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ABSTRACT
We propose a new method of nonparametric bootstrap to
quantify estimation uncertainties in large and possibly sparse
random networks. The method is tailored for inference on
functions of network degree distribution, under the assump-
tion that both network degree distribution and network or-
der are unknown. The key idea is based on adaptation
of the “blocking” argument, developed for bootstrapping of
time series and re-tiling of spatial data, to random networks.
We sample network blocks (patches) and bootstrap the data
within these patches. To select an optimal patch size, we de-
velop a new computationally efficient and data-driven cross-
validation algorithm. The proposed fast patchwork boot-
strap (FPB) methodology further extends the ideas devel-
oped by [33] for a case of network mean degree, to infer-
ence on a degree distribution. In addition, the FPB is sub-
stantially less computationally expensive, requires less in-
formation on a graph, and is free from nuisance parame-
ters. In our simulation study, we show that the new boot-
strap method outperforms competing approaches by pro-
viding sharper and better calibrated confidence intervals for
functions of a network degree distribution than other avail-
able approaches. We illustrate the FPB in application to a
study of the Erdös collaboration network.
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•Mathematics of computing→Nonparametric statis-
tics; Random graphs; Stochastic processes;
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1. INTRODUCTION
As the world continues to embrace the wealth of infor-

mation provided by modern social media, from devising vi-
ral marketing strategies, to predicting fashion trends, to
analysing public health perception and preventing terror-
ist attacks, there is a flare of interest in development of
new statistical methodology for analysis of large network
structures. Indeed, probabilistic models have been domi-
nating the area of network inference, whereas development
of statistical inference, particularly for large networks, was
noticeably delayed, and statistical network models are yet
relatively scant and poorly investigated (see [16, 30, 22, 19]
and references therein). Motivated by a plethora of modern
large network applications and rapid advances in comput-
ing technologies, the area of statistical network modeling is
undergoing a vigorous developmental boom, spreading over
numerous disciplines, from statistics to engineering to social
and health sciences.

Challenges of parametric model specification and valida-
tion inspire a search for more data-driven and flexible non-
parametric (at least, semiparametric) approaches for net-
work inference. As [14] state, “statistical modeling of net-
works cries for nonparametric estimation, because of the in-
accuracy often resulting from fallacious parametric assump-
tions”. In spite of that, the scope and availability of non-
parametric procedures for random network inference still re-
mains very limited and scarce (for some recent results and
overview see [27, 3, 22, 6, 33] and references therein). In this
light, it is appealing and promising to follow a nonparamet-
ric bootstrap path for statistical inference on random net-
works that can potentially allow us to avoid many restrictive
conditions on network degree distribution and model spec-
ification. To our knowledge, the pioneers in this area are
Snijders and Borgatti [32] who proposed to employ an in-
duced graph sampling for estimation of standard errors in
network density estimation and comparison of two networks.
The procedure is, however, limited to very small networks,
assumes availability of the entire network data upfront as
well as requires resampling of the entire data set.

Despite all the recent interest in nonparametric network
analysis, bootstrap methodology for inference on random
networks still remains virtually unexplored in statistical lit-
erature. And, whereas some recent results target quantifi-
cation of estimation accuracy for subgraph patterns [2, 6],
issues with reliable evaluation of estimation errors for a de-
gree distribution are largely unaddressed [31]. Recently, [33]
propose a nonparametric resampling-based patchwork boot-
strap, with a focus on a network mean degree. In this paper,

10.1145/1235


we further advance the patchwork of [33] and develop a fast
and information greedy bootstrap for quantification of esti-
mation uncertainties in functions of degree distribution.

The degree distribution is one of the primary interests in
analysis of graph-structured data and there exist numerous
methods for obtaining the degree distribution directly from
a graph (for overview see, for instance, [26, 1, 22, 31, 35]
and references therein). However, what missing is quantifi-
cation of estimation uncertainty, that is, how reliable the
obtained estimates of the degree distribution are. Clearly,
if the entire and complete graph-structured data that con-
stitute the study interest are available upfront, then we can
simply obtain the degree sequence (for instance, we might be
interested in friendship of prison inmates or sexual contacts
on an island that are perfectly recorded). In practice, how-
ever, such an approach might be not only computationally
inefficient but also infeasible — indeed, we typically observe
only partial information, e.g., a subset of Facebook data,
and the goal is to make a reliable inference on how people
interact online. To our knowledge, our approach is the first
attempt to quantify estimation uncertainty in degree distri-
bution using nonparametric bootstrap.

