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ABSTRACT
Predicting risk profiles of individuals in networks (e.g. sus-
ceptibility to a particular disease, or likelihood of smoking)
is challenging for a variety of reasons. For one, ‘local’ fea-
tures (such as an individual’s demographic information) may
lack sufficient information to make informative predictions;
this is especially problematic when predicting ‘risk,’ as the
relevant features may be precisely those that an individual
is disinclined to reveal in a survey. Secondly, even if such
features are available, they still may miss crucial informa-
tion, as ‘risk’ may be a function not just of an individual’s
features but also those of their friends and social communi-
ties. Here, we predict individual’s risk profiles as a function
of both their local features and those of their friends. In-
stead of modeling influence from the social network directly
(which proved difficult as friendship links may be sparse and
partially observed), we instead model influence by discover-
ing social communities in the network that may be related
to risky behavior. The result is a model that predicts risk
as a function of local features, while making up for their
deficiencies and accounting for social influence by uncover-
ing community structure in the network. We test our model
by predicting risky behavior among adolescents from the
Add health data set, and hometowns among users in a Face-
book ego net. Compared to prediction by features alone, our
model demonstrates better predictive accuracy when mea-
sured as a whole, and in particular when measured as a
function of network “richness.”
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1. INTRODUCTION
The power of predictive analytics lies in the questions

asked. At a doctor’s office, diagnoses, tests, or lab work
are ordered based on the answers to questions given at a
checkup. In the case of adolescents, the doctor may also
ask questions of the parents or caretakers. The answers to
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these questions are the observed data upon which the doc-
tor will perform some predictive task. In many situations,
this data provides enough information for a confident pre-
diction. However, there are cases for which there is an un-
tapped wealth of information available in the social network
that would greatly enhance the quality of the observed data.

The motivation for this work is the question: what if learn-
ing about the individual is not enough? In the case of human
behavior, more can be learned by collecting information not
only of that individual, but of their social connections as
well. In particular, risky behavior may be influenced by fac-
tors beyond the individual, and may be better detected, and
thereby prevented, if knowledge of the social network were
included in observed data.

One way to account for the deficiencies of data available
from individuals is to model influence that arises from their
social connections (See, e.g. [7, 8]). While a powerful ap-
proach, modeling direct influence may be challenging if the
social network is sparse, or if ‘influence’ arises not just due
to individual social connections, but rather due to the col-
lective effect of the groups of communities that individuals
belong to.

In light of these concerns, we frame the problem of pre-
dicting risky behavior among adolescents in terms the com-
munities they belong to. This means that we must build
predictors that make use of local features, as well as fea-
tures of the communities that individuals belong to, which
must themselves be detected automatically. Community de-
tection is a fundamental problem in the study of social net-
works [13, 16]. We cast the problem in terms of non-negative
matrix factorization [14], which explains the observed adja-
cency structure in the network in terms of latent community
vectors. Although we lack ‘ground-truth’ to tell us whether
these correspond to ‘real’ social communities, we evaluate
them in terms of their ability to improve the accuracy of the
predictive tasks we consider.

We develop a model that incorporates both individual fea-
tures and the social network for the purpose of label predic-
tion. We use this model to predict risky sexual behavior
in adolescents and show that we are better able to predict
in certain measures when incorporating the social network
than when using features such as lifestyle, family, and gen-
eral health (questions a doctor might ask) alone. We test
the model on a data set constructed from an in-depth sur-
vey of health, family, lifestyle, and relationships conducted
on a nationally representative sample of adolescents from
the United States to predict risky sexual behavior. We ad-
ditionally test our method on a Facebook ego net with profile



metadata for each node. Here, the feature data is sparse but
there is a richly connected social network.

We compare our model to a baseline prediction using fea-
tures exclusively. We also use explicit features alongside the
average of neighbor’s features for comparison. Our model
performs better than the other two methods globally for the
Facebook egonet. For the Add health network we see im-
provement over the other models on a local scale. In partic-
ular, when analyzing performance as a function of network
information (measured by node degree), we see improvement
in precision, recall, and accuracy at all scales of the network.

