
Distance-Based Influence in Networks:
Computation and Maximization

Edith Cohen Daniel Delling Thomas Pajor Renato F. Werneck
Tel Aviv University Sunnyvale Cupertino San Francisco
Google Research USA USA USA

edith@cohenwang.com daniel.delling@gmail.com thomas@tpajor.com rwerneck@acm.org

ABSTRACT
A premise at a heart of network analysis is that entities in a network
derive utilities from their connections. The influence of a seed set S
of nodes is defined as the sum over nodes j of the utility of S to j.
Distance-based utility, which is a decreasing function of the distance
from S to j, was explored in several successful research threads
from social network analysis and economics: Network formation
games [Bloch and Jackson 2007], Reachability-based influence
[Richardson and Domingos 2002; Kempe et al. 2003]; “threshold”
influence [Gomez-Rodriguez et al. 2011]; and closeness centrality
[Bavelas 1948].

We formulate a model that unifies and extends this previous work
and address the two fundamental computational problems in this
domain: Influence oracles and influence maximization (IM). An
oracle performs some preprocessing, after which influence queries
for arbitrary seed sets can be efficiently computed. With IM, we seek
a set of nodes of a given size with maximum influence. Since the IM
problem is computationally hard, we instead seek a greedy sequence
of nodes, with each prefix having influence that is at least 1−1/e
of that of the optimal seed set of the same size. We present the first
highly scalable algorithms for both problems, providing statistical
guarantees on approximation quality and near-linear worst-case
bounds on the computation. We perform an experimental evaluation
which demonstrates the effectiveness of our designs on networks
with hundreds of millions of edges.

1. INTRODUCTION
Structural notions of the influence of a set of entities in a network

which are based on the utility an entity derives from its connectivity
to others, are central to network analysis and were studied in the
context of social and economic models [2,3,13,20,23,25,29,32] with
applications that include ranking, covering, clustering, active semi-
supervised learning, and studying diffusion and network formation
games. Formally, influence can be expressed in terms of utilities ui j
between ordered pairs of entities. The influence of a single entity i,
also known as its centrality, is the sum Inf(i) = ∑ j ui j over entities
j, of the utility of i to j. The influence of a set S of entities is the
sum over entities of the highest utility match from S:

Inf(S) = ∑
j

max
i∈S

ui j .

One of the simplest and more popular definitions of influence
relies on reachability-based utility [21, 25, 30]. The network here
is a directed graph, where entities correspond to nodes. We have
ui j = 1 when the node j is reachable from node i. Therefore, the
influence of S is the number of entities reachable from S. A powerful
enhancement of this model is to allow for multiple instances, where
each instance is a set of directed edges, or for a distribution over

instances, and accordingly, define ui j as the respective average or ex-
pectation. The popular Independent Cascade (IC) model of Kempe
et al. [25] uses a distribution defined by a graph with independent
inclusion probabilities for edges.

More expressive utility is based on shortest-path distances [2, 3,
13, 20, 25, 29, 32]. Specifically, the utility is ui j = α(di j), where
α(d)≥ 0 is a non-increasing function [3, 13, 16, 31] applied to the
respective shortest-path distance. Reachability-based utility falls
out as a special case, using α(x) = 1 for finite x and α(+∞) =
0. Popular kernels include exponential decay α(x) = exp(−λx),
polynomial decay α(x) = 1/poly(x), Gaussian α(x) = exp(−λx2),
and threshold, which is obtained using α(x) = 1 when x ≤ T and
α(x) = 0 otherwise. This variety, used in practice, demonstrates the
value of this modeling flexibility.

A distance-based model for information diffusion in social net-
works was recently proposed by Gomez-Rodriguez et al. [22]. In
their model, the seed set S corresponds to the “infected” nodes and
edge lengths correspond to propagation time. The shortest paths
distance from S to a node v corresponds to the elapsed time until
v is “infected.” The decay function models the amount by which
slower propagating is less valuable. Again, the model effectiveness
is enhanced by working with multiple instances (each instance is a
set of directed edges with lengths), or with a distribution over such
instances, and defining the utility as the average of α(di j) over in-
stances or as the expectation ui j = E[α(di j)]. A simple but powerful
model associates independent randomized edge lengths (REL) with
live edges [1,11,18,22], using exponential [1,11,22] or Weibull [18]
distributions. Randomization is so effective with reachability or
distance-based utilities because the quality of connectivity depends
not only on the existence of a path or the shortest-path length, but
also is higher when there are multiple independent paths [11], and
with randomization, utilities are higher with multiple paths. More-
over, introduction of random noise is a standard method to prevent
overfitting.

The models of Gomez-Rodriguez et al. and subsequent work on
distance-based diffusion [18, 22] was focused specifically on thresh-
old decay functions, where for a threshold parameter T , ui j = 1
only when the distance is at most T . Distance-based utility with
smooth decay functions, which we study here, is motivated by
physical laws, and extensively studied in data analysis [31] and
networks [3, 13, 23, 29]. In particular, distance-based influence
generalizes the distance-decaying variant [5, 9, 13, 17, 29] of close-
ness centrality [2], which was studied with exponential, harmonic,
threshold, and general decay functions.

The two fundamental algorithmic problems in applications of
influence are influence computation and influence maximization
(IM).

Influence computation is the problem of computing the influence

1

of a specified seed set S of nodes. This can be done using multiple
single-source shortest-paths computations from the seed set, but the
computation does not scale well when there are many queries on very
large networks. Cohen et al. for reachability-based influence [12]
and Du et al. for threshold influence [18] designed influence oracles
which preprocess the input so that influence queries Inf(G ,S) for a
specified seed set S can be approximated quickly. In both cases, a
MinHash sketch, based on [8], is computed for each node so that
the influence of a seed set S can be estimated from the sketches of
the nodes in S.