Our idea behind the bootstrap path is intuitive: as the
classical bootstrap of [11] was originally suggested for inde-
pendent and identically distributed data and then adapted
to time series and spatial processes [17, 8, 23, 28], we borrow
the “blocking” argument developed for resampling of space
and time dependent processes and adjust it to networks. In
this sense, a random graph can be viewed as a mathemat-
ical object representing a hybrid of time and space depen-
dent processes, with a natural metric induced by a shortest
path between two vertices. Similar to the “blocking” ar-
gument, we select local vicinities, or patches, around ran-
domly selected vertices, and then resample vertices within
each patch. Since patches are allowed to overlap, our proce-
dure can be said to follow the“Künsch rule” [23]. In contrast
to the classical “blocking” argument in time series, we do
not aim to reconstruct the network data generating process
(DGP). Although such DGP reconstruction would certainly
be desirable, we believe that this ambitious goal cannot be
attained with the patchwork bootstrap or any other boot-
strap technique on networks without imposing very restric-
tive (thus, impractical) conditions on the network structure.

In this paper, we apply the new fast patchwork bootstrap
(FPB) to estimate network degree distribution and quantify
its estimation uncertainty, i.e., develop a confidence interval,
under the assumption that both network degree distribution
and network order are unknown but the network distribu-
tion is involution invariant. The property of involution in-
variance can be viewed as a network analogue of stationarity
of a stochastic process [27]. Stationarity is typically an es-
sential condition for consistency of block bootstrap for space
and time dependent data, thus, again linking our bootstrap
procedure with the “blocking” argument.

In addition, similarly to the block bootstrap for space and
time dependent data [18], we found that the new information-
greedy bootstrap procedure is sensitive to the size of the
patch. We address this issue by developing a data-driven
and computationally efficient optimal patch selection algo-
rithm based on a cross-validation argument.

The main contributions of our study are as follows:

• To our knowledge, this is the first approach to develop

bootstrap inference and bootstrap confidence intervals for
network degree distribution. In fact, while there exists a
vast literature on graph sampling for estimating network
properties, very little is known on how to reliably evaluate
associated errors of estimation (outside of extensive, in-
formation costly and typically impractical simple random
sampling).

• We introduce a novel nonparametric bootstrap method for
evaluating uncertainty in functions of a population net-
work degree distribution, under no prior information on
network degree distribution and network order. Note that
this is very different than developing a point estimator of
a quantity of interest, as our new method enables to assess
the error of estimation and construct reliable confidence
intervals in a fully data-driven way. Moreover, in contrast
to other methods, the network can be sparse and can be
only partially observable.

• We develop a new computationally efficient and data-driven
cross-validation algorithm for selecting an optimal patch
size.

• We validate the new bootstrap procedure by extensive
simulations and show that the new method outperforms
the competing approaches by providing sharper and better
calibrated confidence intervals for functions of a network
degree distribution. We illustrate utility of the FPB in
applications to the Erdös collaboration networks.

• Our method allows to draw statistical inference about
the “true” (population) unobserved network, using only
a small portion of observed graph.

The paper is organized as follows. Section 2 provides
some preliminary notations on random graphs and presents
the new FPB procedure. In Section 3, we discuss a cross-
validation algorithm for optimal patch selection. The new
bootstrap algorithm is then evaluated by extensive numeri-
cal studies in Section 4. In Section 5, we illustrate applica-
tions of new fast patchwork bootstrap procedure to analysis
of the Erdös collaboration network. The paper is concluded
by discussion in Section 6.

2. BACKGROUND AND APPROACH

2.1 Assumptions
Consider an undirected random graph G = (V,E) with a

set of vertices, V (G), and a set of edges, E(G). The order
and size of G are defined as the number of vertices and edges
in G, i.e., |V (G)| and |E(G)|, respectively. We assume that
G has no self-loops, i.e., u 6= v for any edge euv ∈ E. The
degree of a vertex v is the number of edges incident to v.
We denote the probability that a randomly selected node
has a degree k by f(k), the degree distribution of G by
F = {f(k), k ≥ 0}, and the mean degree of G by µ(G). We
assume that G is involution invariant [24, 27], that is from
the vantage point of any randomly selected vertex, the rest
of the connected network is probabilistically the same.

