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ABSTRACT
How do graph clustering techniques compare in terms of summa-
rization power? How well can they summarize a million-node
graph with a few representative structures? In this paper, we
compare and contrast different techniques: METIS, LOUVAIN,
SPECTRAL CLUSTERING, SLASHBURN, BIGCLAM, HYCOM-
FIT, and KCBC, our proposed k-core-based clustering method.
Unlike prior work that focuses on various measures of cluster qual-
ity, we use vocabulary structures that often appear in real graphs
and the Minimum Description Length (MDL) principle to obtain a
graph summary per clustering method.

Our main contributions are: (i) Formulation: we propose
a summarization-based evaluation of clustering methods. Our
method, VOG-OVERLAP, concisely summarizes graphs in terms
of their important structures with small edge overlap and large
node/edge coverage; (ii) Algorithm: we introduce KCBC, a graph
decomposition technique based on the k-core algorithm. We also
introduce STEP, a summary assembly heuristic that produces com-
pact summaries, as well as two parallel approximations thereof.
(iii) Evaluation: we compare the summarization power of seven
clustering techniques on large real graphs and analyze their com-
pression rates, summary statistics, and runtimes.

1. INTRODUCTION
Summarization becomes increasingly crucial with the continu-

ous generation of large amounts of data [17], as it can abstract
away noise and help discover existing patterns, which in turn may
inform the human decision process and the design of new large-
scale analysis algorithms. In this paper we focus on the summa-
rization of graphs, which are powerful structures that capture a host
of phenomena from communication between people to interactions
between neurons in the brain [15, 3, 26]. Graph summarization
methods lead to the reduction of data volume, speedup of graph
approaches, improved storage and query time, and interactive visu-
alization. The graph mining community has mainly studied sum-
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marization techniques for the structure of static, plain graphs [8,
25] and, to a smaller extent, methods for attributed or dynamic net-
works [29]. Specifically, we study the summarization power of var-
ious graph clustering and community detection methods. Which
graph clustering approach summarizes a graph in the best way?
How expressive are the results?

Detecting clusters or communities in graphs is applicable to a va-
riety of domains, including the social, biological, and web sciences
[15, 4, 13]. Numerous objective functions have been proposed
to detect clusters or communities, which are defined as “tightly-
connected” subgraphs. These clusters provide a better understand-
ing of the graph’s underlying structure (e.g. functional units in biol-
ogy, research communities in collaboration networks) and can also
be seen as a summary of the original graph. In this paper we choose
the latter interpretation and propose a novel approach to compar-
ing graph clustering methods. Unlike the literature that compares
clustering approaches in terms of cluster quality (e.g., modularity,
average clustering coefficient, external and internal conductance,
normalized mutual information), we compare and contrast the out-
put summaries quantitatively and qualitatively. Our idea is that the
method that leads to the best summary is the one that best guides a
practitioner’s attention to interesting and useful patterns.

For the graph summary generation, we leverage VOG [21, 22],
a graph summarization algorithm that aims to succinctly describe
million-node graphs. VOG formulates the graph summarization
problem as an information-theoretic optimization problem in which
the goal is to find the hidden local structures that collectively min-
imize the global description length of the graph. For compression,
VOG uses the MDL principle:

min L(G,M) = min{L(M) + L(E)} (1)

where M is an approximation of A deduced by the model M and
E = M ⊕A is the error matrix. In addition to MDL, VOG uses
a fixed vocabulary of structures Ω (cliques and near-cliques, stars,
chains, and full or near-bipartite cores) that are ubiquitous in real-
world graphs, and summarizes graphs using this vocabulary.

In [22], the first step of the summarization algorithm is to ap-
ply a subgraph extraction method, the output of which is then pro-
cessed and refined by using MDL and a structure selection process.
The authors use a node reordering method called SlashBurn [18],
which biases the subgraphs to be stars or star-like (evidenced by
the experiments in [22]). We propose to use VOG as a proxy to
compare community detection and clustering methods with respect
to a new metric, their summarization power: (i) SLASHBURN and
its adaptation to graph clustering [18, 22]; (ii) k-core-based cluster-
ing (KCBC), which is formulated in a new way to provide multi-



Table 1: Major symbols and definitions.