Influence maximization is the problem of finding a seed set
S ⊂ V with maximum influence, where |S| = s is given. Since
reachability-based and threshold influence [22, 25] are special cases,
we know that distance-based influence maximization with general
α is NP-complete and hard to approximate to anything better than
1− (1−1/s)s of the optimum for a seed set of size s (the hardness
result is asymptotic in s) [19]. Fortunately, from monotonicity and
submodularity of these influence functions [22, 25], we obtain that
the greedy algorithm (GREEDY), which iteratively adds to the seed
set the node with maximum marginal influence, is guaranteed to
provide a solution that is at least 1− (1−1/s)s > 1−1/e of the op-
timum [28]. This (worst-case) guarantee holds for every prefix size
of the sequence of seeds reported, which means that the GREEDY
sequence approximates the Pareto front of the trade-off of seed set
size versus its influence. The Pareto front is important on its own as
a characterization of the influence coverage of the network and to
facilitate finding bi-criteria sweet spots between the size of the seed
set and its coverage.

In terms of solution quality, also in practice, GREEDY had been
the gold standard for submodular maximization. Ideally, we seek
near-linear computation with greedy-like approximation guaran-
tees. But exact greedy does not scale even with various optimiza-
tions [27], even for reachability-based influence on a single in-
stance. This prompted the development of scalable heuristics [24]
and of a notable approach [6,35] of running the greedy algorithm on
(pre) sampled or sketched [7, 8] influence sets. Inherently, however,
pre-computed near-linear size samples can not provide greedy-like
quality guarantees beyond a small number of seeds, even without
randomization. The only algorithm that is both near-linearly with
input size and provides greedy-like quality guarantees on a full se-
quence of seeds is SKIM, which works by maintaining samples
with respect to a residual problem that are maintained as seeds are
selected [12].1 For threshold influence, existing maximization al-
gorithms are by Du et al. [18] based on sketches [8] and by [34]
which extends the pre-sampling approach for reachability-based
influence [35]. Again, such designs, when limited to a near-linear
computation, can not provide greedy-like approximation guarantees
beyond a small number of seeds, even when edge lengths are not
randomized.

Contributions. This paper is an overview of our contributions. We
refer the reader to a full version in http://arxiv.org/abs/1410.6976.
The paper is organized as follows. Our distance-based influence
model is presented in Section 2. We define exact and approximate
GREEDY sequences and establish approximation guarantees of both.
We then formulate a representation of a residual problem with re-
spect to a seed set S, which facilitates the greedy computation of the
next seed. Finally, we establish a probabilistic bound on residual
updates, which magically holds for the approximate but not for
the exact greedy. This bound is a critical component in obtaining

1SKIM guarantees hold for inputs specified as a set of instances. It
is not known if near-linear time algorithms with greedy-like guaran-
tees exist for the IC model.

near-linear computation of a full approximate greedy sequence.
Our results for the threshold influence model [18,22] are overviewed

in Section 3. We extend the (approximate) influence oracles and the
SKIM reachability-based influence maximization algorithm [12],
to obtain oracles and T -SKIM for threshold influence. Algorith-
mically, the extension replaces the reachability searches in [12]
with Dijkstra computations that are pruned at the threshold distance.
The statistical guarantees on approximation quality of the oracles
and of the approximate greedy sequence are inherited from SKIM.
Our worst-case running time analysis, however, which establishes
that T -SKIM computes the full approximate greedy sequence in
near-linear time, required our novel probabilistic bound on residual
updates. Our results for threshold influence significantly improve
over previous results, both in terms of theoretical bounds and in
practice and also serve as a warmup before treating the general
influence model.

Our distance-based influence oracles are presented in Section 4.
This is a practically important contribution which again improves
significantly over previous work [18]. The oracle take as input
a seed set S and (any) decay function α , which can be specified
at query time and returns the estimated influence. As explained
earlier, many different decay/kernel functions are used extensively
in practice, which makes the flexibility of the oracle to handle
arbitrary α valuable. Our oracle computes a novel sketch for each
node; the combined All-Distances sketch (cADS), which generalizes
All-Distances Sketches (ADS) [4, 8, 9, 13, 14], used for closeness
centrality computation, to multiple instances or probabilistic models.
These per-node sketches have expected size at most k ln(nmin{k, `})
(with good concentration), where n is the number of nodes, ` is the
number of instances, and k is a sketch parameter that determines
a trade-off between information and the amounts of computation
and space required. We estimate the distance-based influence of a
seed set S from the sketches of the nodes in S. The estimates, also
using simpler estimators, have worst-case coefficient of variation
(CV) ≤ 1/

√
k−2, but we derive estimators that optimally use the

information in the sketch and can be much tighter for seed sets
with diverse coverage. In particular, we use HIP probabilities [9]
with the L∗ estimator [10] and also have a worst-case CV bound of
≤ 1/
√

2k−1.
Our technically most challenging contribution is α -SKIM, which

is the first scalable influence maximization algorithm that applies
with general decay functions α . We refer the reader to the full
version for details. Our design is a strong contribution from both
theoretical and practical perspectives, providing a novel near-linear
worst-case bound on the computation, performance guarantees that
nearly match those of exact GREEDY, and a scalable implementation
that runs on large networks. The heart of our design is a novel
algorithmic technique of efficiently maintaining weighted samples
from influence sets that allows us to accurately estimate marginal
influences as nodes are added to the seed set.

Section 5 presents a comprehensive experimental evaluation of
our algorithms. For threshold influence oracles and maximization,
we obtain three orders of magnitude speedups over the algorithms of
Du et al. [18], with no loss in quality. Even though both approaches
apply the sketches of Cohen [8], we are able to obtain improvements
by working with combined sketches, applying better estimators, and,
in our IM algorithm, only computing sketches to the point needed
to determine the next node. We also show that the generalization to
arbitrary decay functions α is only slightly slower, and can easily
handle graphs with hundreds of millions of edges.

2. DISTANCE-BASED MODEL
For a set of entities V , utility ui j for i, j ∈V , and a seed set S⊂V ,

2

we define the influence of S as

Inf(S) = ∑
j∈V

max
i∈S

ui j .