GraphG represents some hypothetical“true”random graph
of interest that is never fully observed, and its degree dis-
tribution F with finite mean and its order are unknown.
Instead, we observe a random graph Gn with a degree dis-

tribution Fn = {fn(k), k ≥ 0}. Let N
(n)
k be the number

of vertices with a degree k in Gn. Observed graph Gn is a



realization of G in a sense that as n → ∞, N
(n)
k /n → f(k)

in probability (empirical distribution Fn converges in prob-
ability to F ) and joint degree distribution of Gn approaches
that of G (see [7, 34] and references therein).

2.2 Fast patchwork bootstrap (FPB)
We develop a new nonparametric bootstrap-based infer-

ence for an unknown population degree distribution F of G
using the observed realization Gn. Let η(G) be the statis-
tical parameter of interest based on F (e.g., η(G) can be a
probability of observing a vertex of degree k, network mean
degree, variance or tail indexes), and let η̂(Gn) be an empir-
ical estimator of η(G) obtained from an observed realization
Gn. Our goal is to assess estimation uncertainty of the pop-
ulation parameter η(G) using a bootstrap distribution of the
sample statistic η̂(Gn).

Our patchwork algorithm consists of two main steps: sam-
pling, or creation of patches that aim to “mirror” Gn, and
resampling, or bootstrap, within the patches that aims to
quantify estimation uncertainty of the parameter of interest
η(G). This new method significantly extends and simpli-
fies the approach of [33], particularly, excludes any nuisance
parameters from constructing confidence intervals and does
not assume independence of patches.

Sampling-resampling procedure is summarized in Al-
gorithm 1. To generate patches we employ a modified ver-
sion of snowball sampling, namely the Labeled Snowball
with Multiple Inclusions (LSMI, Figure 1) of [33]. Unlike
snowball sampling, LSMI incorporates new information con-
ditionally on the links that have been already recorded, thus,
does not trace the same edge multiple times and hence min-
imizes bias in degree estimation. LSMI may be viewed as
a fusion of classical snowball sampling, induced subgraph
sampling and star sampling [21, 13].

We apply a modified bootstrap-based Horvitz–Thompson
method to estimate a degree distribution [33]:

f̂∗(k) =
|{v∗s (k)}|+ (1− p̂∗0)|{v∗ns(k)}|

|{v∗s}|+ |{v∗ns}|
, (1)

where k > 0, v∗s (k) and v∗ns(k) are bootstrap seeds and non-
seeds with degree k, respectively, | · | denotes cardinality
of a set, and p̂∗0 is the proportion of zeros in the set of
bootstrapped seeds {v∗s}, f̂∗(0) = p̂∗0. The corresponding
bootstrap-based mean degree estimator is:

µ̂(Gn)∗ =
∑
k≥0

kf̂∗(k). (2)

The intuitive idea behind (1) is that its numerator repre-
sents an estimate of the number of all nodes with a degree
k, with the first term delivering information from seeds and
the second term delivering information from non-seeds. De-
nominator in (1) is an estimator of a network order that is,
similarly, based on seeds and non-seeds.

For each seed-wave combination j, we construct the Efron
100(1− α)% bootstrap confidence interval

BCIj =

(
η̂j∗[Bα/2], η̂

j∗
[B(1−α/2)]

)
, (3)

where j = 1, . . . , J , J = kd, d is the number of waves,
m1, . . . ,mk are different sample sizes for the seeds, η̂j∗[Bα/2]
and η̂j∗[B(1−α/2)] are the empirical quantiles from the boot-

strap distribution based on B bootstrap replications (see

Algorithm 1: Labeled snowball with multiple inclusions
(LSMI) sampling and patchwork bootstrap [33].

input : network Gn; number of seeds m (m� n);
number of waves d; number of bootstrap
samples B.

output: a sample of m seeds {vs} with up to d waves
around each seed {vns}, and corresponding
bootstrap samples {v∗s}b and {v∗ns}b,
b = 1, . . . , B.

