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ABSTRACT
Identifying communities plays a central role in understand-
ing the structure of large networks. As practitioners ana-
lyze progressively larger networks, it becomes increasingly
important to understand the computational complexity of
candidate algorithms. We examine the complexity of the
link clustering algorithm (Ahn et al., 2010) for overlapping
community detection. We provide new, tight bounds for
the original implementation and propose modifications to
reduce algorithmic complexity. These new bounds are a
function of the number of wedges in the graph. Addition-
ally, we demonstrate that for several community detection
algorithms, wedges predict runtime better than commonly
cited graph features. We conclude by proposing a method to
reduce the wedges in a graph by removing high-degree ver-
tices from the network, identifying communities with an op-
timized version of link clustering, and heuristically matching
communities with the removed vertices in post-processing.
We empirically demonstrate a large reduction in processing
time on several common datasets.

1. INTRODUCTION
The existence, discovery, and analysis of community struc-
ture has become a vibrant research field in network science.
The importance of these structures has been demonstrated
in areas ranging from biology to sociology [3, 11]. Research
literature proposing new community detection algorithms
primarily focuses on community quality measurement. The
computational properties of popular algorithms, however,
are less well studied and focus on identifying upper bounds
for algorithm complexity in terms of simple statistics such
as the numbers of edges, numbers of vertices, max or aver-
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age degree, and graph diameter. The effect of specific, local
structures on the computational complexity of overlapping
community detection algorithms remains largely unknown.
As observed networks continue to grow in size, measuring
the effect of these structures becomes important in guiding
practitioners to identify efficient methods for solving a prob-
lem of interest. Moreover, a more precise understanding of
how graph structure affects the runtime of different methods
will better enable researchers to design new algorithms and
modify current algorithms to be scalable.

We examine the runtime of the popular link clustering [1]
algorithm for overlapping community detection. We prove
a tighter bound on computational complexity that is based
on wedges (paths of length 2) in a network. We modify the
original algorithm to achieve lower computational complex-
ity, under certain conditions. We demonstrate this empiri-
cally on real networks generated from email logs of a medium
sized enterprise.

Aside from an optimization of the link clustering algorithm
and wedge-based bounds on complexity, we examine the run-
time of several comparable community detection algorithms
in practice. On real data, we demonstrate that often wedges
provide a better predictor of runtime than other common
network features. Finally, we propose a framework for re-
ducing wedge count by removing high-degree vertices from
the analysis and adding them back via a post-processing
heuristic. We empirically demonstrate a significant reduc-
tion in runtime for our optimized link clustering algorithm
on several common datasets.

We organize the paper as follows. Section 2 overviews the
link clustering algorithm before analyzing the complexity
of each component. We then prove the exact link cluster-
ing complexity and demonstrate that often cited bounds are
missing an important factor. We harness these insights to
identify bottlenecks and modify the algorithm to attain iden-
tical clustering results while greatly reducing computational
complexity. Section 3 investigates how clustering algorithms
scale as a function of graph properties. Section 4 presents
pre- and post-processing steps to temporarily remove high-
degree vertices. This produces comparable clustering quality
to the original algorithm, while also showing a drastic reduc-
tion in computation in experiments. We conclude in Section
5.

2. OPTIMIZED LINK CLUSTERING



We begin by outlining the link clustering algorithm of Ahn,
Bagrow, and Lehmann [1] for identifying overlapping clus-
ters in networks. Then we analyze the computational com-
plexity of each component of the algorithm, describe modi-
fications for avoiding redundant computations, and further
reduce the complexity by showing that a particular non-
standard sorting subroutine is guaranteed to work more effi-
ciently than traditional comparison-based sorting algorithms.

2.1 Preliminaries
Let G be an undirected, unweighted graph with adjacency
matrix A. Denote by n the number of nodes in G (i.e.,
rows/columns in A), and by m the number of edges in G (
half the number of nonzeros in A). Let d(k) be the degree
of node k. The inclusive neighborhood of a node j, which
we denote by N+(j), consists of the neighborhood of node j
together with the node j itself.

Following the authors’ original notation, we label an edge
with its endpoints so that an edge connecting nodes j and k
is denoted ejk. We call a pair of edges that share an endpoint
a wedge; this is also called a pair of adjacent edges, or a path
of length two. Given a pair of adjacent edges, ejk and ekl,
we refer to the shared node k as the keystone and the non-
shared endpoints, j and l, as the imposts with respect to
this wedge.