Distance-based utility is defined with respect to a non-increasing
function α such that α(∞)≡ 0 and (a set or distribution over) edge-
weighted graphs G = (V,E,w), where the nodes correspond to enti-
ties and edges e ∈ E have lengths w(e)> 0.

We refer to a single graph G as an instance. We denote by di j
the shortest-path distance in G from i to j. When there is no path
from i to j in G we define di j ≡ ∞. For a set of nodes S, we let
dS j = mini∈S di j be the shortest-path distance in G from S to j.

The utility of node i to node j with respect to a single instance is
defined as ui j = α(di j), yielding the influence function

Inf(G,S) = ∑
j∈V

α(dS j).

For a set G = {G(t)} of `≥ 1 instances G(t) = (V,E(t),w(t)), we
define the utility of i to j as the average ui j =

1
` ∑

`
t=1 α(d(t)

i j) and
accordingly the influence is the average:

Inf(G ,S) = Inf({G(t)},S) = 1
` ∑

t∈[`]
Inf(G(t),S). (1)

Our algorithms work with inputs specified as a set of one or more
instances and with respect to the influence function (1).

A set of instances can be derived from traces or generated by
Monte-Carlo simulations of a probabilistic model G . Such a model
defines a distribution over instances G ∼ G which share a set V
of nodes. The respective utility is then ui j = E[α(di j)] and the
influence of G is then the expectation

Inf(G ,S) = EG∼G Inf(G,S). (2)

When Inf is well concentrated around its expectation, a small num-
ber of simulations suffices to approximate the results.

2.1 The Exact Greedy Sequence
We present the exact greedy algorithm for the distance-based influ-

ence objective Inf({G(t)},S), as defined in Equation (1). GREEDY
starts with an empty seed set S = /0. In each iteration, it adds the
node with maximum marginal gain, that is, the node i that maxi-
mizes the influence of S∪{i}. GREEDY thus produces a sequence
of nodes, providing an approximation guarantee for the seed set
defined by each prefix.

We now elaborate on the computation of the marginal gain of i
given S. To do so efficiently as S grows, we work with a residual
problem. We denote the residual problem of G with respect to seed
set S as G |S. The influence of a set of nodes U in the residual
problem is equal to the marginal influence in the original problem:

Inf(G |S,U) = Inf(G ,S∪U)− Inf(G ,S).

A residual problem has a slightly more general specification. The
input has the form (G ,δ), where δ (t)

j ≥ 0 maps node-instance pairs
(j, t) to nonnegative numbers. The δ values we use for the residual
problem G |S are the respective distances from the seed set (but can
be truncated without violating correctness at any distance x in which
α(x) = 0):

δ (t)
j = d(t)

S j ≡min
i∈S

d(t)
i j .

When the seed set is empty or the node j is either not reachable
from S in instance t or has distance d(t)

S j > supx{α(x)> 0}, we can

use δ (t)
j = ∞ or any δ (t)

j > supx{α(x)> 0}, which is equivalent.

We now extend the influence definition for inputs of the form
(G ,δ). For a node i and a node-instance pair (j, t), the contribution
of instance t to the utility of i to j which is also the contribution of
(j, t) to the influence of i is:

∆
(t)
i j ≡max{0,α(d(t)

i j)−α(δ (t)
j)}. (3)

The influence of i in the residual problem is the (normalized) sum
of these contributions over all nodes in all instances:

Inf((G ,δ), i)≡ 1
` ∑

t
∑

j
∆
(t)
i j . (4)

It is not hard to verify the following.

LEMMA 2.1. For any set of nodes U, the influence of U in G |S
is the same as marginal influence of U with respect to S in G .

Given a residual input (G ,δ), the influence of a node i can be
computed using a pruned application of Dijkstra’s algorithm from
i. The pruning is performed for efficiency reasons by avoiding
expanding the search in futile directions. In particular, we can
always prune at distance d when α(d) = 0 or when d ≥ δ (t)

j . The
correctness of the pruning follows by observing that all nodes i
Dijkstra could reach from the pruned node have ∆

(t)
i j = 0.

At each step, GREEDY selects a node with maximum influence in
the residual input. It then updates the distances δ so that they capture
the residual problem G |S∪{i}. For details see the full version.

2.2 Approximate Greedy Sequences
APPROXIMATE GREEDY is similar to exact GREEDY, but in each

iteration, instead of selecting a seed node with maximum marginal
gain, we select a seed node with marginal contribution that is within
a small relative error ε of the maximum with high probability. It
also suffices to require that the relative error is bounded by ε in
expectation and is concentrated, that is, ∀a > 1, the probability of
error exceeding aε decreases exponentially in a. It turns out that the
approximation ratio of APPROXIMATE GREEDY is 1− (1−1/s)s−
O(ε) with corresponding guarantees [12].

The SKIM algorithm applies approximate greedy to reachability-
based influence. It works with partial sketches (samples) from
“influence sets” of nodes to determine a node with approximately
maximum marginal gain. These partial sketches need to be updated
very efficiently after each seed is selected. A critical component
for the scalability and accuracy of SKIM is sampling with respect
to the residual problem. This is because the marginal influence of
a node can be much smaller than its initial influence and we can
get good accuracy with a small sample only if we use the residual
problem.

The residual problem (and current samples) are updated after
each seed selection, both with exact and approximate GREEDY. We
now consider the total number of edge traversals used in these up-
dates. With reachability-based influence, with exact or approximate
GREEDY, the number of traversals is linear in input size: This is
because there can be at most one search which progresses through a
node in each instance. Once a node is reachable from the seed set
in that instance, it is influenced, and everything reachable from the
node in the same instance is reachable, and influenced, as well. So
these nodes never need to be visited again and can be removed.

