. Leskovec, and S. Boyd. Network lasso:
Clustering and optimization in large graphs. In
Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’15, pages 387–396, 2015.

[7] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi,
A. Atallah, R. Herbrich, S. Bowers, and J. Candela.
Practical lessons from predicting clicks on ads at
facebook. In Proceedings of the Eighth International
Workshop on Data Mining for Online Advertising,
ADKDD’14, pages 5:1–5:9, New York, NY, USA,
2014. ACM.

[8] K. Lee, B. Orten, A. Dasdan, and W. Li. Estimating
conversion rate in display advertising from past

erformance data. In Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, pages 768–776,
New York, NY, USA, 2012. ACM.

[9] L. Lovasz and M. Simonovits. The mixing rate of
markov chains, an isoperimetric inequality, and
computing the volume. In 31st Annual Symposium on
Foundations of Computer Science, pages 346–354,
1990.

[10] M. Mahdian and K. Tomak. Pay-per-action model for
online advertising. Internet and Network Economics,
Lecture Notes in Computer Science, 4858:549–557,
2007.

[11] H. McMahan, G. Holt, D. Sculley, M. Young,
D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov,
D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg,
A. Hrafnkelsson, T. Boulos, and J. Kubica. Ad click
prediction: A view from the trenches. In Proceedings
of the 19th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD ’13,
pages 1222–1230, New York, NY, USA, 2013. ACM.

[12] D. R. Musse. Introspective sorting and selection
algorithm. Software: Practice and Experience (Wiley),
27(8):983–993, 1997.

[13] R. Oentaryo, E. Lim, J. Low, D. Lo, and M. Finegold.
Predicting response in mobile advertising with
hierarchical importance-aware factorization machine.
In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining, WSDM
’14, pages 123–132, New York, NY, USA, 2014. ACM.

[14] C. Perlich, B. Dalessandro, T. Raeder, O. Stitelman,
and F. Provost. Machine learning for targeted display
advertising: transfer learning in action. Machine
Learning, 95:103–127, 2014.

[15] M. Richardson, E. Dominowska, and R. Ragno.
Predicting clicks: Estimating the click-through rate
for new ads. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages
521–530, New York, NY, USA, 2007. ACM.

[16] R. Rosales, H. Cheng, and E. Manavoglu. Post-click
conversion modeling and analysis for non-guaranteed
delivery display advertising. In Proceedings of the
Fifth ACM International Conference on Web Search
and Data Mining, WSDM ’12, pages 293–302, 2012.

[17] S. Schaeffer. Survey: Graph clustering. Journal
Computer Science Review, 1(1):27–64, 2007.

[18] D. Spielman and S. Teng. A local clustering algorithm
for massive graphs and its application to nearly linear
time graph partitioning. SIAM Journal of
Computation, 42:1–26, 2013.

[19] F. Wu and B. A. Huberman. Finding communities in
linear time: A physics approach. European Physical
Journal B, 38:331–338, 2004.

[20] J. Yan, N. Liu, G. Wang, W. Zhang, Y. Jiang, and
Z. Chen. How much can behavioral targeting help
online advertising? In Proceedings of the 18th
International Conference on World Wide Web, WWW

’09, New York, NY, USA, 2009. ACM.

Candidates AUC CVR BPI

NIBBLE 0.67 (0.11) 9.89% (2.34%) 1.32 (0.34)

ADNI 0.72(0.07) 12.10% (1.92%) 1.56 (0.28)

Approxi ADNI 0.69 (0.10) 10.92% (3.01%) 1.42 (0.35)

Sparse ADNI 0.68 (0.12) 10.11% (3.78%) 1.38 (0.43)

PageRank NIBBLE 0.64 (0.10) 9.93% (4.02%) 1.29(0.44)

Voltage 0.53 (0.13) 5.14 % (2.37%) 0.88 (0.33)

network Lasso 0.64 (0.20) 8.32% (3.92%) 1.20 (0.46)

Table 1: Comparison results for seven competitors. We report median values from the 50 campaigns and relative variances in the
parentheses. We use blue colors to highlight wins and red colors for loss.

0.4 0.6 0.8 1.0 1.2

0.0
0.5

1.0
1.5

NIBBLE vs Ground Truth

φ(S)/φ(A)
0.94 0.98 1.02 1.06

0
2

4
6

8
10

12

ADNI vs NIBBLE

φ(S0)/φ(S)
0.90 0.95 1.00 1.05

0
2

4
6

ADNI vs Approxi ADNI

φ(S0)/φ(S1)
0.85 0.90 0.95 1.00 1.05

0
1

2
3

4
5

6

ADNI vs Sparse ADNI

φ(S0)/φ(S2)

(a) Cut Conductance for Binary Synthetic Data.

0.4 0.6 0.8 1.0 1.2

0.0
0.5

1.0
1.5

NIBBLE vs Ground Truth

φ(S)/φ(A)
0.85 0.90 0.95 1.00 1.05 1.10

0
1

2
3

4
5

ADNI vs NIBBLE

φ(S0)/φ(S)
0.75 0.85 0.95 1.05

0
1

2
3

4
ADNI vs Approxi ADNI

φ(S0)/φ(S1)
0.8 0.9 1.0 1.1

0
1

2
3

4

ADNI vs Sparse ADNI

φ(S0)/φ(S2)

(b) Cut Conductance for Mixed Synthetic Data.
Figure 2: Cut Conductance Comparison on the Synthetic Data. A denotes the ground truth graph, S the subgraph learnt

from NIBBLE, S0 from ADNI, S1 from Approxi ADNI and S2 from Sparse ADNI respectively. φ stands for cut conductance
and ratios that are smaller than 1 indicates sparser cuts. To conclude, in binary bipartite graph, NIBBLE and ADNI achieve
relatively the same sparse cuts, both outperform Approxi ADNI and Sparse ADNI. In continuous bipartite graph, ADNI
performs the best and the other three perform relatively the same.

0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

NIBBLE

Precision and Recall

precision
recall

0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

ADNI

Precision and Recall

precision
recall

0.75 0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

Approxi ADNI

Precision and Recall

precision
recall

0.75 0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

Sparse ADNI

Precision and Recall

precision
recall

(a) Precision and Recall for Binary Synthetic Data.

0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

NIBBLE

Precision and Recall

precision
recall

0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

ADNI

Precision and Recall

precision
recall

0.75 0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

Approxi ADNI

Precision and Recall

precision
recall

0.75 0.80 0.85 0.90 0.95 1.00

0
1

2
3

4
5

6
7

Sparse ADNI

Precision and Recall

precision
recall

(b) Precision and Recall for Mixed Synthetic Data.
Figure 3: Precision/Recall Comparison on the Synthetic Data. In our scenario precision is the conversion rate of the

recommended users while recall is the fraction of the converters that are included in the recommended users out of the total
converters. Precision/Recall range between 0 and 1 and the larger the better. ADNI and NIBBLE perform relatively the
same and both perform better compared to Approxi ADNI and Sparse ADNI on average. We also see more improvement by
using continuous graph compared to binary graph.