Link clustering measures edge similarity as the Jaccard In-
dex on the inclusive neighborhoods of wedge imposts. The
similarity of two edges, ejk and ekl, is defined as follows:

S(ejk, ekl) =
|N+(j) ∩N+(l)|
|N+(j) ∪N+(l)| .

In Section 2.4.1 we describe how we compute this efficiently.

The algorithm produces a dendrogram of edge merges via
single-link agglomerative clustering. To identify the “best”
level of the dendrogram, Ahn et al. define partition density.
Intuitively, partition density measures the average link den-
sity of a partitioning. Given a subgraph S with n > 2 nodes
and m edges, the link density of S is defined as

LD (S) :=
m− (n− 1)(
n
2

)
− (n− 1)

, (1)

where 1 indicates full density (a clique), 0 indicates a min-
imally connected set of nodes (a tree), and − 2

n−2
indicates

isolated nodes. The partition density of an edge partition C
with c blocks is defined as

PD :=
1

m

c∑
k=1

mk · LD (Ck) , (2)

where mk is the number of edges in partition block Ck. This
value represents the average link density, weighted by the
number of edges within a block.

2.2 Link clustering complexity
Link clustering builds communities by iteratively joining
similar edges. Here we describe the algorithm’s four steps
and determine their computational complexity.

1. Similarity: Compute similarity scores for all pairs of
adjacent edges.

2. Sort: Sort the similarity scores in decreasing order.
3. Merge: Iteratively merge communities bridged by edges

with the highest similarity score.
4. Partition density: Compute the partition density at

each merge level. Output the clustering determined by
the level of maximum partition density.

Lower bound We show a lower bound of w logw, where w
is the number of wedges in the graph. The algorithm com-
putes exactly w similarity scores (one score for each pair of
adjacent edges, i.e., one for each wedge), so w lower-bounds
the work in Step 1. Sorting these w scores requires an addi-
tional Θ(w logw) work in Step 2, assuing any comparison-
based sorting algorithm is use. The merge step begins with
m clusters (each of the m edges begins as its own cluster),
merges two adjacent clusters at each step, and terminates
after merging all clusters into connected components. Thus,
merging involves exactly m−c steps, where m is the number
of edges in the graph and c is the number of connected com-
ponents in the graph. Note that each of these m − c steps
might involve additional work, but here we are interested
in only a lower bound. The trick is to check and update
cluster membership without directly updating every edge’s
cluster label at each step. Correspondingly, computing the
partition density at each merge level requires at least m− c
work. Outputting the clustering involves reporting the clus-
ter labels of each of the m edges, and hence Step 4 requires
at least m work. Out of these (admittedly simple) lower
bounds, those for computing (w) and sorting (w logw) sim-
ilarity scores are the largest; thus, link clustering requires,
at the very least, w logw work. (We remark that we have
not shown here that w logw is an upper bound – for now we
are interested in a simple lower bound.)

Upper bound We show that w logw is also an upper bound
for the work performed by link clustering, proving that the
problem complexity is Θ(w logw).

2.3 Original implementation
2.3.1 Similarity

The implementation of link clustering provided by its au-
thors [1] iterates over the graph, treating each node as a
keystone. For each keystone k, the algorithm considers each
unordered pair of k’s neighbors to be imposts, and retrieves
the imposts’ neighborhoods. Retrieving the neighborhood
of node j requires d(j) work. The original implementation
retrieves a node’s neighborhood every time it is an impost.
For a fixed keystone k and neighbor j, the node j is an im-
post d(k)−1 times. The neighborhood of node j is retrieved
that many times for node k alone. This pairing results in
d(j)d(k− 1) work. Furthermore, node j serves as an impost
for each of its (keystone) neighbors: for each neighbor, jt,
of node j, the work performed is

d(j)∑
t=1

d(j)(d(jt)− 1) = d(j)

d(j)∑
t=1

(d(jt)− 1).

Finally, assuming every node’s degree is d = dmax, this gives
a straightforward runtime bound for the original implemen-
tation of

O

 n∑
j=1

d(j)

d(j)∑
t=1

d(jt)

 = O(nd3).



2.3.2 Sort
Sorting a set of n objects based on comparison, for example
with merge sort, requires Θ(n logn) work [8]. Here, the
objects are similarity scores on wedges, so sorting requires
Θ(w logw) work. This component of the work appears to
be omitted in other runtime bounds [12].