1.1 Related work
The most closely related branches of work to ours are (1)

those that model social influence in networks (2) those that
model and summarize networks in terms of communities and
(3) those that solve predictive tasks defined on networks
(or individuals within networks), especially with regard to
health and risk-related applications.

Social influence. Modeling social influence in networks is
a broad problem with many variants. One example is the
spread of ideas, for example how tweets spread due to influ-
ence on Twitter (see e.g. [5]). More relevant to the type of
model we develop is the idea of ‘social regularization,’ where
the network is used not just to model influence, but more
critically to account for deficiencies (or missing data) avail-
able at the nodes themselves. This idea is especially popular
in recommender systems, where data sparsity is a major is-
sue (see e.g. [15]). More closely related to our work, we
highlight a few examples that model the role of the network
in relation to health data below.

Community detection. Communities are groups of nodes
with many internal connections, and relatively few connec-
tions to the rest of the network [2, 10, 13], and are well-
studied in the sphere of network science. Specifically, the
problem of detecting such communities has been heavily ex-
plored and remains a fundamental problem, especially when
considering social network data [16, 17, 19].

Some approaches to community detection are purely based
on structure [3, 9, 12]. Generative models such as [27] incor-
porate node features in the generative process for predicting
community membership as well. Our method for commu-
nity detection is based on matrix factorization. The idea is
not dissimilar from PCA approaches using the graph Lapla-
cian [22] and so-called ‘signless’ Laplacian [21].

Health and the social network. The Add health data
sparked a number of studies on the relationship of the so-
cial network and human behavior and health. For instance,
in [23] the authors look at social marginalization of over-
weight children, and in [6] social networks are used to learn
social status rankings. Each of these uses the Add health
data set linking the social network to health.

There are also a number of studies specifically on the role
of social networks and risky sexual behavior ([18, 24, 28]).
However, each of these papers focuses on an individual’s in-
teractions with social connections, and how this might affect
engaging in risky sexual behavior. In this paper, we examine
how entire social communities and the individual’s member-
ship or relationship to these communities affects engaging in
risky sexual behavior.

Longitudinal studies have also illuminated the effect the

social network can have on human behavior. In [7] and [4],
obesity is shown to spread through social ties. Smokers are
also shown to evolve in clusters [8], and in particular the
authors show that clusters tend to quit smoking in concert.
These phenomena are also present among online social com-
munities, as in [11] postpartum depression is predicted with
Twitter posts. Our current work does not utilize the record
of multiple phases of surveys over time, but it would be
valuable to see how social communities affect the evolution
of individual behaviors and we suggest this for further work.

1.2 Contributions
Our contribution builds on the ideas above from social

influence, community detection, and predictive models in
networks with health applications. Briefly, our main contri-
butions are as follows:

• We build a model to estimate missing features in at-
tributed social networks. We apply this model to esti-
mate the risky sexual behavior of adolescents on Add
Health data. Figure 1 is a visualization of the Add
health network with nodes colored by labels indicat-
ing engaging in risky sexual behavior (yellow) or not
(blue). We see that by comparing the actual labels to
the predicted labels visually, our model demonstrates
high accuracy.

• Methodologically, our contribution is to use social net-
work information to ‘fill in’ missing information that
cannot be predicted using node information alone. In
contrast to existing work on social influence/social reg-
ularization, our predictor is based on (latent) commu-
nity memberships rather than using the social links
directly. This results in a robust predictor that ac-
counts for the sparsity of the social networks observed
in the Add Health dataset.

• Our experiments reveal that by incorporating social
community information, we have a higher predictive
power by many measures of accuracy. In particular,
when decomposing error as a function of network con-
nectivity as measured by node degree, we see that the
predictions made by our model remain accurate at all
scales on the Add health data as compared to predic-
tions made by using features alone.