This is not true, however, for distance-based influence: For each
node-instance pair (j, t), the distance δ (t)

j can be updated many
times. Moreover, when the distance to the seed set decreases, as a
result of adding a new seed node, the node j and its outgoing edges
in the instance t are traversed. Therefore, to bound the computation,

3

and in particular, the number of edge traversals performed, we must
bound the number of updates of δ (t)

j .
For exact GREEDY, there are pathological inputs with Ω(sn)

updates, which roughly translates to Ω(s|E|) edge traversals, even
on a single instance and with threshold influence. Remarkably,
we show that even in the worst-case, our APPROXIMATE GREEDY
selection guarantees a near-linear number of updates (proof provided
in the full version):

THEOREM 2.1. Suppose that the approximate greedy selection
has the property that for some ε , the next seed is selected in a near
uniform way from all nodes with marginal influence that is at least
(1− ε) of the maximum. Then the expected total number of updates
of δ (t)

j at a node-instance pair (j, t) is bounded by O(ε−1 log2 n).

3. THRESHOLD INFLUENCE
We present both an oracle and an approximate greedy IM algo-

rithm for threshold influence [18, 22]. In this model, a node i has
utility ui j = 1 to node j if j is within distance at most T from i and
ui j = 0 otherwise. In terms of our general model, we have α(x) = 1
when x≤ T and α(x) = 0 otherwise. Threshold influence resembles
reachability-based influence in that utilities and marginal utilities
are always {0,1}. This property greatly simplifies the design of the
algorithms.

3.1 Threshold-Influence Oracle
Our influence oracle for a prespecified threshold T generalizes

the reachability-based influence oracle of Cohen et al. [12]. The
reachability-based influence oracle preprocesses the input to com-
pute a combined reachability sketch for each node. Each node-
instance pair is assigned a random permutation rank (a number in
[n`]) and the combined reachability sketch of a node i is a set con-
sisting of the k smallest ranks amongst node-instance pairs (j, t)
such that j is reachable from i in instance t. This is also called a
bottom-k sketch of reachable pairs. The oracle uses the sketches of
the nodes in S to estimate their influence by applying the union size
estimator for bottom-k sketches [15]. The combined reachability
sketches are built by first computing a set of reachability sketches
(one for each node) [8] in each instance and then combining, for
each node, the sketches obtained in different instances to obtain
one size-k sketch. In turn, the computation for each instance uses
reverse (backward) reachability computations. The algorithm of
Cohen [8] initiates these reversed reachability searches from all
nodes in a random permutation order. These searches are pruned at
nodes already visited k times.

For threshold influence, we instead consider a pair (j, t) reachable
from i if d(t)

i j ≤ T . We then compute for each node the bottom-k
sketch of these “reachable” pairs under the modified definition. The
oracle estimator [15] is the same one used for the reachability-based
case; the estimate has (worst-case) CV that is at most 1/

√
k−2

with good concentration. The computation of the sketches is nearly
as efficient as for the reachability-based case. Instead of using re-
verse reachability searches, for threshold influence we use reverse
Dijkstra computations (single-source shortest-path searches on the
graph with reversed edges). These computations are pruned both
at distance T and (as with reachability sketches) at nodes already
visited k times. The sets of sketches obtained for the different in-
stances are combined as in [12] to obtain a set of combined sketches
(one combined sketch with k entries for each node).

The running time is dominated by the computation of the sketches.
The preprocessing computation is O(k ∑

`
t=1 |E(t)| logn), the sketch

Algorithm 1: Threshold IM (T -SKIM)

Input: Directed graphs {G(t)}, threshold T , parameter k
Output: Sequence of node and marginal influence pairs

// Initialization

forall the node/instance pairs (u, t) do δ [u,t]← ∞

forall the nodes v do size[v]← 0
index← hash map of node-instance pairs to nodes
seedlist←⊥ // List of seeds & marg. influences

rank← 0

shuffle the n` node-instance pairs (u, t)

// Compute seed nodes

while |seedlist|< n do
while rank< n` do // Build sketches

rank← rank+1
(u, t)← rank-th pair in shuffled sequence

if δ [u,t]< ∞ then skip // Pair (u, t) is covered

run Dijkstra from u in reverse graph G(t), during which
foreach scanned node v in distance d do

if d > T then prune // Prune at depth T

size[v]← size[v]+1
index[u,t]← index[u,t]∪{v}
if size[v]= k then

x← v // Next seed node

abort sketch building

if all nodes u have size[u]< k then
x← argmaxu∈V size[u]

Ix← 0 // The coverage of x
forall the instances t do // Residual problem

run Dijkstra from x in forward graph G(t), during which
foreach scanned node v in distance d do

if δ [v,t]≤ d or d > T then prune
if δ [v,t]= ∞ then Ix← Ix +1
δ [v,t]← d

forall the nodes w in index[v,t] do
size[w]← size[w]−1

index[v, t]←⊥ // Erase (v, t) from index

seedlist.append(x, Ix/`)

return seedlist

representation is O(kn), and each influence query for a set S takes
O(|S|k log |S|) time.

As in [12] for reachability-based influence in the IC model, we
can construct an oracle of the same size and approximate guaranees
for a distance-based IC model. The algorithm, however, uses kn
reverse searches (see full version for details).

3.2 Threshold-Influence Maximization
Our algorithm for threshold influence maximization, which we

call T -SKIM, generalizes SKIM [12], which was designed for
reachability-based influence. A pseudocode for T -SKIM is pro-
vided as Algorithm 1.

Our algorithm T -SKIM builds sketches, but only to the point of
determining the node with maximum estimated influence. We then

4

compute a residual problem which updates the sketches. T -SKIM
build sketches using reverse single-source shortest path computa-
tions that are pruned at distance T (depth-T Dijkstra). As with
exact greedy for distance-based influence (Section 2), T -SKIM
maintains a residual problem. This requires updating the distances
δ [j, t] = d(t)

S j from the current seed set S, as in AddSeed(i), and also
updating the sketches to remove the contributions of pairs that are
already covered by the seed set.