2.4 Improvements
2.4.1 Similarity

To compute the similarity scores between all pairs of ad-
jacent edges,

∑n
k=1

(
d(k)
2

)
= O(

∑n
k=1 d(k)2) pairs must be

examined. The number of impost-impost edge pairs at a
keystone k is the number of unordered pairs of edges at-
tached to it, which is

(
d(k)
2

)
. While this is the number of

computed similarity scores, the number of operations de-
pends on implementation.

The dominant subroutine of this step retrieves the neigh-
borhoods of two imposts and computes the intersection and
union of those neighborhoods. The näıve approach performs
redundant operations: if two nodes share many neighbors,
then the algorithm repeatedly retrieves their neighborhoods
and computes similarity.

We avoid redundant neighborhood retrievals during the sim-
ilarity computations as follows. Computing the similarity
score of two adjacent edges with imposts j and k requires
computing the value |N+(j)∩N+(k)|. This equals the num-
ber of neighbors shared by j and k, plus 2 if an edge con-
nects j and k. Conveniently, A2(j, k) provides the number
of neighbors shared by nodes j and k, and A(j, k) indicates
whether an edge connects j and k. Thus, |N+(j)∩N+(k)| =
(A2+2·A)j,k. Since these scores are symmetric, we compute
the upper triangular piece of the matrix (A2+2·A). Observe
that computing the upper triangular portion of A2 can be
accomplished in O(w) work, as it consists of summing over
all paths of length two (wedges) in the graph:

A2(:, j) = A ·A(:, j) =
∑

t∈N(j)

A(:, t)

which requires
∑
t∈N(j) d(t) work. Repeating this for all

n nodes, requires exactly
∑n
j=1

(∑
t∈N(j) d(t)

)
work. The

degree d(t) appears in this summation once for each neighbor
j. As each term d(t) appears exactly d(t) times, resulting
in
∑n
t=1 d(t)2 = Θ(w) work. Adding 2 · A requires at most

work equivalent to the number of edges m (nonzeros in A).
This value is dominated by w in a connected graph, so the
total work for Step 1 is Θ(w).

Note that this work, Θ(w), is upper-bounded by O(nd2max)
(simply upper-bound d(k)2 with d2max), confirming the run-
time upper bound given in [12]. Alternatively, we could
upper-bound d(k)2 ≤ d(k)dmax to obtain dmax · m as a
sharper upper bound.

2.4.2 Sort
Knowing additional structure about the scores can enable
faster sorting. For example, in a complete graph, all wedges
have the same score, and so sorting requires no work. For
graphs with maximum degree less than some threshold, the
similarity scores can be sorted using a modified bucket sort

in work that scales linearly in w, the number of scores. This
enables an algorithm with the optimal runtime of Θ(w) on
power law graphs.

We use a so-called “max shelf” sorting routine [7], imple-
mented to sort values taken from (0, 1]. Intuitively, the
max shelf procedure is a bucket sort. Max shelf maps a
value from the interval (0, 1] to an integer, then uses that
integer as an index to store the value in an array. More
specifically, for any value x ∈ (0, 1], compute the ceiling of
its reciprocal, i.e. x 7→ d1/xe. This constant-time opera-
tion will map any similarity score to an integer between 1
and d1/minimum scoree. Furthermore, this operation puts
scores in the array in sorted order, because two similarity
scores x and y are ordered as x ≤ y if and only if the map-
ping orders them d1/ye ≤ d1/xe. Once the similarity scores
have all been mapped into the array, they can then be read
out of the array in sorted order.

This application of bucket sort requires a lower bound on
the set of inputs (a parameter we refer to as minval ) to
guarantee that the array is large enough to handle the index
d1/xe for each score x. To guarantee a completely accurate
sort, max shelf also requires an upper bound on the recipro-
cal of the smallest possible distance between distinct inputs
(a parameter we refer to as gap max). That is, for scores sj
for j = 1 : n,

gap max = max
sj 6=si

(
1

|si−sj |

)
.

By scaling the set of scores we can guarantee the shelf map-
ping x 7→ d1/xe will map distinct scores to distinct inte-
gers, and hence provide an accurate sort. The memory
required for the shelf sort procedure is bounded above by
O (n+ gap max · (1.0− minval)). If the scores can be arbi-
trarily close (causing an arbitrarily large value for gap max),
this can cause memory problems. However, when scores are
guaranteed to be spaced out, this approach yields a linear
time sorting routine, offering a logn speedup over tradi-
tional sorting methods. In the context of Jaccard similarity
scores, gap max is bounded above by 4d2max, guaranteeing a
linear-time sort whenever the max degree is not too large.