Notation Description

G(V, E), A graph and its adjacency matrix, respectively
V , n = |V| node-set and number of nodes of G, respectively
E , m = |E| edge-set and number of edges of G, respectively
k # of clusters or communities or subgraphs
t # of iterations
h,mh size of hyperbolic community, and # of edges in it, respectively
d average degree of nodes in G
M a model for G = a list of node sets with associated structure types
s structures in M
|S|, |s| cardinality of set S and number of nodes in s, respectively
E error matrix, E = M ⊕A
L(G,M) # of bits to describe model M , and G using M
L(M) # of bits to describe model M

ple strongly connected components; (iii) LOUVAIN community de-
tection [5]; (iv) SPECTRAL CLUSTERING [16]; (v) METIS [19];
(vi) BIGCLAM [31]; (vii) HYCOM-FIT [2]. We note that each
method employs a different objective function and biases the shape
of the discovered subgraphs accordingly. Most of the methods de-
tect well-connected clusters that correspond to full cliques or bipar-
tite cores. We propose to use the MDL encoding cost as a quantita-
tive means for comparing the methods: the most powerful method
from a summarization perspective is the one that results in the most
compressed graph summary. Our contributions are:
• Formulation: We are the first to evaluate clustering meth-

ods on the basis of MDL encoding and thoroughly compare
different graph decomposition techniques in terms of sum-
marization power. We also introduce an edge-overlap-aware
graph summarization method.
• Algorithm: We propose KCBC, a scalable community de-

tection algorithm based on k-cores. We also introduce STEP,
a summary assembly method designed to produce compact
summaries, as well as two parallel variants thereof.
• Evaluation: We conduct thorough empirical analysis of five

graph decomposition methods on large, real-world data.
The paper is organized as follows: sections 2-4 introduce the

clustering methods that we consider, our new summarization model
that accounts for overlapping edges, and our summary assembly
methods STEP, STEP-P, and STEP-PA. Our empirical evaluation,
the related work, and conclusion are given in Sections 5-7. The
major symbols are given in Table 1.

2. CLUSTERING METHODS FOR GRAPH
SUMMARIZATION

One important part of the summarization approach that we lever-
age, VOG, is the graph decomposition method that is used to ob-
tain candidate structures for the graph summary. In this section
we study the effect of various clustering methods on the quality
of the summary, and, in reverse, we use VOG-CONTRAST (Algo-
rithm 1), a VOG-based approach, as a proxy to evaluate the summa-
rization power of the clustering methods. We consider the follow-
ing approaches: SLASHBURN, our proposed k-core-based cluster-
ing (KCBC), LOUVAIN, SPECTRAL CLUSTERING, METIS, BIG-
CLAM, and HYCOM-FIT. We first give a brief introduction of
these algorithms and how we leverage them to generate candidate
subgraphs for the VOG-style summaries, and then summarize their
qualitative comparison in Table 2.
1Unlike VOG, in our algorithm we only consider full cliques,
bipartite cores, stars, and chains. That is, we ignore the near-
structures, because their MDL encoding incorporates error, which
interferes with the global MDL cost in Equation (1).

Algorithm 1 VOG-CONTRAST: Summarization-based Comparison
of Graph Decomposition Methods

Input: graph G

Step 1: Summary extraction by using one of {SLASHBURN,
KCBC, LOUVAIN, SPECTRAL CLUSTERING, METIS, BIGCLAM, and
HYCOM-FIT }.
Step 2: MDL-based subgraph labeling by using a reduced vocabulary
(compared to VOG1 that consists of full cliques, full bipartite cores, stars
and chains.
Step 3: Summary assembly by employing the proposed heuristics STEP,
STEP-P, and STEP-PA (Section 4).
return summary of the most important graph structures