2. THE MODEL
We formally describe our model for predicting labels (en-

gaging in risky behavior, for instance) based on individual
features and the underlying social network. Our notation is
defined in Table 1. Let F be an n× f feature matrix with n
examples (individuals) and f features. By features we mean
information pertaining to the individual. We refer to the ith

row of F as the feature vector Fi. In general, the ith row
of a matrix M , corresponding to the ith node, is denoted
by Mi. The social network of the examples is given by the
n × n adjacency matrix A. The social network should in-
dicate the relationships of the n individuals recorded in the
feature matrix F .

The idea is to treat the network communities with respect
to the individual as an additional feature. That is, we aim
to “extend” the feature vector by a vector encoding the in-
dividual’s communities. Thus, rather than using the full



(a) Actual labels (b) Predictions made with our model

Figure 1: Visualization of the Add health social network. Figure 1a depicts labels: yellow indicates risky sexual behavior, and
blue indicates protected sex. Figure 1b depicts the predictions of our model: green indicates true positive, purple indicates
true negative, yellow indicates false positive, and grey indicates false negative.

Table 1: Notation

F feature matrix
A adjacency matrix for social network
X full matrix of observed data
n number of examples
f feature dimension
k number of latent factors

network topology, we use some low-dimensional representa-
tion of A that encodes the communities of the network. Let
C ∈ Rn×k with k � n be a low-dimensional representation
such that g(C) ≈ A by some transformation g. The details
of this reduction are given in Section 2.1, but for now let
the ith row of C be the communities vector Ci. Then, the
full observed data for each individual consists of the feature
vector and the communities vector.

Labels are predicted by incorporating the feature vector
Fi and the communities vector Ci associated to example i as
Xi := [Ci|Fi], where [·|·] indicates column-wise concatenata-
tion. Namely, our matrix of observed data incorporating the
social network is X = [C|F ]. We perform logistic regression
on X for label prediction.

2.1 Network dimensionality reduction
Our method for dimensionality reduction on A is in the

style of a latent factor model approach for learning the re-
lationship of observed data by their latent factors. Latent
factor models are related to the singular value decomposition
(SVD), but allow for optimization in spite of missing data.
This approach also differs from the SVD due to the use of a
link function (in this case a sigmoid), to account for the fact
that the entries we are trying to estimate are in the range
[0, 1]. This is similar to community detection methods based

on non-negative matrix factorization [26] and so-called ‘one
class’ collaborative filtering [20].

We model the basic probability that a link forms between
example i and example j as Aij ≈ UiV

T
j . Certain biases

may also be incorporated to enrich the model and to ac-
count for variance in the degree distribution of nodes in the
network. For instance, the likelihood that a link forms be-
tween example X and example Y may be slightly higher if
example X is generally popular, despite the individual re-
lationship of X and Y . Or, if communication in general is
very difficult within a particular social sphere, for example
if coworkers are not encouraged or allowed to socialize in
a particular workplace, the probability of links forming in
general may be lower, despite individual relationships. We
let β be a vector encoding individual bias, and α a scalar
encoding a global bias. In the first scenario, the row of β
corresponding to X would encode this example’s popular-
ity, while in the second scenario α would encode a generally
unsocial workplace.

Incorporating these biases, the full model for the proba-
bility of a link being added in the network is

Pr(Aij = 1) = σ(α+ βi + βj + UiV
T
j ), (1)

where α encodes a global bias, and β ∈ Rn is a vector en-
coding individual example biases.