3. EMPIRICAL RESULTS
Here, we investigate how the runtimes of several popular
clustering methods scale with a set of graph properties: num-
ber of edges, maximum degree, number of nodes, number of
triangles, and number of wedges. We consider unweighted,
undirected networks and define a wedge as a pair of adjacent
edges. The number of wedges in a graph is w =

∑n
k=1

(
d(k)
2

)
,

where d(k) is the degree of node k.

3.1 Algorithms
We consider the following community detection algorithms:

Infomap detects communities by compressing the descrip-
tion of information flows on networks [10]. It reduces
the problem to solving a coding theory problem.

BigCLAM observes that overlaps between communities are
densely connected [13]. It estimates non-negative la-
tent membership strength of each node to each com-
munity.
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Figure 1: Runtime scales roughly as a function of
edges. Our optimization (Optimized LC) greatly
outperforms the original implementation (Link clus-
tering). Infomap and BigCLAM are included for
comparison. Section 4 adds hub removal to our al-
gorithm (Optimized LC Hub).
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Figure 2: Runtime scales more precisely as a func-
tion of wedges.

Link clustering clusters edges instead of nodes, and allows
a node to belong to all the communities to which its
edges belong [1].

Optimized LC is an implementation of the algorithm pro-
posed in this paper. Optimizations include a reduc-
tion in the number of similarity computations and im-
proved sorting efficiency.

3.2 Data
We apply the community detection algorithms to increasing
portions of a month of email data from a medium-sized en-
terprise (3,800 nodes and 45,000 edges). Figures and results
are generated by examining the running time on a graph
built from {1, 2, 3, ... 30} days worth of data. By con-
structing networks in this manner we produce a sequence of
increasingly dense graphs, allowing us to examine the effects
of each feature on runtime.

3.3 Results
Figures 1 and 2 show that the runtimes scale loosely with
the number of edges in the graph, and more tightly with the
number of wedges. We observe slower runtimes for the orig-

inal link clustering implementation, making it comparable
with Infomap. Our improvements described in Section 2.4
make the runtimes comparable with BigCLAM. Note that
BigCLAM parallelizes a matrix multiplication step to achieve
some speedup, whereas the other implementations do not
harness parallelization.

While qualitatively the data make cleaner lines in Figure 2
than Figure 1, we desire a quantitative comparison of how
well graph features predict runtime. We choose a power
law model with removed intercepts. For each algorithm, we
scale the feature value and runtime data to [0, 1]. Then we
fit a model of runtime as a power (α) of feature value. We
measure the sum of squared error between the observed and
predicted runtimes. This describes how well a model fits the
data.

Table 1 shows the sum of squared error for the prediction of
each algorithm’s runtime given a graph feature. In three of
four cases, wedges predict runtime best. For the runtimes
of the original link clustering implementation, nodes predict
runtime best, with wedges a close second. The implementa-
tion makes redundant computations when two nodes share
multiple neighbors; we include our optimized link clustering
as an example without this redundancy.

We test for statistical differences between the runtime pre-
diction squared error scores with Friedman’s test [5, 6]. We
found statistically significant differences between features for
each method (Link clustering p = 0.0002, Optimized LC
p < 0.01, Infomap p < 0.01, BigCLAM p = 0.003). The best
powers of number of wedges were as follows: Link clustering
1.54, Optimized LC 1.05, Infomap 0.66, and BigCLAM 1.07.

4. REMOVING AND REPLACING HUBS
Hubs, or nodes of high degree, can ruin the efficiency of
many network analysis algorithms. A node of degree d intro-
duces

(
d
2

)
≈ d2 wedges. In graphs with huge degree nodes,

algorithms that scale with the number of wedges become
intractable.

To mitigate this explosion in work caused by hubs, we in-
troduce a pre-processing routine for handling nodes of high
degree. By extracting all nodes with degree higher than
some threshold, before performing a clustering algorithm,
we drastically reduce the amount of work and storage re-
quired. Specifically, we show that with this hub-handling
subroutine, the link clustering algorithm performs at most
O(nδ2) work on power law networks, where δ is a small con-
stant near the average degree.