SLASHBURN [18] is a node reordering algorithm initially devel-
oped for graph compression. It performs two steps iteratively: (i) It
removes high-centrality nodes from the graph; (ii) It reorders nodes
such that high-degree nodes are assigned the lowest IDs, and nodes
from disconnected components get the highest IDs. The process
is repeated on the giant connected component. We leverage this
process by identifying structures from the egonet2 of each central
node, and the disconnected components, as subgraphs.
LOUVAIN community detection [5] is a modularity-based graph
partitioning method for detecting hierarchical community structure.
The method is composed of two phases which are applied itera-
tively. In the first phase, each node is placed in its own community.
Next, the neighbors j of each node i are considered, and i is moved
to j’s community if the move produces the maximum modularity
gain. The process is applied repeatedly until no further gain is pos-
sible. In the second phase, a new graph is built whose supernodes
represent the communities of the first phase, and superedges are
weighted by the sum of weights of links between the two commu-
nities. The first phase is then applied to the new graph and the
algorithm typically converges in a few such passes.
SPECTRAL CLUSTERING refers to a class of algorithms which
utilize eigendecomposition to identify community structure. We
use one such spectral clustering algorithm [16], which partitions a
graph by performing k-means clustering on the top-k eigenvectors
of the input graph. The idea behind this method is that nodes with
similar connectivity have similar eigen-scores in the top-k vectors
and form clusters.
METIS [19] is a cut-based k-way multilevel graph partitioning
scheme based on multilevel recursive bisection (MLRB). Until the
graph size is substantially reduced, it first coarsens the input graph
by collapsing connected nodes into supernodes iteratively so that
the edge-cut is preserved. Next, the coarsened graph is partitioned
using MLRB and the partitioning is projected onto the original in-
put graph G through backtracking. The method produces k roughly
equally sized partitions.
HYCOM-FIT [2] is a parameter-free algorithm that detects com-
munities with hyperbolic structure. It approximates the optimal
solution by iteratively detecting important communities. The key
idea is to find in each step a single community that minimizes an
MDL-based objective function, given the previously detected com-
munities. The iterative procedure consists of three steps: commu-
nity candidates, community construction, and matrix deflation.
BIGCLAM [31] is an overlapping community detection method
that scales to large networks, built on the observation that overlaps
between communities are densely connected. By explicitly mod-
eling the affiliation strength per node-community pair, each node-
community pair is assigned a nonnegative latent factor which repre-
2Egonet is the induced subgraph of a node and its neighbors.



Table 2: Qualitative comparison of the graph clustering techniques included in VOG-OVERLAP.

Properties Clustering Techniques
SLASHBURN LOUVAIN SPECTRAL CLUSTERING METIS HYCOM-FIT BIGCLAM Proposed: KCBC

Overlapping Clusters 4 8 8 8 4 4 4

Similar-sized Clusters 8 8 8 8 8 8 8

Complexity O(t(m + n logn)) O(n logn) O(n3) O(m · k) O(k(m + h(log h2 + mh))) O(d · n · t) O(m + n)
Parameter-free 4 8 4 8 4 4 4(in our alg.)
Number of Clusters High Medium Medium Medium High High Low
Summarization Power Excellent Good Good Good Poor Good Poor
Cliques 4 4 4 4 4 4 4

Bipartite Cores 4 4 4 4 4 4 8

Stars 4 4 4 4 4 4 4

Chains 4 8 8 8 4 8 8

sents the degree of membership of a node to the community. Then
the probability of an edge is modeled as a function of the shared
community affiliations. The identification of network communities
is done by fitting BIGCLAM to a given undirected network G.
Proposed: KCBC. k-cores [14] have traditionally been used to
unveil densely connected structures in graphs. A k-core can be de-
fined as a maximal subgraph for which each node is connected to
at least k other nodes in the subgraph. Though the existence of
k-cores in social graphs has been studied previously, to our knowl-
edge no previous works leverage the k-core algorithm (recursively
delete all nodes and adjacent edges in the graph of degree less than
k) to identify communities in graphs. In this work, we develop a
k-core-based algorithm to identify notable graph structures. The
method is described in Algorithm 2. The main advantages of this
method are that it (i) is fast and scalable with time complexity
O(n + m) (ii) can identify multiple structures per node and (iii)
produces concise listings of non-redundant structures.

Algorithm 2 KCBC: k-core-based Graph Clustering
Input: graph G

While the graph is nonempty
Step 1: Compute core numbers (max k for which the node is present

in the decomposition) for all nodes in the graph.
Step 2: Choose the maximum k (kmax) for which the decomposition

is non-empty, and identify the present nodes as the ‘decom-
position set’. Terminate when kmax = 1.