2.1.1 Learning network parameters
The goal is to find U, V, β, α which are good approxima-

tions to the binary matrix A, Aij ≈ σ(α+ βi + βj +UiV
T
j ),

as in (1). This is accomplished by arguments that minimize
the cost function:

min
U,V,β,α

∑
i,j

−Aij
2ωA

log(σ(Hij))−
(1−Aij)

2ζA
log(1− σ(Hij))

+ γ(||Ui||2 + ||Vj ||2 + β2
i + β2

j ),

(2)



where

• Hij = α+ βi + βj + UiV
T
j ,

• ωA := |{Aij | Aij = 1}|, the number of edges

• ζA := |{Aij | Aij = 0}|, the number of non-edges, and

• γ is a regularization parameter.

Validation is used to determine the best value for k, tested
in the range (0, 10), and regularization parameter γ.

2.2 Using the model for prediction
In this section we describe the specifics of performing a

predictive task with the model.
We begin by reducing network dimensionality and learn

relevant latent factors as described in Section 2.1 by mini-
mizing the objective cost function (2) with respect to latent
factor matrices U , V , individual bias vector β, and global
bias constant α. As this optimization aims to approximate
the adjacency matrix, A, the function is minimized over
a training set consisting of half of the edges in the graph
and two non-edges for every edge. That is, the training set
Ctrain consists of ntrain := 1/2ωA distinct random members
of {(i, j) | Aij = 1} and 2ntrain distinct random members of
{(i, j) | Aij = 0}.

Optimal values of k, the number of relevant latent fac-
tors, or the number of columns of U and V , and regular-
ization constant γ are determined over a distinct validation
set Cval consisting of nval := 1/4ωA edges and 1/2ωA non-
edges. The best values of k from {5, . . . , 10} and γ from
{0, 0.01, 0.04, 0.16, 0.64, 2.56, 10.24} are those that optimize
accuracy of the link predictions on the validation set. Fi-
nally, the factors are tested on a withheld test set consisting
of the remaining ntest := 1/4ωA edges and another 1/2ωA
non-edges.

After learning latent factors U , V , we construct the matrix
X = [U |V |F ] which concatenates column-wise. From this
set of observed data we perform logistic regression to learn
model parameters Θ, and use threshold t = 0.5 to predict
individual labels.

We divide the data into a training, validation, and test
sets in a 60/20/20% ratio. In each case we train the model
on the training set using different regularization parameters
∈ {0, 0.01, 0.02, . . . 2.56, 5.12, 10.24}. We choose the param-
eter that yields the highest binary classification rate on the
validation set. We report all results on the test set.

3. DATA
We test the model on two data sets. The first, Add health,

is an extensive study of family, health, and relationships
among adolescents. The second is the egonet of a Facebook
user with accompanying metadata.

The main interest of this work is in predicting risky behav-
ior among adolescents using the Add health data. For the
sake of comparison, and to assess the generalizability of our
approach to other tasks, we also compare the performance of
our model on the egonet, whose features are potentially less
meaningful (school, location, workplace, etc.) but whose
social network is comparitively richer (in particular, more
complete) compared to the Add health dataset.

3.1 Add health
The National Longitudinal Study of Adolescent to Adult

Health (Add Health) [25] is a longitudinal study of a nation-
ally representative sample of adolescents in grades 7-12 in
the United States. The study collects data on physical and
psychological well-being, as well as social and economic sta-
tus. The data also contains contextual information on the
family, neighborhood, community, school, friendships, peer
groups, and romantic relationships of the students. Accord-
ing to the Add Health project summary, a major goal of the
study is “providing unique opportunities to study how so-
cial environments and behaviors in adolescence are linked to
health and achievement outcomes in young adulthood.” [1]

The Add Health study is conducted in waves of interview
questions, the first of which was done in 1994-1995. The
first wave collected 2,820 answers of 20,745 students, for a
data matrix of size 21K × 3K.

A crucial section of the study asks students to name friends
of both genders—either one friend of each gender or 5 friends
of each gender. The observed data consists of this social
network which contains edge labels indicating the type of
relationship, as well as the answers to the interview ques-
tions.