In many networks large degree nodes are important or in-
fluential, and so ignoring their effect in clustering can po-
tentially destroy network structure that would better in-
form clustering. However, in our limited experimentation
we found no such degradation in clustering quality. Nev-
ertheless, clustering labels for the removed nodes might be
desirable. If cluster labels are desired for the removed nodes
(or edges), then the deleted nodes must somehow be assigned
to clusters in post-processing. We propose a method for ef-
ficiently and meaningfully assigning cluster labels to these
“deleted” nodes. We describe the pre- and post-processing
routines next.



Table 1: Error of predicted runtime of graph propertyα for best α. Number of wedges predicts the runtime
better than other graph features.

Edges Degree Nodes Triangles Wedges
Link clustering 0.0023 0.0034 0.0016 0.0061 0.0017
Infomap 0.3474 0.3174 0.3157 0.3437 0.3092
Optimized LC 0.0073 0.0025 0.0036 0.0077 0.0018
BigCLAM 0.0439 0.0385 0.0380 0.0327 0.0318

Deletion threshold. Intuitively, a node connected to many
other nodes is probably (1) already well-known or (2) worth
analyzing individually. We suggest that it is reasonable to
ignore such nodes during clustering. This threshold will
likely vary across datasets and applications, so we leave the
threshold as a user defined input parameter. That said, we
recommend a threshold near

√
n as a default setting. Since

many networks have degree distributions that follow a power
law, this strikes a balance between guaranteeing a fast run-
time (nearly linear in n) and preserving structure.

Labeling deleted nodes. To generate cluster-label infor-
mation for these deleted nodes, we suggest adding deleted
nodes to any cluster where their addition will improve the
link density; that is, any cluster well-connected with the
deleted node. In Section 4.2 we show how to determine this
efficiently. Conceptually, we add a deleted node v to a clus-
ter C when the percent of nodes in C to which v links is at
least as large as the current link density of C.

Non-partition edge density. Our edge labeling proce-
dure possibly assigns some edges to multiple clusters and
some to none. Our algorithm no longer produces a partition
of the edges. The original algorithm [1] produces a parti-
tion, and Ahn et al. define the partition density on a par-
titioning of the edges. Our lack of an edge partition means
that we cannot apply partition density directly. Instead, we
generalize partition density to measure the same qualitative
property, namely, the average edge density of the clusters
produced. We call this quantity average link density.

4.1 Determining deletions
Deleting nodes prior to clustering aims to reduce runtime,
without degrading cluster quality. To achieve this, we want
to establish a threshold such that deleting higher degree
nodes keeps enough nodes to maintain the clustering qual-
ity. Conceptually this should be possible: a “good” cluster
should remain after losing several nodes (otherwise, it would
be poorly connected). Thus, we hope that removing several
hubs from a graph will minimally perturb the cluster quality
(and our experiments support this).

Such hub deletion potentially can improve the cluster qual-
ity. High-degree nodes can connect nodes from disparate
clusters, potentially introducing noisy edges. Our exper-
imental evidence suggests that removing hubs can clarify
structure: the average edge density increases when we re-
move high-degree nodes prior to clustering. We note that
this procedure fits networks with a few high degree nodes
that connect nearly all nodes (e.g., a communication net-
work). For example, in a university email network, emails
from the university president might span the entire univer-
sity; messages from a college dean would go to every depart-

ment inside that college. Ignoring these nodes clarifies the
individual communities (e.g., departments, student clubs).

Respecting the natural community size in a particular dataset
requires thoughtful selection of the degree threshold. We
propose identifying the largest node degree within a cluster.
That is, computing the maximum number of within-cluster
neighbors for each cluster, and setting T to be a small con-
stant times the largest such value. Deleting nodes with de-
gree greater than T removes nodes that tie together many
different clusters, and, hopefully, keeps nodes vital to com-
munity structure.

Heuristically, we find a threshold of T = n/5 works for small
graphs, n < 105, and a threshold of

√
n works well for larger

graphs, n ≥ 105. The threshold
√
n appeals because it guar-

antees that shelf sort computes an exact sort (Section 2.4.2).

4.1.1 Link clustering runtime without hubs
The complexity of the link clustering algorithm is Θ(w)

where w =
∑n
k=1

(
d(k)
2

)
is the number of wedges (walks of

length two) in the graph. So we know that deleting a node

of degree d(k) reduces the runtime by exactly Θ
((
d(k)
2

))
.

In the case that the degree distribution follows a power law,
we can show that deleting all nodes with degree above a
threshold

√
n produces a runtime of Θ(δ2n), where δ is a

small constant related to the minimum degree of the graph.