The (worst-case) estimation quality guarantee of T -SKIM is
similar to that of SKIM. When using k = O(ε−2 logn) we obtain
that, with high probability (greater than 1−1/poly(n)), for all s≥ 1,
the influence of the first s selected nodes is at least 1−(1−1/s)s−ε
of the maximum influence of a seed set of size s. The computation
time is near-linear and analysis is provided in the full version.

4. INFLUENCE ORACLE
We now present our oracle for distance-based influence, as defined

in Equation (1). We preprocess the input G to compute a sketch Xv
for each node v. Influence queries, which are specified by a seed
set S of nodes and any function α , can be approximated from the
sketches of the query seed nodes.

We present here the definition of the sketches. For an input
specified as either a set of instances or as a distance-based IC
model, each sketch Xv has a (well concentrated) expected size that
is at most k ln(nk) (and k ln(nmin{k, `}) when using ` instances).
The total storage of our oracle is therefore O(nk log(nk)) (and
nk ln(nmin{k, `}) when using ` instances).

In the full version we detail our influence estimator, which op-
timally uses the information in the sketch, and the algorithm to
compute the sketches (preprocessing). We show that for a set of
` instances G = {G(t)}, the expected time is O(k ∑

`
t=1 |E(t)| logn).

We establish the following worst-case bounds on estimate quality:

THEOREM 4.1. Influence queries Inf(G ,S), specified by a set S
of seed nodes and a function α , can be estimated in O(|S|k logn)
time from the sketches {Xu | u∈ S}. The estimate is nonnegative and
unbiased, has CV ≤ 1/

√
2k−2, and is well concentrated (the prob-

ability that the relative error exceeds a/
√

k decreases exponentially
with a > 1).

Our combined All-Distances Sketches (cADS) are a multi-instance
generalization of All-Distances Sketches (ADS) [8, 9, 14] and build
on the related combined reachability sketches [12] used for reachability-
based influence.

The cADS sketches are randomized structures defined with re-
spect to random rank values r(t)u ∼ U [0,1] associated with each
node-instance pair (u, t). To improve estimation quality in practice,
we restrict ourselves to a particular form of structured permuta-
tion ranks [12]: For a set of instances, the ranks are a permutation
of 1, . . . ,nmin{`,k}, where each block of positions of the form
in,(i+ 1)n− 1 (for integral i) corresponds to an independent ran-
dom permutation of the nodes. For each node u, the instances i j

in r(i j)
u , when ordered by increasing rank, are a uniform random

selection (without replacement).
For each node v, cADS(v) is a set of rank-distance pairs of the

form (r(t)u ,d(t)
vu) which includes min{`,k} pairs of distance 0, that is,

all such pairs if `≤ k and the k smallest rank values otherwise. It
also includes pairs with positive distance when the rank value is at
most the kth smallest amongst closer nodes (across all instances).

Formally,

cADS(v) =

{
(r(t)v ,0) | r(t)v ∈ BOTTOM-k{r(j)

v | j ∈ [`]}
}{

(r(t)u ,d(t)
vu) | r(t)u < kth

(y, j)|d(j)
vy <d(t)

vu
r(j)

y
} . (5)

Here BOTTOM-k refers to the smallest k elements in the set and kth

denotes the kth smallest element in the set. When there are fewer
than k elements, we define kth as the domain maximum. For the
purpose of sketch definition, we treat all positive distances across
instances as unique.

Note that we can also define cADS sketches with respect to a
probabilistic model. The definition emulates working with an infi-
nite set of instances generated according to the model. Since there
are at most nk distinct rank values in the sketches, and they are all
from the first nk structured permutation ranks, the entries in the
sketches are integers in [nk].

5. EXPERIMENTS
Our algorithms were implemented in C++ and compiled using

Visual Studio 2013 with full optimization. Our test machine runs
Windows 2008R2 Server and has two Intel Xeon E5-2690 CPUs and
384 GiB of DDR3-1066 RAM. Each CPU has 8 cores (2.90 GHz,
8× 64 kiB L1, 8 × 256 kiB, and 20 MiB L3 cache). For consistency,
all runs are sequential.

The datasets in our experiments are obtained from the SNAP [33]
project and represent social (Epinions, Slashdot , Gowalla , Twit-
terFollowers , LiveJournal , Orkut) and collaboration (AstroPh)
networks. All these graphs are unweighted.

Unless otherwise mentioned, we test our algorithms using `= 64
independent instances generated from the graph by assigning inde-
pendent random length to every edge according to an exponential
distribution with expected value 1 [1, 11, 22]. We use ADS parame-
ter k = 64.

5.1 Distance-Based Influence Maximization
We start with the Influence Maximization problem. Recall that

we consider two variants of this problem: threshold influence and
general distance-based influence. We discuss each in turn.

5.1.1 Threshold Influence
Our first experiment considers the performance of T -SKIM (Sec-

tion 3), which finds a sequence of seed nodes such that each prefix
of the sequence approximately maximizes the influence. Our results
are summarized in Table 3. For each dataset, we first report its
total numbers of nodes and edges. This is followed by the total
influence (as a percentage of the total number of nodes of the graph)
of the seed set found by our algorithm. We report figures for 50 and
1000 seeds and for threshold values T = 0.01 and T = 0.1. Finally,
we show the total running time of our algorithm when it is stopped
after computing an approximate greedy sequence of 50, 1000, or
all n nodes. Note that we omit the respective influence figure for the
seed set that contains all nodes, since it is 100% by definition.

The table shows that, unsurprisingly, the higher threshold has
higher influence values. This is because the coverage function is
monotone non-decreasing in T . The running time of our algorithm
depends on that influence (since its graph searches must run for
longer), but it is still practical even for fairly large thresholds and
even if we compute the entire permutation. For the largest graph we
test (Orkut), with hundreds of millions of edges, we can compute
the top 50 seeds in less than 15 minutes, and order all nodes in a
few hours using a single CPU core.