Data pre-processing. To ease computation and focus, we
use the k-cores of the Add Health graph (k = 9). A k-core
of a graph is a maximal connected subgraph in which all
vertices have degree at least k. The collection of all k-cores
will be referred to singularly as the k-core. The k-cores
contain a subset of the most active individuals in the group.

The k-core of the Add Health graph consists of 587 nodes
and has an edge density of 0.012, compared to the full graph
of 107K nodes and an edge density of 7.2e− 05. Properties
of the k-core are given in Table 2. We note that while the
original network is directed, the k-core is computed on the
undirected version of the graph. In particular, degrees of
nodes are computed as the sum of in-degree and out-degree.

In our experiments, we aim to predict risky sexual behav-
ior among adolescents. Specifically, we predict the “yes” or
“no” answer to the question given in the questionnaire as:
“Did you or your partner use birth control the first time you
had sexual intercourse?”1 As not all students are sexually
active, we limit the examples we use to individuals who pro-
vided a meaningful “yes” or “no,” and appropriately pruned
the social network to include only these examples as well.
We then compute the k-core of the resulting network, and
use only the remaining 587 examples for our predictive task.
The resulting feature matrix F is of size 587 × 3570 and A
of size 587× 587.

3.2 Facebook egonet
Our second data set is the egonet of a Facebook user along

with the corresponding profile data [17]. The profile data
contains information such as school, degree, workplace, lo-
cation, and languages the user knows. Details of the network
data are given in Table 2.

We perform a somewhat more benign predictive task on
the Facebook egonet by predicting the hometown of the in-
dividuals. Specifically, we review the hometowns of each
individual and choose the hometown with the most positive

1In particular, a positive instance is an individual who uses
birth control. Thus, our model is actually predicting safe
sex, but allows for detecting risky behavior as well.



Table 2: Basic network statistics

Add health
9-core

Facebook
egonet

number of nodes 587 238
number of edges 4122 8420
density 0.01 0.15
transitivity 0.26 0.77
number of components 11 6
max degree 56 184
average degree 14.04 70.8

examples as the predictive feature.

4. EXPERIMENTS AND ANALYSIS OF RE-
SULTS

We compare the results of our method (performing logis-
tic regression on the full matrix of observed data X) to two
simple methods. The first is a baseline method perform-
ing logistic regression on the feature matrix F alone. For
the second, we use the basic features as well as the average
of neighbors’ features. We call the matrix F concatenated
with columns giving the average of each feature N and per-
form logistic regression on N .2 We compare the predictive
power of these methods in order to evaluate the advantage
gained by including community features in the model. We
use global measures such as accuracy and root mean squared
error to evaluate the overall output of the model. We ad-
ditionally investigate individual predictions as a function of
node degree in order to see where the most improvement is
gained in terms of network “richness.” We use a number of
quantitative measures as described below.

Let ŷi represent the prediction for yi and ỹi the confidence
of the prediction. Then we measure accuracy as the fraction
of correct predictions:

accuracy =
1

n
|{i | yi = ŷi}|. (3)

A higher accuracy means more correct predictions. The root
mean squared error (RMSE) is defined as usual:

RMSE =

√
1

n

∑
i

(ỹi − yi)2. (4)

The precision, or positive predictive value, of our set of pre-
dictions is the fraction of correct positive predictions to all
positive predictions. The recall, or sensitivity, is the fraction
of correct positive predictions to total positive instances.
The F1 score is the harmonic mean of precision and recall.
Each of these are a measure of accuracy, and a higher value
indicates better predictions.

The balanced classification rate (BCR) is an average of
the rate of correct positive predictions and correct negative
predictions.

Finally, we also use the log likelihood of the learned model
Θ as a quantitative measure.