Deletion process. First, note that deleting the hubs is
fast. The procedure computes node degrees to determine
which nodes to delete (constant work per node), selects
nodes with degrees above the threshold (O(n) total work),
and extracts the subgraph without those nodes (bounded by
O(m)). The work involved in the full procedure is bounded
by O(n+m).

Speedup in power law graphs. Here, we consider net-
works with a power law degree sequence, a property common
to communication networks. Let d be the maximum degree
in the network. Then, following a similar analysis in [4],
we assume the kth largest degree, d(k), can be bounded
by d(k) ≤ Qdk−p for some constant p likely between 0.5
and 1 and some constant Q near the average degree. Then
our bound on the work performed by link clustering (which
equals the number of wedges) can be updated as follows. We

know w =
∑n
k=1

(
d(k)
2

)
, and bounding

(
d(k)
2

)
≤ d(k)2 enables

us to upper-bound w ≤
∑n
k=1 d(k)2. This is then bounded

by
∑n
k=1(Qdk−p)2 = Q2d2

∑n
k=1 k

−2p. Using a left-hand
integral bound on this sum gives

n∑
k=1

k−2p ≤
∫ n

1

x−2pdx =
1

1− 2p
(n1−2p − 1),



yielding the following bound on work (the number of wedges):

w ≤ Q2d2 n
1−2p−1
1−2p

. (3)

For p near 1, this is upper-bounded by Q2d2, which explains
theoretically why we witness a runtime scaling quadratically
with the maximum degree. As p approaches 0.5, the frac-
tion approaches log(n), leading to a runtime of d2 log(n) for
denser power law graphs.

We remark that, in practice, real world networks rarely have
a degree distribution that follows a power law exactly [2].
One common difference between an exact power law and
a real world degree distribution is that the few largest de-
gree nodes frequently skew upwards from the otherwise log-
log linear relationship; for example, on Twitter the nodes
for Justin Bieber or Barack Obama have a max degree of
roughly n/5. With this in mind, a runtime of O(d2) can
easily be O(n2) when the max degree is huge.

Speedup. Small graphs ( n < 105 ) run quickly, so we focus
here on the runtime of large graphs, for which we remove
nodes of degree ≥

√
n. Näıvely plugging this new maxi-

mum degree into Equation (3) yields a simple upper bound

on work of O(Q2nn
1−2p−1
1−2p

). Depending on the power law

exponent p, this can vary from O(Q2n) to O(Q2n log(n)),
where Q is near the average degree. Note that this bound is
loose; removing hubs reduces the degrees of many remaining
nodes.

4.2 Assigning hubs to clusters
Here, we discuss a procedure for assigning deleted nodes to
clusters. The deleted high degree nodes can be assigned
to every community to which they are adjacent. However,
this would likely assign hubs to most clusters, which might
obscure information.

Instead we do the following for each deleted node, v. For
each cluster C containing a neighbor of v, we compare the
link densities LD (C) and LD (C ∪ {v}). If introducing the
node v improves the link density of C, then we assign v to
that cluster. This process could assign an edge to multi-
ple clusters, or to none; breaking the guarantee of an edge
partition. It would be easy to flag such edges for further
analysis; for example, an edge without a cluster could indi-
cate anomalous communication.

We organize the remainder of the section as follows. In
Section 4.2.1 we present lemmas that efficiently determine
whether a deleted node v should be assigned to a given clus-
ter C. Then, in Section 4.3 we describe the algorithm to as-
sign labels to high degree nodes. Because this method loses
the partition guarantee, we introduce a generalized defini-
tion of partition density.

4.2.1 Link density
Given a set S of nodes with m edges and n nodes, the link

density of S is LD (S) := m−(n−1)

(n2)−(n−1)
. The following reformu-

lation of this will enable easier steps in later proofs:

LD (S) = 2
m− (n− 1)

(n− 1)(n− 2)
. (4)

The proof is straightforward algebraic simplification.

Lemma 1. Consider a set of nodes, S, and a set of nodes
T exterior to S. We want to know under what circumstances
the link density of their union T ∪ S surpasses the link den-
sities of the pieces. Let S have n nodes and m edges, and
let T have k nodes. Let d be the number of edges that go
from T to any node in S or in T . Assume the nodes of S
and T are disjoint. Then we have LD (S ∪ T ) ≥ LD (S) iff
the link density of “T and the edges from T to S” is greater
than LD (S); more rigorously, iff

d− k(
k
2

)
+ nk − k

≥ m− (n− 1)(
n
2

)
− (n− 1)

. (5)

We arranged the expression in Inequality (5) to highlight the
similarity of the sides of the inequality. In particular, note
that link density is “(number of edges - minimum number of
edges necessary to connect S )/(number of possible edges -
minimum number of edges necessary to connect S)”. Simi-
larly, the left-hand expression in (5) is “(number of edges in
T and from T to S - minimum number of edges necessary
to connect all nodes of T to S)/(possible number of edges -
minimum number of edges necessary to connect all nodes of
T to S) ”.