Figure 4 presents a more detailed perspective on the same ex-
periment. It shows, for T = 0.01 and T = 0.1, how total influence

5

102 103 104 105 106

10
−

2
10

0
10

2
10

4

≈ number of vertices

ru
nn

in
g

tim
e

[s
ec

]
ConTinEst
T -SKIM

1 500 1000

0
1

2
3

4

seed set size

er
ro

rw
rt

.G
R

E
E

D
Y

[%
]

thresh.
exp.
harm.

Figure 1: Left: Comparing T -SKIM to ConTinEst. Right: Er-
ror of T -SKIM and α -SKIM.

and the running times depend on the size of the seed set. We note
that the first few seeds contribute with a disproportionate fraction
of the total influence, particularly with T = 0.1, and an even higher
percentage of the total running time. The overall shape of the curves
is quite similar, with Orkut as a noticeable outlier: its first few
seeds contribute relatively more to the overall influence than in other
instances. Note that Orkut is also the densest instance in our testbed.

We now compare T -SKIM to ConTinEst, the algorithm by Du
et al. [18]. Although their sequential implementation is publicly
available, we were unable to run it on our inputs within reasonable
time. (A preliminary test on AstroPh, our smallest instance, did
not produce any output within five hours.) Note that to evaluate
graphs with more than 1024 vertices, they actually use a distributed
implementation, which they run on a cluster with 192 cores. Unfor-
tunately, we had access neither to such a cluster nor to the distributed
implementation of their algorithm.

In order to still be able to make some comparison, we generated
the same instances as they used in their evaluation: core-periphery
Kronecker networks [33] (parameter matrix: [0.9 0.5; 0.5 0.3]) of
varying size, using the Weibull distribution for the edge lengths [26].
(Note that λ controls scale and β shape.) For each edge we chose λ
and β uniformly at random from (0,10]. We ran the same experi-
ment as they did, setting |S|= 10, and T = 10. Figure 1 (left) shows
the running times for Kronecker networks of varying size. We ob-
serve that our approach run on a single CPU core is consistently
about 3 orders of magnitude faster than their algorithm run on a
cluster. Unfortunately, we were not able to compare the computed
influence, as those figures are not reported in [18].

5.1.2 General Distance-Based Influence
We now evaluate α -SKIM, a more general version of our IM algo-

rithm that can handle arbitrary decay functions. For this experiment,
we consider both harmonic and exponential decay functions, the
most commonly used in the literature. To test harmonic decay, we
use α(x) = 1/(10x+1); for exponential decay, we use α = e−10x.
These functions turn out to give interesting influence profiles. In
α -SKIM we initialize τ to n`/k and set λ to 0.5.

Table 1 shows, for both functions, the influence values (in per-
cent) obtained by α -SKIM for 50 and 1000 seeds, as well as the
corresponding running times.

The table shows that α -SKIM is slower than T -SKIM by up
to an order of magnitude for comparable influence. In fact, if we
ran α -SKIM with a threshold function (not shown in the table), it
would be about three times as slow as T -SKIM, while producing the
exact same results. However, this is to be expected, since α -SKIM
is a much more sophisticated (and flexible) algorithm, which, unlike
T -SKIM, can handle smooth decay functions with guarantees.

Table 1: Performance of α-SKIM using k = 64, ` = 64,
and exponentially distributed edge weights for 50 and 1000
seeds. We use exponential (exp.: α : x 7→ e−10x) and har-
monic (harm.: α : x 7→ 1/(10x+1)) decay functions.

INFLUENCE [%] RUNNING TIME [SEC]

50 seeds 1000 seeds 50 seeds 1000 seeds

instance exp. harm. exp. harm. exp. harm. exp. harm.

AstroPh 17.6 31.4 33.5 44.9 15 15 43 40
Epinions 7.6 14.9 11.2 18.2 35 40 93 99
Slashdot 16.9 29.1 21.3 32.8 104 88 238 224
Gowalla 13.1 25.9 15.9 28.2 166 213 323 455
TwitterF’s 16.0 26.3 19.7 29.2 1,500 1,387 2,459 2,816
LiveJournal 10.6 23.5 13.4 25.8 5,637 7,765 11,906 13,016

Even though α -SKIM is slower, it is still practical. It scales well
with the number of seeds (increasing from 50 to 1000 barely doubles
the total running time) and can still handle very large graphs.

Figure 2 presents a more detailed view of the same experiment
(for a few graphs), with up to n seeds. It shows that computing a
full permutation (with n seeds) is not much more expensive than
computing n/1000 (a few dozen) seeds. An interesting difference
between these results and those for T -SKIM (reported in Figure 4)
is that for α -SKIM the running time grows less smoothly with the
number of seeds. The discontinuities correspond to decreases in the
sampling threshold τ , causing additional sampling.

5.1.3 Solution Quality
Figure 1 (right) compares the quality of the seed sets found by T -

SKIM (for threshold decay) and α -SKIM (for exponential and
harmonic decays) with those found by exact GREEDY on AstroPh
(` = 64 simulations). We consider sets of size 1 to 103 and the
same decay functions as above. Each point of the curve represents
the error (in percent) of our algorithm when compared to GREEDY.
We observe that the error is very low in general (less than 1% for
exponential and harmonic decay, and less than 4% for threshold).
Considering the fact that SKIM is many orders of magnitude faster
than GREEDY (while still providing strong guarantees), these errors
are acceptable. Note that the error of the first seed vertex is very low
in all cases (close to 0%), indicating that SKIM does very well in
finding the most influential node.

The quality of the solutions provided by the algorithm with re-
spect to the probabilistic input (graph distribution) depends on the
number of instances (simulations) `. Our experiments so far have
used `= 64. We now compare this with other choices of `. Figure 3
compares the quality of the seed sets found by GREEDY for AstroPh
for `= 4,16,64,128 with those found by `= 256. We consider sets
of size 1 to 50 and three different decay functions: exponential,
harmonic, and threshold (with T = 0.01). Each point in the curve
represents the error (in percent) relative to the solution with `= 256.
Although the error is consistently high for the threshold IM when `
is very small, it becomes negligible for `≥ 64, justifying our choice
of parameters. For smoother (exponential or harmonic) decay, all
errors are significantly smaller, and even smaller values of ` would
be acceptable.