Step 3: For the induced subgraph from the decomposition set,
identify each connected component as a structure.

Step 4: Remove all edges in the graph between nodes in the decom-
position set—they have been identified as structures already.

return set of all identified structures

In Table 2 we compare the main features of these clustering
methods, where n is the number of nodes and m is the number
of edges in a graph. Several of the approaches give clusters with
overlapping edges. Ideally we would like to minimize this kind of
overlap between structures–we handle this problem next.

3. ENCODING OVERLAPPING EDGES
In [22], the proposed summarization algorithm assumes that the

candidate structures for the graph summary have node overlap, but
no edge overlap. However, several graph decomposition meth-
ods (Table 2), including SlashBurn and KCBC, produce edge-
overlapping subgraphs, and there is good chance that a group of
densely overlapping subgraphs is included in the graph summary
because they all appear to help reduce the encoding cost of the
graph.

Our goal is to get a concise summary of the graph without ex-
plaining away edges multiple times – i.e., we want to minimize
node and edge redundancy in our graph summary. We note that we

are still interested in overlapping nodes that span multiple struc-
tures, as they can be seen as ‘bridges’ or ‘connectors’, and pro-
vide useful information about the network structure. To handle
the above-mentioned issue, we propose VOG-OVERLAP, which
minimizes the node/edge overlap, and maximizes the node/edge
coverage of the summary. First, we give an illustrative example
that shows the issue of overlapping edges that arises from some
graph clustering methods, and then provide the details of VOG-
OVERLAP, and show its better performance compared to VOG.
An Illustrative Example. Let us assume that the output of an edge-
overlapping graph decomposition method is the following model
which consists of three full cliques: full clique 1 with nodes 1-20;
full clique 2 with nodes 11-30; and full clique 3 with nodes 21-40.
The VOG-based summary, which does not account for overlaps,
includes in the summary all three structures, which clearly encode
redundant nodes and edges. Despite the overlap, the description
length of the graph given the model is only 441 bits, since it does
not penalize edges that are covered multiple times. For reference,
the graph needs 652 bits under the null model assumption. Ideally,
we would want a method that penalizes extensive overlaps and tries
to increase node/edge coverage.
Encoding the Overlapping Edges. We propose VOG-OVERLAP,
which detects significant node and edge overlaps, and steers the
structure selection process towards the desired output. We extend
the optimization function for graph summarization by adding an
overlap-related term (underlined):

min L(G,M) = min{L(M) + L(E) + L(O)} (2)

where M is an approximation of A deduced by the model M ,
E = M ⊕A is the error matrix, and O is a weighted matrix with
the number of times that each edge has been explained by M .

For consistency with VOG, we use the optimal prefix code [11]
to encode the total number of overlapping edges. Following the
literature [23], to encode the weights in matrix O which correspond
to the number of times that each of the edges has been covered by
the model, we use the MDL optimal encoding for integers [28].
The encoding for the overlaps is given by:

L(O) = log(|O|) + ||O||l1 + ||O||′l0 +
∑

o∈E(O)

LN(|o|),

where |O| is the number of (distinct) overlapping edges, ||O|| and
||O||′ correspond to the number of present and missing entries in
O, l1 = − log((||O||/(||O|| + ||O||′)), and analogue for l0, are
the lengths of the optimal prefix codes for the present and miss-
ing entries, respectively, and E(O) is the set of non-zero entries in
matrix O.

By applying VOG-OVERLAP to the example above, we obtain
in the summary only the 1st and the 2nd clique, as desired. The
encoding of our proposed method is 518 bits, which is higher



than the number of bits of VOG: The reason is that in the VOG-
OVERLAP-based summary some edges have remained unexplained
(edges from nodes 11-20 to nodes 21-40), and, thus, are encoded as
error. On the other hand, the VOG-based model encodes all nodes
and edges (without errors), but explains many edges twice (e.g., the
clique 11-20, the edges between 11-20 and 21-30) without account-
ing for the redundancy-related bits twice.