Proof. We prove a related inequality simplified by sub-
stituting in variable names. let A = m− (n− 1), B = d− k,
a = (n − 1), and b = (n − 2). Observe that the inequality

A+B
(a+k)(b+k)

≥ A
ab

can be rearranged:

(A+B)ab ≥ A(a+ k)(b+ k) (6)

(A+B)ab ≥ Aab+A[(a+ k)(b+ k)− ab] (7)

Bab ≥ A[(a+ k)(b+ k)− ab], (8)

and this is equivalent to B
[(a+k)(b+k)−ab] ≥

A
ab

. Note that

this chain assumes there are no zero divisors; this is guar-
anteed when n ≥ 2 and k ≥ 1. Substituting in our original
quantities, we have proved that

m− (n− 1) + (d− k)

((n− 1) + k)((n− 2) + k)
≥ m− (n− 1)

(n− 1)(n− 2)

holds if and only if (d−k)
(k2)+nk−k

≥ m−(n−1)

(n2)−(n−1)
.

This formula has the same intuition as the original link den-
sity formula: in order for the union S ∪ T to be more “edge
dense” than S alone, the number of new edges, d, divided
by the total number of possible new edges,

(
k
2

)
+ nk, must

be greater than LD (S). (Note that both quantities, “actual
number of new edges” and “possible number of new edges,”
are normalized by subtracting k, the minimum number of
edges necessary to connect all of T to S).

Corollary 1. In the case that T consists of a single
node, the above formula simplifies to the following: adding
a node v to a set S will improve the link density of S iff

d− 1

n− 1
≥ LD (S) = 2

m− (n− 1)

(n− 1)(n− 2)
,



where d is the number of edges from v to S, n is the number
of nodes in S, and m is the number of edges in S. This
occurs iff

(d+ 1)(n− 2) ≥ 2(m− 1). (9)

This equivalence holds in the case n = 2, assuming S con-
tains an edge.

Intuitively, adding a node v to a set S will improve the
link density if and only if the degree of v per node in S
is greater than the total number of edges of S per node of
S. Interestingly, this formula holds even in the case n = 2,
assuming the cluster of size 2 actually contains an edge; this
is because of the way link density is defined on connected
clusters of size 2, LD (one edge) = 0 instead of 1.

4.3 Algorithm summary
Computing these cluster labels efficiently requires:

1. Determining a list of clusters that neighbor v,
2. For each cluster C, counting the number of edges from
v to C, and

3. Using the corollary to determine, for each C, whether
adding v improves link density.

Determining and counting neighboring clusters. Given
a deleted node v, we want to efficiently determine a list of
adjacent clusters and how many neighbors v has in each ad-
jacent cluster. Link clustering outputs a list of edge cluster
labels. We iterate over this list marking the endpoints of
each edge with the corresponding cluster. This produces
a node-to-cluster map. Then, for each neighbor u of v, we
add the cluster labels of u to the list of v’s cluster-neighbors.
The cluster-neighbor list tracks cluster labels with multiplic-
ity; this way, this procedure determines which clusters the
deleted node v is connected to, as well as how many connec-
tions v has to each of those clusters.

Work involved. This process observes each occurrence of
v being incident to a cluster, by a neighbor of v being in
that cluster. A node can be in as many clusters as its de-
gree (since the community membership of a node’s edges
determines the node’s community membership, and each re-
maining edge belongs to exactly one community). Thus, the
summed degrees of its neighbors bounds how often a node
can neighbor a community. Hence, the work is bounded by∑d(v)
j=1 d(vj) ≤ O(m− sum of degrees of deleted nodes).

Identifying clusters that benefit from the deleted
nodes. Note that Inequality (9) can determine if adding
v to a cluster S will improve link density, without having
to compute the link density of either S or S ∪ {v}. This
is because we already determined the number of edges from
each deleted node v to each cluster C. With the cluster-
neighbor information computed, this inequality enables us
to efficiently determine the clusters to which we will add v.