5.2 Distance-Based Influence Oracle
We now evaluate our influence oracles. Recall that this setting

has two stages. The preprocessing stage takes as input only the
graph and computes sketches. The query stage takes a set S of seeds
and a function α and uses the sketches to estimate the influence
of S with respect to α . Note that same preprocessing stage can be

6

0.1 1 10 100

20
40

60
80

10
0

exp.: seed set size [%]

in
flu

en
ce

[%
]

,AstroPh
,Epinions
,Slashdot
,Gowalla

0.1 1 10 100

20
40

60
80

10
0

harm.: seed set size [%]
0.1 1 10 100

0
25

50
75

10
0

exp.: seed set size [%]

ru
nn

in
g

tim
e

[%
]

0.1 1 10 100

0
25

50
75

10
0

harm.: seed set size [%]

Figure 2: Evaluating influence permutations (left) and running time (right) on several instances for exponential (exp.: α : x 7→ e−10x)
and harmonic (harm.: α : x 7→: 1/(10x+1)) decays. The legend applies to all plots.

0 20 40

0
0.

2
0.

4
0.

6

α:x 7→ e−x: seed set size

er
ro

rw
rt

.`
=

25
6

[%
]

4 16
64 128

0 20 40

0
0.

2
0.

4

α:x 7→ 1/(x+1): seed set size

er
ro

rw
rt

.`
=

25
6

[%
]

4 16
64 128

0 20 40

0
10

20

T = 0.01: seed set size

er
ro

rw
rt

.`
=

25
6

[%
]

4 16
64 128

Figure 3: Evaluating different numbers of simulations (`-values) for different decay functions on AstroPh.

Table 2: Evaluating the distance-based influence oracle with `= 64.
PREPROCESSING QUERIES WITH α : x 7→ e−10x QUERIES WITH α : x 7→ 1/(10x+1) QUERIES WITH T = 0.01

1 seed 50 seeds 1000 seeds 1 seed 50 seeds 1000 seeds 1 seed 50 seeds 1000 seeds

time space time err. time err. time err. time err. time err. time err. time err. time err. time err.
instance [h:m] [MiB] [µs] [%] [µs] [%] [µs] [%] [µs] [%] [µs] [%] [µs] [%] [µs] [%] [µs] [%] [µs] [%]

AstroPh 0:10 149.2 38 7.2 9,695 1.2 229,340 0.5 31 4.4 9,152 4.1 227,943 0.5 27 1.1 8,855 0.4 204,551 2.8
Epinions 0:46 674.0 32 3.2 8,552 1.1 222,470 1.0 26 2.2 9,203 1.2 196,717 0.5 22 0.5 8,267 0.3 191,709 0.6
Slashdot 1:10 851.4 46 5.6 11,884 1.5 310,170 0.4 38 3.2 10,970 1.9 291,185 1.2 73 0.6 13,768 0.4 247,509 0.6
Gowalla 3:55 2,558.6 52 3.8 17,109 1.0 356,818 0.4 47 2.9 14,151 2.2 289,318 0.8 61 1.2 16,092 0.6 329,976 0.3
TwitterF’s 19:33 6,165.1 51 3.8 13,816 1.4 365,366 0.7 42 2.6 13,166 1.5 379,296 0.9 39 2.3 13,912 0.7 360,766 0.2

used to answer queries for any decay function α . For this experi-
ment, we consider three such functions: exponential (α(x) = e−10x),
harmonic (α(x) = 1/(10x+1)), and threshold (with T = 0.01).

Table 2 summarizes our results in this setting. For each dataset
tested, it first shows the preprocessing time and the total space
required to store all sketches. Then, for each decay function, we
report the query time (in microseconds) and the estimation error
for random sets S of sizes 1, 50, and 1000. (Note that measuring
the error requires computing exact influence of each seed set with
multiple Dijkstra searches; this time is not included in the table.)
Each entry in the table is the average of 100 random seed sets.

The table shows that, as predicted, query times are almost inde-
pendent of the α function, the size of the influenced set, and the
size of the graph. Moreover, they have a slightly superlinear depen-
dence on the number of seeds. Queries are somewhat slower than
for reachability-based IC (as reported in [12]), since sketches are
bigger and the estimator is more involved. Our oracles are much
more flexible, however, and still practical. For 50 seeds, one can
answer queries in a few milliseconds, whereas an exact computation
could take minutes or more on large graphs. Moreover, its error is
consistently low, regardless of the number of seeds.

Acknowledgements. We would like to thank the authors of [18]
for helping us reproduce their inputs and pointing us to their imple-
mentation of ConTinEst.

6. REFERENCES
[1] B. D. Abrahao, F. Chierichetti, R. Kleinberg, and A. Panconesi. Trace

complexity of network inference. In KDD, 2013.
[2] A. Bavelas. A mathematical model for small group structures. Human

Organization, 7:16–30, 1948.
[3] F. Bloch and M. O. Jackson. The formation of networks with transfers

among players. Journal of Economic Theory, 133(1):83–110, 2007.
[4] P. Boldi and S. Vigna. In-core computation of geometric centralities

with hyperball: A hundred billion nodes and beyond. In ICDM
workshops, 2013. http://arxiv.org/abs/1308.2144.

[5] P. Boldi and S. Vigna. Axioms for centrality. Internet Mathematics,
2014.

[6] C. Borg, M. Brautbar, J. Chayes, and B. Lucier. Maximizing social
influence in nearly optimal time. In SODA, 2014.

[7] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in
social networks. In KDD. ACM, 2009.

[8] E. Cohen. Size-estimation framework with applications to transitive
closure and reachability. J. Comput. System Sci., 55:441–453, 1997.