4. COMPILING COMPACT SUMMARIES
The problem of selecting structures to include in the graph sum-

mary such that the graph encoding cost is minimized is hard be-
cause the objective function in Equation 2 does not admit a tractable
solution; it is neither monotonic nor submodular. If the objective
function were submodular, we would be guaranteed to find a greedy
heuristic that gives a (1− 1

e
)-approximation of the optimal solution.

Instead of considering all possible combinations of structures
as summaries, which is not tractable, prior work [22] relies on
the summary assembly heuristics TOP10 and GNF. TOP10, which
chooses the 10 structures that reduce the encoding cost of the graph
the most, is fast but does not provide a high compression rate nor
high coverage of the graph with the model. GNF considers each
candidate structure sequentially and includes in the summary (or
model M ) only the structures that help further decrease the current
encoding cost of the graph. Compared to TOP10, GNF yields a
lower compression rate and better coverage. However, its perfor-
mance heavily depends on the ordering of structures.

To overcome these shortcomings, we propose a new model selec-
tion method, STEP. Motivated by STEP’s good qualitative perfor-
mance but high runtime complexity, we also propose two parallel
variants, STEP-P and STEP-PA.
• STEP. STEP is a 2-part iterative algorithm:

1. Iterate through all structures in M : for each structure, com-
pute the encoding cost L(G,M) with that structure included
in the summary.

2. Choose the structure found in part 1 that lowers the encoding
cost the most and add it to the summary. If no structure low-
ers the encoding cost, the algorithm has converged; else, go
back to part 1.

In the ith iteration STEP solves the optimization problem:

s∗i = argmins∈Snot
L(G,Mi−1 ∪ {s})

where Mi−1 = {s1, . . . , si−1} is the model generated by the i −
1th iteration, M0 = ∅ is the empty model, and Snot is the set of
structures that are not included in the model. Unlike GNF, STEP
does not depend on the order of structures, rendering it more robust.

We will show in Section 5 that STEP produces significantly more
compact summaries than GNF. However, because STEP consid-
ers all candidate structures in each iteration, its time complexity
is O(s2) where s is the number of structures, making it unrealisti-
cally slow for graphs with a large number of structures. Consider-
ing the tradeoff between compression rate and runtime, we propose
STEP-P, a parallel heuristic that approximates STEP while being
significantly faster, as well as an optimization to STEP-P that fur-
ther decreases runtime while maintaining encoding cost.
• STEP-P. The goal of STEP-P is to speed up the computation

of STEP by iteratively solving smaller, “local” versions of STEP in
parallel. STEP-P begins by dividing the nodes of the graph into p
partitions using METIS partitioning. Next, each candidate struc-
ture is assigned to the partition with the maximal node overlap.
STEP-P then iterates until convergence:

1. Spawn a parallel process for every partition. Each process is
tasked with finding the structure that would lower the encod-
ing cost in Equation (1) the most out of all the structures in
its partition. Note that for any given partition there may be
no structure that lowers the encoding cost.

2. After all processes have terminated, choose the lowest-cost
structure returned by the processes to be added to the model.
If no structure lowers the encoding cost, the algorithm has
converged; else, go back to part 1.

• STEP-PA. In addition to parallelizing STEP, we introduce the
idea of "active” and “inactive” partitions, which is an optimization
designed to reduce the number of processes that are spawned by
STEP-P. STEP-PA works the same as STEP-P, except that it begins
by designating every partition of the graph as active. Then, if a
partition fails to find a structure that would lower the encoding cost
in Equation (1) x times (in step 1 of any iteration), that partition is
declared inactive and is not visited in future iterations of STEP-PA.
Thus the partitions with structures not likely to decrease the over-
all encoding cost of the model get several “chances” before being
eventually ruled out, effectively reducing the number of processes
spawned for each iteration of STEP-PA.

5. EXPERIMENTS
To compare and contrast the various decomposition methods

used in VOG-CONTRAST, we use several real-world graphs, de-
scribed in Table 3. We evaluate the clustering methods in terms of
tradeoff between compression and coverage, qualitative properties
of their resulting summaries, and runtime. For summary assembly
we use the heuristics proposed in Section 4 and compare them to
GNF, the best-performing heuristic in [22].