1 {vs} = sample randomly without replacement m seeds;
2 for i = 1, . . . ,m do
3 start with original network Gn (with all edges);
4 included0 = {vs}i;
5 for j = 1, . . . , d do
6 let wavej be all immediate neighbours of the

vertices from the set includedj−1;
7 includedj = includedj−1 ∪ wavej ;
8 eliminate all edges that were used to locate

wavej ;
9 end

10 {vns}i = {wavej}d1; /* Multiset Union */

11 end
12 for b = 1, . . . , B do
13 {v∗s}b = sample with replacement from {vs};
14 {v∗ns}b = sample with replacement from {vns} with

weights proportional to inverse of their degrees.
15 end

Section 3 on a data-driven choice of the optimal seed-wave
combination).

What do we gain by combining seeds and non-
seeds into a joint estimator? While many estimators of
graph totals based solely on seeds are unbiased [12], variance
of such seed-based estimator might be high if the number
of seeds is low. At the same time, sampling more seeds
might be prohibitively expensive (see overview by [20] and
references therein). Adding information from non-seeds into
the degree estimator increases bias but reduces variance. For
example, Figure 2 shows the effect of adding waves of non-
seeds into the mean degree estimator (2). Hence, a choice
on number of seeds and waves of non-seeds in LSMI leads
to a classical bias vs. variance trade-off, and we propose to
address it using a cross-validation procedure (Section 3).

3. SELECTING AN OPTIMAL SEED-WAVE
COMBINATION

Similar to findings of [17, 8, 23, 18] for block bootstrap
for space and time dependent processes, performance of the
new FPB procedure strongly depends on the size of patches
defined by the number of seeds and the number of waves in
a patch. We propose to select an optimal seed-wave com-
bination by a data-driven cross-validation procedure (Algo-
rithm 2). Note that in contrast to the earlier method of
[33] which requires multiple LSMI (≈ 25), the new cross-
validation Algorithm 2 requires substantially less data and
is based on 1 LSMI, which makes it particularly attractive
for streaming applications.

4. SIMULATION STUDY



Figure 1: Steps of the LSMI algorithm with m = 2 seeds and d = 3 waves applied to a network of order n = 23.

0

10

20

30

40

20 seeds

0

10

20

30

40

50 seeds

0

10

20

30

40

50
20 seeds, 1 wave

F
re

qu
en

cy

0

10

20

30

40

50
50 seeds, 1 wave

0

20

40

60

80

100
20 seeds, 2 waves

1.5 2.0 2.5 3.0

Mean degree

0

20

40

60

80

100
50 seeds, 2 waves

1.5 2.0 2.5 3.0

Mean degree

Figure 2: Histograms of bootstrap mean degrees
µ̂(Gn)∗ for a simulated network of order 10,000 with
polylogarithmic(0.1,2) degree distribution. The 95%
confidence intervals (dashed vertical lines) are for
µ(G) = 2.42 (solid vertical line).

Algorithm 2: Cross-validation algorithm to select an
optimal seed-wave combination.

input : network Gn; IDs of seeds that were used in the
patch, U ; bootstrap confidence intervals BCIj
for J seed-wave combinations, j = 1, . . . , J ;
proxy sample size h; N number of times for
obtaining proxy; confidence level α.

output: an optimal seed-wave combination jopt
selected from j, and corresponding bootstrap
interval BCIjopt .

1 for i = 1, . . . , N do
2 sample h nodes from U ;
3 estimate η̂proxyi from the h sampled nodes;
4 for j = 1, . . . , J do
5

counti,j =

{
1 if η̂proxyi ∈ BCIj
0 otherwise

6 end

7 end

8 jopt = arg minj=1,...,J

∣∣∣N−1∑N
i=1 counti,j − (1− α)

∣∣∣;
9 BCIjopt .

In this section, we examine finite sample properties of the
new fast patchwork bootstrap and cross-validation proce-
dure, by extensive Monte Carlo experiments.

