
Using MapReduce for Impression Allocation
in Online Social Networks ∗

Inzamam Rahaman
The University of the West Indies

St. Augustine, Trinidad
inzamam@lab.tt

Patrick Hosein
The University of the West Indies

St. Augustine, Trinidad
patrick.hosein@sta.uwi.edu

ABSTRACT
Online Social Networks (OSNs) offer an efficient and cost
effective platform for the dissemination of advertisements
to potential consumers. User actions and relationships can
be analyzed to make informed decisions about where, how,
and to whom advertisement impressions should be allocated
to maximize the efficacy of an advertising campaign in an
OSN. Based on the observation that users influence their
friends, research has been done to use this information for
determining impression allocations. Recently, a multistage
formulation that involves the allocation of advertisements
in stages, has been proposed as a stochastic dynamic pro-
gramming problem. We have developed heuristics based on
this formulation and believe that the MapReduce Program-
ming model can be used to further increase performance and
reduce compute time. This involves using cluster analysis
together with a distributed version of our proposed greedy
algorithm. In this paper we provide the framework for this
distributed algorithm.

General Terms
Online Social Network, Optimization

Keywords
Online Social Network, Optimization, MapReduce, Dynamic
Programming, Clustering, Distributed Computing

1. PROBLEM
An increase in the adoption of the Internet has led to an
increase in the use of Online Social Networks (OSNs) such
as Facebook [9] as a means for users to connect with friends,
family, and colleagues. In response to this increase, many
companies have allocated a large fraction of their advertising
budget to advertising on social networks [13]. Consequently,
work on using influence maximization [14, 2, 3, 5, 11, 1] has
been undertaken to identify the users to whom advertise-
ment impressions should be allocated.

∗This is a position paper.

Hosein and Lawrence [12] developed a stochastic dynamic
programming formulation of the problem of allocating im-
pressions to users that aimed to maximize the expected
number of clicks. This formulation differed most other solu-
tions to the problem of impression allocated that approached
the problem from the standpoint of Influence Maximization.
The work by Abassi et al. [1] is the closest to that presented
in Hosein and Lawrence, with the latter’s model being a
generalization of the former’s.

In Hosein and Lawrence’s formulation, advertisements, termed
impressions, are allocated to a subset of N users in batches
in stages separated by intervals of time. For a particular
instance of the problem, the total number of impressions to
allocate, M , the number of stages, K, and the number of
impressions per stage, ~m ∈ ZK such that

∑K
i=1m [i] = M ,

are fixed. In each stage, a user either clicks or does not
click. Based on their actions, we then allocate impressions
to users in the next stage. If a user being allocated an im-
pression in the current stage had friends who clicked their
impression in previous stages, said user is informed of their
friends’ decisions. This is modeled by a an influence function
which is dependent on the number of a person’s friends who
have so far clicked. Since a user’s decision to click an im-
pression would be influenced by their friends’ actions, their
probability of clicking the impression themselves increases.
To compute the expected number of clicks, we consider all
possible outcomes at each stage and sum across all of them.
To formalize the model briefly. Let k represent the num-
ber of stages to go such that ~xk, ~ck and ~uk ∈ {0, 1}N that
represents whether or not users have been allocated impres-
sions, users have clicked given an impression in the past, and
users have been given an impression in the current stage re-
spectively. Moreover, let pk ∈ [0, 1]N be the probability of
clicking for users, and J∗k−1(~xk−1,~ck−1, ~pk−1) be the optimal
expected number of clicks in the subsequent stage. Then we
may formulate the optimal expected value for some stage k
as:

Table 1: Dataset Parameters

Data Users Impressions Stages

1 6 5 2

2 7 5 3

3 15 7 3

J∗k = max
~u∈{0,1}N

∑
~v∈V|~u

Pr(~v)J∗k−1(~xk + ~u,~ck + ~v, ~pk−1) (1)

subject to:

N∑
i=1

u[i] = mk and ~u+ ~xk ≤ 1.