Table 3: Summary of graphs used in our empirical comparison.

Name Nodes Edges Description

Flickr3 404,733 2,110,078 Friendship social network
Enron4 80,163 288,364 Enron email
AS-Oregon5 13,579 37,448 Router connections
Wikipedia-Chocolate6 2,899 5,467 Co-editor graph

5.1 Compression vs. Node/Edge Coverage
We start by addressing the tradeoff between compression rate

and node/edge coverage for the five clustering methods considered.
Tables 4 and 5 give the compression rate of VOG-OVERLAP with
the TOP10 and GNF selection heuristic, respectively. By compres-
sion rate we refer to the ratio between the number of bits needed
by the final model over the number of bits required to describe the
graph under the empty model (without any structures).

Figure 1 shows the node coverage (top) and edge coverage (bot-
tom) of each VOG-OVERLAP + GNF summary model for the
Chocolate (left) and AS-Oregon (right) graphs. The lighter
and darker shades correspond to the node coverage before and af-
ter the structure selection, respectively (i.e., before/after step 3 of
Algorithm 1). The node coverage for the non-overlapping cluster-
ing methods before the structure selection is not 100% because we
ignore clusters with fewer than 3 nodes, which are not likely to be
interesting from a practitioner’s perspective.
3Flickr dataset: http://www.flickr.com
4Enron dataset: http://www.cs.cmu.edu/∼enron
5AS-Oregon dataset: http://topology.eecs.umich.edu/data.html.
6Data crawled by Jeffrey Rzeszotarski.



Table 4: VOG vs. VOG-OVERLAP + TOP10: Compression rate of the clustering techniques with respect to the empty model. Lower is better.

Dataset VOG [21] VOG-OVERLAP + TOP10
SLASHBURN KCBC LOUVAIN SPECTRAL METIS BIGCLAM HYCOM-FIT

Flickr 99% 99% 100% 100% 100% 100% 100% 99%
Enron 98% 98% 100% 101% 100% 100% 100% 99%
AS-Oregon 87% 87% 96% 100% 100% 104% 101% 100%
Wikipedia-Chocolate 94% 94% 78% 101% 101% 104% 103% 100%

Table 5: VOG vs. VOG-OVERLAP + GNF: Compression rate of the clustering techniques with respect to the empty model.

Dataset VOG [21] VOG-OVERLAP + GNF
SLASHBURN KCBC LOUVAIN SPECTRAL METIS BIGCLAM HYCOM-FIT

Flickr 95% 80% 33% 88% 98% 98% 91% 95%
Enron 75% 75% 41% 100% 99% 100% 77% 95%
AS-Oregon 71% 71% 65% 95% 94% 96% 85% 98%
Wikipedia-Chocolate 88% 88% 78% 99% 99% 100% 89% 100%

Table 6: VOG vs. VOG-OVERLAP + STEP: Compression rate of the clustering techniques with respect to the empty model.

Dataset VOG [21] VOG-OVERLAP + STEP
SLASHBURN KCBC LOUVAIN SPECTRAL METIS BIGCLAM HYCOM-FIT

AS-Oregon 71% 76% 65% 94% 82% 85% 83% 98%
Wikipedia-Chocolate 88% 88% 78% 99% 99% 100% 87% 100%
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(c) Edge coverage for Wikipedia-Chocolate.
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(d) Edge coverage for AS-Oregon.

Figure 1: SlashBurn gives summaries with the best node/edge coverage. We show the node/edge coverage per clustering method with GNF
and STEP for Wikipedia-Chocolate (left) and AS-Oregon (right). ∗Light/dark shade = before/after structure selection.

OBSERVATION 1. In terms of compression rate, SLASHBURN
and KCBC usually win over other methods, especially for the GNF
heuristic. When KCBC has a much lower compression rate than
SLASHBURN, it is due to the fact that KCBC covers very few nodes
(e.g., nodes with degree ≥ k). Though lower compression is usu-
ally better, we still seek to find informative summaries with good
coverage.