Validation Metrics We use two standard statistical met-
rics to validate the proposed bootstrap method: coverage
probability and sharpness. Coverage probability for a 100(1−
α)%-confidence interval is defined by a relative proportion
of times when the confidence interval contains the estimated
parameter. Coverage probability is a measure of calibration.
Average width of the developed confidence intervals pro-
vides assessment of sharpness. Calibrated confidence inter-



vals with shorter widths are preferred. Conservative confi-
dence intervals (over-estimating coverage) are preferred over
liberal confidence intervals (under-estimating coverage).

Using the Chung-Lu algorithm [9], we simulate 10,000 net-
works for three different distributions, namely, zero-truncated
Poisson and two different polylogarithmic distributions [26,
33], and for varying network orders (1,000, 3,000, 5,000 and
10,000 vertices). Among the considered degree distributions,
polylogarithmic distribution with parameters (2,3) exhibits
the lightest tail, whereas the longest tail belongs to poly-
logarithmic distribution with parameters (0.1,2) (Figure 3).
We consider patches with 20, 30, 40 and 50 seeds and 1
to 5 waves around each seed (J = 20 different seed-wave
combinations in each network realization).

We validate our patchwork bootstrap procedure for quan-
tifying estimation of a population mean degree against two
competing procedures. The first competing approach is a
95% parametric confidence interval (CI) based on normal
distribution. That is, using simple random sampling (SRS)
without replacement, we select M nodes and estimate pro-
portion of nodes with degree k, i.e., f̂(k). Then, normal-

based confidence interval (NCI) is given byNCI{M} = f̂(k)±
1.96σ̂f̂(k) where σ̂f̂(k) is a sample standard deviation based
on the M sampled nodes. The second competing approach
is a nonparametric quantile-based bootstrapped confidence
interval based on the M nodes from SRS. In particular, we
resample with replacement the degrees of M previously se-
lected nodes, calculate the respective proportions of nodes
with degree k and repeat the resampling procedure B times.
The respective the Efron bootstrap confidence interval is
given by

QCI{M∗} =
(
f̂
{M∗}
[Bα/2](k), f̂

{M∗}
[B(1−α/2)](k)

)
, (4)

where f̂
{M∗}
[Bα/2](k) and f̂

{M∗}
[B(1−α/2)](k) are the empirical quan-

tiles estimated solely from theM nodes from SRS. (Through-
out the paper, nominal significance level α is 0.05.)

We now evaluate performance of the FPB in quantifying
estimation uncertainty of the network degree probabilities
f(k).
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Figure 3: Theoretical degree distributions.

Quantifying estimation uncertainty for probabili-
ties f(k) of observing a node of degree k. We now
apply the FPB to quantify uncertainty in estimating theo-
retical probabilities f(k), k ∈ Z+.

Table 1 presents the results of the new fast patchwork
bootstrap procedure along with the competing NCI and QCI.
The FPB provides the most calibrated and sharp confidence
intervals (CIs) for all considered degree distributions and
network orders.

In particular, for the zero-truncated Poisson distribution
and polylogarithmic distribution with parameters (0.1, 2),
coverage of the FPB fluctuates around the declared 95%
confidence level (coverage is between 92% and 98%), while
both NCI and QCI, despite consistently yielding around
40% wider intervals than FPB, noticeably underestimate the
nominal coverage probability, especially for f(4).

Moreover, difference in performance among the FPB, NCI
and QCI is particularly striking for a sparse network (i.e.,
polylogarithmic distribution with parameters (2, 3)). Here,
the FPB delivers well calibrated intervals, closely resembling
the declared 95% confidence level; however, despite produc-
ing noticeably wider intervals, NCI and QCI severely under-
estimated coverage, yielding only 60% vs. the declared 95%
for f(4). (We also explored applicability of FPB to Poisson
distribution and our findings are similar.)

Thus, the FPB can be viewed as a preferred procedure
for fast and reliable inference in sparse networks, under
limited prior information. Moreover, the FPB method is
both computationally efficient and information-greedy (i.e.,
it minimizes information that is collected from the network).
Hence, the FPB approach can be of particular importance in
analysis of complex social networks, for example, for quanti-
fying estimation uncertainty and hypothesis testing for num-
ber of friends, collaborators, and sexual partners, including
hard-to-reach populations.