We compare the predictions of our method to the predic-
tions of the feature matrix F as well as the neighbor feature
matrix N . We use the same row-wise partitions in each case,

2All code is publicly available at https://github.com/
osimpson/community-lfm

Table 3: Global performance measures for Add health

F N X

Accuracy 6.186e-1 6.356e-1 6.186e-1
Log likelihood 119.63 141.71 118.38
Precision 6.85e-1 6.91e-1 7.02e-1
Recall 8.0e-1 8.2e-1 7.47e-1
F1 score 7.368e-1 7.514e-1 7.239e-1
BCR 5.269e-1 5.396e-1 5.529e-1
RMSE 5.207e-1 5.369e- 5.282e-1
% pred. positive 0.78 0.8 0.71
% actual positive 0.67

Global performance measures of the predictions made by
regression on F , the feature matrix, regression on N , the
feature matrix including neighbor features, regression on X,
the full observed data including the latent network commu-
nity. The first six measures are measures of accuracy, where
a higher value indicates a better prediction. For each mea-
sure, the best result is indicated in boldface.

the only difference being the columns of the data matrix de-
pending on the method.

Add Health. As discussed in Section 3.1, we predict whether
or not individuals will engage in protected sexual intercourse
during their first encounter. Specifically, we predict the“yes”
or “no” answer to the question given in the questionnaire as:
“Did you or your partner use birth control the first time you
had sexual intercourse?”

Each of the U and V latent factor matrices are of size
587×9 where the number of relevant latent factors, k = 9, is
determined by validation on a withheld set (see Section 2.1).
We then compare the binary predictive performance of our
model, using the full data matrix X = [U |V |F ] to the binary
predictive performance using just F .

Table 3 compares a number of performance measures for
each of the models. The first six, accuracy, log likelihood,
precision, recall, F1 score, and BCR are all measures of accu-
racy, where higher values indicate better performance. The
next next is a measure of error, where smaller values indicate
better performance. We also look at the percent positive in-
stances predicted. Our model has better precision and BCR,
though we see that, overall, the global measures are quite
similar. Small improvements over the baseline and using
neighbor features at a global scale are further illuminated
by decomposing the error. We measure error at different
scales to see where our model outperforms regression on F
and N . In figs. 2 to 4, we plot these measures.

In Figure 2, we measure the recall and precision of the top
r predictions ranked by |ỹi−0.5| for varying r, and measure
the recall vs. precision of these top r predictions. For our
model, the precision remains high and the area under the
curve is greater than that for the baseline by 0.015. We note
that our model maintains perfect precision for recall up to
0.2 as more examples are included. In this range, the preci-
sion of the baseline is between 0.75 and 0.9. Further, where
regression on N resulted in better global measures (Table 3),
here we see a marked improvement using our method.

Figure 3 measures accuracy as a function of confidence.
That is, among the predictions in the top kth confidence



Figure 2: Precision/recall curve for Add health data. Area
under the curve representing regression on F is 0.7596. The
area under the curve representing regression on N is 0.5712.
The area under the curve representing regression on X is
0.7749.

percentile, we measure the predictive accuracy. The figure
demonstrates that in general, with the exception of some of
the third quartile, the accuracy of our model’s predictions
are better by a margin of up to 0.15 than that of the baseline.
Most notably, in the 75−90th percentile, our model demon-
strates much better accuracy. Again, our model greatly out-
performs regression on N .

To more closely investigate the quality of the prediction
with respect to the quality of the social network, in Figure 4
we plot mean accuracy per network degree, with error bars
indicating one standard standard error. We see improve-
ment at almost all degrees with our model, and meaningful
improvement among common degrees, those ≤ 10.

We also check other measurements of accuracy and error
per node degree. Specifically we measure the BCR, F1 score,
and something we refer to as the perplexity (see the section
below). In each of these cases, the results using regression
on X are not significantly different from using regression on
F or N , and we do not include those reports in our analysis.

It would be meaningful to perform these measurements on
the data as a function of data richness. One possible mea-
sure of data richness is the extent to which there is missing
data in any row, for example. We would expect that, at
a point where the feature data is lacking, but the network
data is rich, our would perform particularly well. However,
in the case of Add health the data is fairly consistent and a
measurement along this axis was not revealing to the power
of the model. Again, we do not include these reports in our
analysis.