Thus, in the final stage we have:

J∗0 = |~c0|+ max
~u∈{0,1}N

N∑
i=1

p0[i]u[i] (2)

subject to:

N∑
i=1

u[i] = m0 and ~u+ ~x0 ≤ 1.

and in this case the solution is simply the sum of the m0

largest probabilities. If we denote this optimal allocation by
~u∗ then:

J∗0 = |~c0|+
N∑
i=1

p0[i]u∗[i] (3)

At the kth stage of Hosein and Lawrence’s [12] formula-
tion, 2mk sub-problems must be solved. Moreover, each

sub-problem involves considering
(
N−

∑k−1
i=1

mk

)
combinations of

users at the kth stage. Consequently, the optimal formula-
tion is unsuitable for use in large OSNs. To remedy this,
we developed and evaluated several heuristics to reduce the
number of combinations that need to be considered to arrive
at allocations that approach the optimal allocation in the
expected number of clicks. We describe some of our heuris-
tics below and outline some of our results on the datasets
described in 1. Note that dataset 3 is sampled from the
Stanford Network Analysis Facebook Dataset [15].

2. CLUSTERING HEURISTIC
Recall that in the model presented by Hosein and Lawrence,
a user’s probability of clicking is only perturbed from its de-
fault state by the actions taken by their friends to whom
impressions were allocated. Many social networks can be
divided into dense subgraphs where users are sparsely con-
nected to users outside of said subgraph. These subgraphs
are termed communities. [18, 17, 8, 20]. Due to the manner
in which a user’s probability of clicking is updated in Hosein
and Lawrence’s model, most changes to a user’s probabil-
ity would arise from the actions of users within the same
community.

As most effects to a user’s probability originates from in-
side their communities, we can divide the graph into com-

Table 2: Performance and Runtime Comparisons

Data Method Value Time (ms)

1
Optimal 1.40 64

Clustering Heuristic 1.40 66

2
Optimal 1.56 56841

Clustering Heuristic 1.45 429

3
Optimal 2.03 170967777

Clustering Heuristic 2.02 52401

munities and then assemble a subgraph using a subset of
these communities to which we can then apply the opti-
mal formulation. To partition the graph, G = (V,E), into
communities we used Louvain Modularity [8]. From Lou-
vain Modularity, we derive communities C1, C2, . . . , Cp. For
each of these communities, we compute a subgraph Up =
(Cp, {(u, v) | {(u, v) ∈ E, u, v ∈ Cp}). We then sort the sub-
graphs by descending order of average degree to get the or-
dered sequence 〈U1, U2, . . . , Up〉. To select the subsequence
of subgraphs to generate our final subgraph, we find the
smallest r such that

r∑
i=1

|Ui| >M (4)

where |Ui| refers to the number of verticies in the graph Ui.
This integer r is then used to construct a subgraph of U ′ as
follows:

U ′ =

r⋃
i=1

Ui (5)

After assembling U ′, we then applied the optimal formu-
lation to U ′. As seen in Table 2, the Clustering Heuristic
performed well compared to the Optimal formulation, in-
curring a greater runtime for dataset 1 due to the lack of
clusters in such a small dataset.

Since no two communities generated by Louvain Modularity
would share users, the subgraph generated by the aforemen-
tioned procedure comprises of isolated islands of users. This,
in conjunction with the results seen in Table 2, indicate that
the most profitable users typically reside in these isolated is-
lands of users that constitute the generated subgraph.

Consequently, by dividing a large OSN graph into mutually
exclusive communities and rationing the number of impres-
sions between them, we can split large instances of the prob-
lem into smaller instances. These smaller instances can then
be solved in parallel with their results combined into the so-
lution for the entire OSN graph. We believe that process-
ing a large graph can be done by distributing communities
among nodes in a computing clustering and using Paral-
lelization Contracts [4], MapReduce [7], or message passing
[16] to solve the expected number of clicks and allocations
for each community.