5. ERDÖS NETWORKS
In this section, we revisit collaboration networks of two

groups of mathematical scientists, which are a part of the
Erdös collaboration network [26, 4, 25, 10]. We define the
networks as in [33]: based on the Erdös number, which is the
shortest path length between an author and Erdös, where
the latter has the Erdös number of zero. The authors with
an Erdös number from 1 to 4 represent “senior” researchers,
whereas the authors with an Erdös number from 5 to 7 repre-
sent “junior” researchers. [33] show that the group of junior
researchers has significantly lower mean degree than their
senior colleagues, and the observed µ̂(Gn) is 2.44 for junior
(n = 80,607) vs. 5.53 for senior researchers (n = 94,766).
Here we further investigate collaboration patterns in the two
groups of researchers and, in particular, probabilities of col-
laborating with one or more co-authors.

Table 2 reports 95% confidence intervals for fk(G), k =

1, . . . , 5, along with observed frequencies f̂k(Gn). The main
difference between two subnetworks is in the proportion of
nodes with degree 1: it is almost twice higher for the collabo-
rators with the Erdös number 5 to 7. Remarkably, the FPB
95% confidence intervals for f1(G) do not overlap for the
two networks, confirming the significance of the difference,
whereas the NCI and QCI intervals are much wider and over-
lap. Given the results of our simulation study that suggests
higher reliability of FPB, we tend to adopt the conclusion
of a statistically significant difference among networks, de-
livered by FPB. This phenomenon is likely due to the fact
that the group of researchers with the Erdös number 5 to 7
is dominated by “junior” researchers, and the latter tend to
have more collaboration solely with his or her supervisor.



Table 1: Coverage of theoretical probabilities fk(G) of observing a node of degree k, k = 2, 4, by 95% confidence
intervals for varying network orders. Average interval width is given in parentheses. Network degree dis-
tributions are zero-truncated Poisson(2) (ztP(2), µ(G) = 2.31), polylogarithmic(0.1,2) (pl(0.1,2), µ(G) = 2.42),
and polylogarithmic(2,3) (pl(2,3), µ(G) = 1.37). Methods of obtaining confidence intervals are fast patchwork
bootstrap (FPB), normal interval based on estimated proportions and their variance using 50 random nodes

(NCI{50}), bootstrap of 50 random nodes (QCI{50∗}). Number of bootstrap resamples is 500. Number of
Monte Carlo simulations is 1,000.

Distri- Network order n
bution k Method 2,000 3,000 5,000 10,000
ztP(2) 2 FPB 92.4 (0.15) 93.3 (0.15) 93.7 (0.16) 94.7 (0.15)

NCI{50} 93.0 (0.25) 92.6 (0.25) 92.0 (0.26) 93.2 (0.26)

QCI{50∗} 93.5 (0.25) 94.5 (0.25) 92.9 (0.25) 94.4 (0.25)

4 FPB 96.4 (0.10) 97.3 (0.10) 97.9 (0.10) 97.7 (0.10)

NCI{50} 89.5 (0.17) 88.7 (0.17) 89.8 (0.17) 89.8 (0.17)

QCI{50∗} 90.0 (0.16) 89.6 (0.16) 90.0 (0.16) 89.1 (0.16)
pl(0.1,2) 2 FPB 92.2 (0.13) 92.5 (0.13) 92.3 (0.14) 94.0 (0.13)

NCI{50} 91.5 (0.23) 90.8 (0.23) 91.6 (0.23) 91.8 (0.24)

QCI{50∗} 93.8 (0.23) 93.6 (0.23) 94.5 (0.23) 93.5 (0.23)

4 FPB 93.9 (0.082) 96.5 (0.08) 96.7 (0.09) 98.2 (0.09)

NCI{50} 90.0 (0.14) 91.4 (0.15) 90.9 (0.15) 93.4 (0.15)

QCI{50∗} 89.9 (0.14) 91.4 (0.14) 90.9 (0.14) 93.3 (0.14)
pl(2,3) 2 FPB 96.0 (0.13) 95.1 (0.13) 95.8 (0.13) 96.7 (0.14)

NCI{50} 89.9 (0.19) 92.7 (0.19) 92.0 (0.19) 90.7 (0.19)