Facebook egonet. In this case, we predict whether or not
individuals are from a common hometown (see Section 3.2)
based on Facebook profile data.

Each of the U and V latent factor matrices are of size
238×10. As above, Table 4 compares the models by a num-
ber of measurements. Our model has significantly better
precision and recall as compared to the baseline, as well as
a better BCR. The log likelihood is somewhat better, while

Figure 3: Accuracy @kth percentile for Add health data

Figure 4: Mean accuracy per degree with error bars repre-
senting one standard error for Add health data.

the F1 score, and RMSE are somewhat worse. Remarkably,
although our model and the baseline predict with the same
accuracy, our model predicts the correct number of posi-
tive examples, while the baseline severely underpredicts the
number of positive examples. Further, regression on N re-
sults in no positive predictions (which may explain the high
accuracy). These global measures demonstrate that in cases
where feature data is sparse, a rich network with communi-
ties can enhance predictive tasks.

Again, we investigate performance at different scales. Fig-
ure 5 measures accuracy @kth percentile. Our model does
consistently better than the baseline in the top quartile, but
the baseline yields better accuracy elsewhere and regression
on N generally outperforms the other two.

In Figure 6 we measure the average perplexity per degree.
Again, if ỹi denotes the confidence of prediction i, and yi the
actual label, then the perplexity of the prediction is |ỹi−yi|.
We see that our model demonstrates better (lower) average
perplexity at almost every degree.

As with Add health, we additionally measure the accu-
racy, BCR, and F1 score as a function of node degree. How-



Table 4: Global performance measures for Facebook egonet

F N X

Accuracy 8.7755e-1 9.1837e-1 8.7755e-1
Log likelihood 22.69 23.16 28.15
Precision 0 0 0.7
Recall 0 0 0.7
F1 score 7.368e-1 0 7.239
BCR 4.78e-1 5.0e-1 5.92e-1
RMSE 2.92e-1 2.7e-1 3.19e-1
% pred. positive 4.1e-2 0 8.2e-2
% actual positive 8.2e-2

Global performance measures of the predictions made by
regression on F , the feature matrix, regression on N , the
feature matrix including neighbor features, regression on X,
the full observed data including the latent network commu-
nity. The first six measures are measures of accuracy, where
a higher value indicates a better prediction. For each mea-
sure, the best result is indicated in boldface.

Figure 5: Accuracy @kth percentile for the Facebook egonet

ever, there is no meaningful difference here when using re-
gression on X, N , or F , and we omit those reports.

5. CONCLUSION
This study illustrates two important ways the communi-

ties of a social network can help in a predictive task. First,
social communities inherently have an effect on individual
behavior, and thereby health and well-being. Incorporating
social communities among the data for a predictive tasks
adds valuable and measurably beneficial information that
enhances the quality of the prediction. We see the effects of
social communities in our prediction of risky sexual behav-
ior among adolescents with the Add Health data. Second,
if individual feature data is sparse or uninformative, social
communities can boost the quality of the data used for a
predictive task. We see the improvement over feature data
alone in predicting hometowns among individuals in a Face-
book egonet.

The authors suggest a few avenues for future work. In

Figure 6: Mean perplexity per degree for the Facebook
egonet with error bars representing one standard error.

this work we use latent community structure as additional
features, but this is done is something of a “preprocessing”
step. We believe that communities might be better detected
if the node features were included in this process as well.
We believe a joint model which learns label prediction pa-
rameters and latent features simultaneously might enhance
our model as it stands in this work.

Second, the Add health data set is a longitudinal data
set. It would be worthwhile to make use of this data to
investigate how behaviors evolves over time with respect to
social communities.
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APPENDIX
Equation (2) is minimized with gradient descent with the
following derivatives:
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