[9] E. Cohen. All-distances sketches, revisited: HIP estimators for
massive graphs analysis. In PODS. ACM, 2014.

[10] E. Cohen. Estimation for monotone sampling: Competitiveness and
customization. In PODC. ACM, 2014. full version

7

Table 3: Performance of T -SKIM using k = 64, ` = 64, and exponentially distributed edge weights. We evaluate the influence on
512 (different) sampled instances for thresholds 0.1 and 0.01.

INFLUENCE [%] RUNNING TIME [SEC]

50 seeds 1000 seeds 50 seeds 1000 seeds n seeds

instance # nodes # edges 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1 0.01 0.1

AstroPh 14,845 239,304 1.02 19.17 9.96 39.25 0.9 2.0 2.0 4.0 3.7 6.6
Epinions 75,888 508,837 0.53 8.52 2.88 12.68 2.0 5.2 6.3 11.1 14.1 21.3
Slashdot 77,360 828,161 0.72 19.97 3.90 25.04 1.9 14.6 7.6 27.9 18.9 40.5
Gowalla 196,591 1,900,654 0.62 14.13 1.93 17.61 4.4 21.8 14.8 36.9 47.6 81.7
TwitterF’s 456,631 14,855,852 0.20 19.38 1.64 24.26 9.9 133.4 36.4 269.6 269.9 648.4
LiveJournal 4,847,571 68,475,391 0.07 9.16 0.33 13.81 34.6 606.0 117.5 1,244.4 1,983.4 4,553.9
Orkut 3,072,627 234,370,166 2.82 74.44 4.61 77.47 779.7 5,490.5 1,788.7 11,060.7 7,360.9 24,520.3

0.1 1 10 100

0
50

10
0

T = 0.01: seed set size [%]

in
flu

en
ce

[%
]

,AstroPh
,Epinions
,Slashdot
,Gowalla
,TwitterF’s
,LiveJournal
,Orkut

0.1 1 10 100

20
40

60
80

10
0

T = 0.1: seed set size [%]
0.1 1 10 100

0
25

50
75

10
0

T = 0.01: seed set size [%]

ru
nn

in
g

tim
e

[%
]

0.1 1 10 100

0
25

50
75

10
0

T = 0.1: seed set size [%]

Figure 4: Evaluating influence permutations (left) and running times (right) on several instances for threshold decays 0.01 and 0.1.
The legend applies to all plots.

http://arxiv.org/abs/1212.0243.
[11] E. Cohen, D. Delling, F. Fuchs, A. Goldberg, M. Goldszmidt, and

R. Werneck. Scalable similarity estimation in social networks:
Closeness, node labels, and random edge lengths. In COSN. ACM,
2013.

[12] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck. Sketch-based
influence maximization and computation: Scaling up with guarantees.
In CIKM. ACM, 2014.

[13] E. Cohen and H. Kaplan. Spatially-decaying aggregation over a
network: Model and algorithms. J. Comput. System Sci., 73:265–288,
2007. Full version of a SIGMOD 2004 paper.

[14] E. Cohen and H. Kaplan. Summarizing data using bottom-k sketches.
In ACM PODC, 2007.

[15] E. Cohen and H. Kaplan. Leveraging discarded samples for tighter
estimation of multiple-set aggregates. In ACM SIGMETRICS, 2009.

[16] E. Cohen and M. Strauss. Maintaining time-decaying stream
aggregates. J. Algorithms, 59:19–36, 2006.

[17] Ch. Dangalchev. Residual closeness in networks. Phisica A, 365, 2006.
[18] N. Du, L. Song, M. Gomez-Rodriguez, and H. Zha. Scalable influence

estimation in continuous-time diffusion networks. In NIPS. Curran
Associates, Inc., 2013.

[19] U. Feige. A threshold of lnn for approximating set cover. J. Assoc.
Comput. Mach., 45:634–652, 1998.

[20] L. C. Freeman. Centrality in social networks: Conceptual clarification.
Social Networks, 1, 1979.

[21] J. Goldenberg, B. Libai, and E. Muller. Talk of the network: A
complex systems look at the underlying process of word-of-mouth.
Marketing Letters, 12(3), 2001.

[22] M. Gomez-Rodriguez, D. Balduzzi, and B. Schölkopf. Uncovering the
temporal dynamics of diffusion networks. In ICML, 2011.

[23] M. O. Jackson. Social and economic networks. Princeton University
Press, 2010.

[24] K. Jung, W. Heo, and W. Chen. Irie: Scalable and robust influence
maximization in social networks. In ICDM. ACM, 2012.

[25] D. Kempe, J. M. Kleinberg, and É. Tardos. Maximizing the spread of
influence through a social network. In KDD. ACM, 2003.

[26] J. F. Lawless. Statistical models and methods for lifetime data, volume
362. John Wiley & Sons, 2011.

[27] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and
Glance N. Cost-effective outbreak detection in networks. In KDD.
ACM, 2007.

[28] G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the
approximations of maximizing submodular set functions.
Mathematical Programming, 14, 1978.

[29] T. Opsahl, F. Agneessens, and J. Skvoretz. Node centrality in weighted
networks: Generalizing degree and shortest paths. Social Networks,
32, 2010. http://toreopsahl.com/2010/03/20/.

[30] M. Richardson and P. Domingos. Mining knowledge-sharing sites for
viral marketing. In KDD. ACM, 2002.

[31] M. Rosenblatt. Remarks on some nonparametric estimates of a density
function. The Annals of Mathematical Statistics, 27(3):832, 1956.

[32] G. Sabidussi. The centrality index of a graph. Psychometrika,
31(4):581–603, 1966.

[33] Stanford network analysis project.
http://snap.stanford.edu.

[34] Y. Tang, Y. Shi, and X. Xiao. Influence maximization in near-linear
time: A martingale approach. In SIGMOD, 2015.

[35] Y. Tang, X. Xiao, and Y. Shi. Influence maximization: Near-optimal
time complexity meets practical efficiency. In SIGMOD, 2014.

8