3. PROPOSED METHOD FOR DISTRIBUTED
COMPUTATION

Using community detection methods such as Louvain Mod-
ularity [8], Clauset et al. [6], Simulated Annealing [10], Pons
and Latapy [19], and Wakira and Tsurumi [21], we can
divide the graph into communities that can generate sub-
graphs that are smaller than the initial graph. Moreover,
by using the average degree, we can select the subgraphs
that are likely to be the most profitable. However, while
there exists a clear way for the OSN graph to be divided
into smaller units, i.e communities, for parallel processing,
we need to determine a procedure for rationing the impres-
sions between communities for the problem to be solved in
a distributed manner.

To this end, we propose the following. Let X ∈ [0, 1]N×K

such that
∑N

i=1

∑K
j=1Xij = M represents a valid allocation

of impressions to users; if Xij = 1, then user i is allocated
an impression in stage j. Recall that a user’s probability of
clicking in a stage is affected by the number of their friends
who, when given an impression in a previous stage, have
already clicked. For every user who in the kth stage had a
friend who was given an impression in the (k − 1) th stage,
the expected number of their friends who clicked is simply
the sum of the probabilities of said friends clicking in the
(k − 1) th stage. Moreover, the number of clicks generated
in the kth stage is the sum of the probability of clicking of the
users allocated impressions in the kth stage. Consequently,
by applying this method, we can approximate the expected
number of clicks generated by allocation X. For a given
allocation X, let Ĵ(X) denote this approximation for X. We
now use this approximation to the expected number of clicks
evaluation to perform a greedy algorithm on each cluster as
described below.

For any user j with no impression in allocation X, let X+j

be used to denote the corresponding allocation in which an
impression is also given to j. Therefore the expected value
increase due to this allocation is given by

∆j = Ĵ(X+j)− Ĵ(X). (6)

We use a greedy approach to sequentially pick the user and
stage that provides the largest ∆j and allocate an impres-
sion to that user in that stage. This process is repeated
until all M impressions are allocated. The initial user in
this sequence is chosen as the one with the largest influence
(obtained using the Betweenness Centrality metric). Note
that the increment ∆j decreases as the number of impres-
sions are allocated and hence is concave. We use this fact in
the distributed version of the problem since the number of
impressions that should be allocated to each cluster should
be such that they all have the same incremental value ∆
otherwise an impression can be moved from a cluster with
low increment (or gradient) to one with a higher gradient.

The above Greedy algorithm has been shown to perform well
without clustering. In order to use it in a MapReduce Model
we need to obtain a distributed implementation. This is
done as follows. Let ∆j(c) denote the incremental objective
function value increase for providing an impression to user
j who resides in cluster c. We simultaneously evaluate the
optimal solution for each cluster in parallel. For each cluster

we continue adding impressions until we obtain ∆j(c) < κ
for some threshold κ. Note that as κ is decreased then more
impressions are included in each cluster and hence the total
number of impressions allocated increases. Hence we need
to find the appropriate value of κ to ensure that no more
than M impressions (the budgeted amount) are used. This
can be done by a simple message passing algorithm between
cluster computations.

4. DISCUSSION
In this position paper we outline some of our findings thus
far on using Hosein and Lawrence’s [12] model for impression
allocation in OSNs. These indicate the potential for com-
munity detection in dividing OSN graphs into subgraphs
that can be solved independently during the map phase of
MapReduce. Furthermore, we outlined a distributed greedy
algorithm approach that can be used together with MapRe-
duce. In this way the problem is first separated into clusters,
each cluster is efficiently solved using a greedy algorithm and
then the cluster solutions can be recombined to obtain the
optimal solution. Future work will include a complete im-
plementation of this framework using MapReduce.

5. ACKNOWLEDGMENTS
We acknowledge the Trinidad and Tobago Network Informa-
tion Centre (TTNIC) for providing funding for this research.