4.4 Generalizing partition density
Given a set of clusters C that partition the edges of a graph,
Ahn, Bagrow, and Lehmann compute the partition density,
D of the clustering C as follows. For each cluster T ∈ C,
let pT be the link density of cluster T , i.e. pT = 2(mT −

(nT − 1))/((nT − 1)(nT − 2)). Then they average the link
densities of clusters, weighted by the number of edges per
cluster: D = 1

m

∑
T∈C mT · pT . Thus, the quantity D is at

most 1, which occurs when every edge belongs to a fully
dense cluster.

When edges belong to multiple clusters, this quantity breaks
down. The sum

∑
T∈C mT · pT can exceed m because edges

are counted multiple times when they belong to multiple
clusters. The quantity D no longer stays bounded by 1,
which we desire it to be.

To correctly normalize this sum, we divide by the total
number of edge-cluster memberships, M . If ce denotes the
number of clusters to which edge e belongs, then M :=∑
e∈E ce is the total number of edge-cluster memberships

(with multiplicity). If each edge belongs to exactly one clus-
ter, then M = m; if edges belong to more than one cluster,
then M ≥ m. Dividing weighted link density by M yields
Dgeneralized = DM = 1

M

∑
T∈C mT · pT . This preserves the

intuition of partition density: it measures the average edge
density of clusters, weighting each cluster’s edge density by
the edges per cluster.

Issues. One problem with this definition of average clus-
ter edge density is that we can skew the quantity to over-
represent sparse (or dense) clusters by simply including many
clusters centered around the same set of nodes. Consider
what happens if we include a dense (or sparse) subset of
nodes S in the overlapping clustering. For S∪{v} for v /∈ S,
or even S ∪T for T disjoint from S, the set S becomes over-
represented in the overlapping clustering. This biases the
average cluster edge density toward the density (or sparsity)
of S.

Although this is a potentially severe problem with general-
izing partition density, our algorithm avoids this. Link clus-
tering forms a partition of the edges, so no edge of the sub-
graph is double-counted before post-processing—thus, no
node subset is overrepresented as in the pathological case de-
scribe above. Returning the high degree nodes to the graph
cannot cause overrepresentation because this stage does not
create any new clusters; it merely adds the deleted nodes to
predetermined clusters. While imperfect, we believe this
generalized notion of edge density provides a meaningful
measure of overlapping cluster quality.

4.5 Empirical results
We evaluate the performance of the hub removal strategy
on the unweighted graphs from an enterprise network email
dataset as described in Section 3. We present the results of
this analysis in Figure 2 with the previously outlined com-
parison algorithms. Hub removal greatly reduces the run-
time of Optimized LC, making it run more quickly than even
BigCLAM on these graphs.

Figure 3 shows that hub removal provides an additional run-
time improvement on SNAP datasets [9]. We compare with
Infomap [10] and BigCLAM [13] runtimes, and show that
optimized link clustering, both with and without hub re-
moval, was faster than BigCLAM. Figure 4 shows a quality
evaluation comparing the ground truth communities with
the discovered communities. We find that hub removal leaves
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Figure 3: Runtime comparison on Amazon and
DBLP. The original implementation runs out of
memory on networks this large, but our optimized
versions overcome this problem.
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Figure 4: Link clustering quality on Amazon and
DBLP. Quality is measured by how well the discov-
ered clusters match ground truth under the Jaccard
index. *We believe a formatting mismatch between
BigCLAM and the SNAP datasets caused poor per-
formance.

the link clustering quality intact.

5. CONCLUSION
We consider scalability of clustering. As a case study, we
present tight complexity analysis of the link clustering method
and show it scales with a sort on wedges. This identifies bot-
tlenecks common to many clustering methods: sorting and
high degree nodes. We show that Jaccard Index similar-
ity scores on graphs can be structured so as to enable linear
time sorting instead of Θ(n logn) work (where n is the num-
ber of scores being sorted). Our experiments show that this
provides a several order of magnitude reduction in runtime
of the link clustering algorithm. Additionally, we investi-
gate the removal of high degree nodes before clustering to
improve runtime and memory usage, and their replacement
after to avoid loss of clustering quality. Our experiments
show that our insights yield a great reduction in the run-
time of link clustering, without a reduction in community
quality. We are hopeful that these insights will yield similar
speed-ups for other clustering algorithms and graph analysis

tools that do not scale well in the presence of large degree
node.
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