QCI{50∗} 90.6 (0.18) 93.3 (0.19) 93.0 (0.18) 92.7 (0.18)

4 FPB 96.8 (0.05) 95.8 (0.05) 95.6 (0.05) 96.1 (0.05)

NCI{50} 59.3 (0.06) 58.7 (0.06) 59.4 (0.06) 60.6 (0.06)

QCI{50∗} 58.2 (0.05) 57.1 (0.05) 58.2 (0.05) 59.5 (0.05)

Confidence intervals for fk(G), k = 2, . . . , 5 unveil no fur-
ther differences between the two degree distributions. Note
the FPB intervals in these two networks are about 1.7 times
narrower than the NCI and QCI intervals.

1 2 3 4 5

0.0

0.1

0.2

0.3

0.4

0.5

k

f k
(G

)

fk(Gn)
Erdos number 1 to 4
Erdos number 5 to 7

Figure 4: Observed frequencies fk(Gn) (points) and
FPB 95% intervals (lines) for fk(G), for the two sub-
networks of researchers, based on their Erdös num-
ber.

6. CONCLUSIONS
In this paper we propose a novel data-driven and com-

putationally efficient method for quantifying uncertainty in
network degree distribution using nonparametric bootstrap.

We primarily focus on developing confidence intervals for
functions of a network degree distribution of some “true”
underlying network and perceive the collected network data
as a single realization of this“true”unobserved network. The
proposed patchwork idea is intrinsically linked to block boot-
strap and re-tiling in space-time processes where patches, or
analogues of blocks and tiles, are grown around randomly
selected seeds, and then both seeds and their neighbors are
resampled. Similarly to resampling procedures for weakly
dependent space-time processes, finite sample performance
of the new FPB depends on number of seeds and waves
around them, and we address this challenge by developing a
new data-driven cross-validation procedure. We show that
the FPB provides well-calibrated and sharp confidence inter-
vals for network mean degree and probabilities of observing a
node of a prespecified degree and outperforms its parametric
and nonparametric competitors in terms of accuracy, com-
putational costs and required network information. The new
bootstrap method can be further extended to quantification
of estimation uncertainty in point centrality and centraliza-
tion measures, network heterogeneity and similarity mea-
sures for multiple network comparisons based on a degree
distribution. In the future we plan to explore combination of
the FPB approach with other type of degree estimators, par-
ticularly, the respondent-driven sampling (RDS) framework
for hard to reach populations [15]. Another interesting direc-
tion is application of bootstrap for goodness-of-fit testing on
networks and optimal parameter selection, for instance, in
conjunction with parameterization of the shortest-path dis-



Table 2: The 95% confidence intervals for the popu-
lation probabilities fk(G) of two Erdös subnetworks.
Methods of obtaining confidence intervals are fast
patchwork bootstrap (FPB), normal interval based
on estimated proportions and their variance using
50 random nodes (NCI{50}), bootstrap of 50 ran-

dom nodes (QCI{50∗}). In FPB, 12 seed-wave com-
binations were considered: waves from 1 to 3, seeds
20, 30, 40, and 50. Cross-validation is based on a
random selection of 100 seeds 13 times. Number of
bootstrap resamples is 500.

FPB NCI{50} QCI{50∗}

k f̂k(Gn) lower upper lower upper lower upper
Subnetwork with Erdös number 1 to 4

1 0.242 0.174 0.284 0.282 0.558 0.280 0.540
2 0.205 0.133 0.276 0.043 0.237 0.060 0.240
3 0.127 0.086 0.219 0.043 0.237 0.040 0.240
4 0.084 0.048 0.162 0.000 0.126 0.000 0.120
5 0.060 0.038 0.143 0.000 0.126 0.000 0.140

Subnetwork with Erdös number 5 to 7
1 0.451 0.314 0.500 0.207 0.473 0.210 0.480
2 0.251 0.169 0.339 0.088 0.312 0.100 0.320
3 0.122 0.043 0.245 0.088 0.312 0.100 0.320
4 0.064 0.000 0.085 0.029 0.211 0.040 0.220
5 0.036 0.000 0.043 0.004 0.156 0.020 0.160

tance distribution of networks using the generalized Gamma
distribution [5]. The current version of the code is available
from R package snowboot [29].
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