6. REFERENCES
[1] Z. Abbassi, A. Bhaskara, and V. Misra. Optimizing

display advertising in online social networks. In
Proceedings of the 24th International Conference on
World Wide Web, WWW ’15, pages 1–11, Republic
and Canton of Geneva, Switzerland, 2015.
International World Wide Web Conferences Steering
Committee.

[2] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn. Social
influence in social advertising: Evidence from field
experiments. In Proceedings of the 13th ACM
Conference on Electronic Commerce, pages 146–161.
ACM, 2012.

[3] H. Bao and E. Y. Chang. Adheat: An influence-based
diffusion model for propagating hints to match ads. In
Proceedings of the 19th International Conference on
World Wide Web, WWW ’10, pages 71–80, New York,
NY, USA, 2010. ACM.

[4] D. Battré, S. Ewen, F. Hueske, O. Kao, V. Markl, and
D. Warneke. Nephele/pacts: A programming model
and execution framework for web-scale analytical
processing. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 119–130, New
York, NY, USA, 2010. ACM.

[5] S. Bhagat, A. Goyal, and L. V. Lakshmanan.
Maximizing product adoption in social networks. In
Proceedings of the Fifth ACM International
Conference on Web Search and Data Mining, WSDM
’12, pages 603–612, New York, NY, USA, 2012. ACM.

[6] A. Clauset, M. E. Newman, and C. Moore. Finding
community structure in very large networks. Physical
review E, 70(6), 2004.

[7] J. Dean and S. Ghemawat. Mapreduce: Simplified
data processing on large clusters. In 6th Symposium
on Operating System Design and Implementation

(OSDI 2004), San Francisco, California, USA,
December 6-8, 2004, pages 137–150, 2004.

[8] V. D. B. et. al. Fast unfolding of communities in large
networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008.

[9] Facebook doubleclick for publishers (dfp) optimization
website., 2014.

[10] R. GuimerÃă, M. Sales-Pardo, and L. A. N. Amaral.
Modularity from fluctuations in random graphs and
complex networks. Physical review E, aug 2004.

[11] J. Hartline, V. Mirrokni, and M. Sundararajan.
Optimal marketing strategies over social networks. In
Proceedings of the 17th International Conference on
World Wide Web, WWW ’08, pages 189–198, New
York, NY, USA, 2008. ACM.

[12] P. Hosein and T. Lawrence. Stochastic dynamic
programming model for revenue optimization in social
networks. In Wireless and Mobile Computing,
Networking and Communications (WiMob), 2015
IEEE 11th International Conference on, pages
378–383, Oct 2015.

[13] Iabinternet advertising revenue report., 2013.

[14] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
Proceedings of the Ninth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’03, pages 137–146, New York, NY, USA, 2003.
ACM.

[15] J. Leskovec and A. Krevl. SNAP Datasets: Stanford
large network dataset collection.
http://snap.stanford.edu/data, June 2014.

[16] E. Lusk, N. Doss, and A. Skjellum. A
high-performance, portable implementation of the mpi
message passing interface standard. Parallel
Computing, 22:789–828, 1996.

[17] M. E. J. Newman. Detecting community structure in
networks. The European Physical Journal B:
Condensed Matter and Complex Systems,
38(2):321–330, mar 2004.

[18] M. E. J. Newman. Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006.

[19] P. Pons and M. Latapy. Computer and Information
Sciences - ISCIS 2005: 20th International Symposium,
Istanbul, Turkey, October 26-28, 2005. Proceedings,
chapter Computing Communities in Large Networks
Using Random Walks, pages 284–293. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2005.

[20] J. Reichardt and S. Bornholdt. Statistical mechanics
of community detection. Phys. Rev. E, 74:016110, Jul
2006.

[21] K. Wakita and T. Tsurumi. Finding community
structure in mega-scale social networks: [extended
abstract]. In Proceedings of the 16th International
Conference on World Wide Web, WWW ’07, pages
1275–1276, New York, NY, USA, 2007. ACM.