We see this tradeoff clearly with SLASHBURN and KCBC.
While KCBC has a significantly lower compression rate, SLASH-
BURN achieves much higher node and edge coverage (Fig. 1).
LOUVAIN, SPECTRAL CLUSTERING and METIS lead to good
coverage before the structure selection in step 3 of VOG-
CONTRAST, but are poor after that. BIGCLAM achieves smaller
node/edge coverage, but also smaller difference in coverage be-

tween before and after structure selection. HYCOM-FIT has the
lowest coverage in both datasets. Its coverage before structure se-
lection is comparable to KCBC, but it drops significantly after the
selection takes place.

5.2 Qualitative Comparison of Structures
What types of structures make up the summaries? Which method

is the most expressive in terms of summarization? Figures 2 and 3
depict the number of structures found by each clustering method
before and after the selection step (light and dark color, respec-
tively). It is not surprising that SLASHBURN tends to find more
structures than others, especially for stars, because of the way it
decomposes the input graph. SLASHBURN and HYCOM-FIT con-
tribute mainly stars and some cliques in the graph’s final summary.
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(a) Number of structures found by the clustering methods for dataset Wikipedia-Chocolate.
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(b) Number of structures found by the clustering methods for dataset AS-Oregon.

Figure 2: Types of structures in Wikipedia-Chocolate and AS-Oregon graphs by GNF. Transparent/solid rectangles for before/after
the structure selection step. Notation: ’fc’: full clique, ’st’: star, ’ch’: chain, ’bc’: bipartite core.
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(a) Number of structures found by the clustering methods for dataset Wikipedia-Chocolate.
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(b) Number of structures found by the clustering methods for dataset AS-Oregon.

Figure 3: Types of structures in Wikipedia-Chocolate and AS-Oregon graphs by STEP. Transparent/solid rectangles for before/after
the structure selection step. Notation:: ’fc’: full clique, ’st’: star, ’ch’: chain, ’bc’: bipartite core.

Table 7: Runtime (in sec) of VOG-CONTRAST + GNF for the seven clustering techniques. We give the total runtime, and in parentheses the
time division between structure generation/labeling (steps 1-2) and summary assembly (step 3). The fastest approaches are in bold.

Dataset Clustering Techniques
SLASHBURN KCBC LOUVAIN SPECTRAL METIS BIGCLAM HYCOM-FIT

Enron
81737 11298 12772 5067 5444 19898 8588

(78108 + 3629) (2860 + 8438) (5705 + 7067) (3661 + 1406) (5039 + 405) (19115 + 783) (6613 + 1975)

AS-Oregon
136 37 238 26 24 44 388

(107 + 29) (7 + 30) (8 + 230) (15 + 11) (18 + 6) (24 + 20) (364 + 24)
Wikipedia 6 3.5 6 2 5 12 29
-Chocolate (5 + 1) (3 + 0.5) (5 + 2) (1 + 1) (4 + 1) (11 + 1) (28 + 1)

KCBC’s contribution is reverse. SPECTRAL CLUSTERING and
METIS identify mainly full cliques and stars, but also some bi-
partite cores.

OBSERVATION 2. SLASHBURN results in the most expressive
summary which consists of all four types of structures. The other
approaches find significantly fewer structures after selection, and
the majority of them are full cliques and stars.

5.3 Runtime Comparison

In Table 7 we provide the runtime of the subgraph generation
(clustering) and summary assembly for each method in VOG-
CONTRAST. Since GNF tends to give better compression than the
TOP10 heuristic, we only report results for that.

OBSERVATION 3. For Enron, the largest graph that we used
in our experiment, the ordering of the subgraph generation meth-
ods from fastest to slowest is SPECTRAL, METIS, HYCOM-FIT,
KCBC, followed by LOUVAIN, BIGCLAM and SLASHBURN. The
differences in runtime increase as the size of the input graph in-



Table 8: Runtime (in sec, unless stated otherwise) of STEP, STEP-P, STEP-PA, and GNF.

Dataset STEP STEP-P STEP-PA GNF
Enron > 2 weeks > 4 days 302737 12732
AS-Oregon 17653 8843 1996 407
Chocolate 249 138 16 8

Table 9: Compression rate (in bits) of STEP, STEP-P, STEP-PA, and GNF. Lower is better; N/A for runs that were terminated early.

Dataset STEP STEP-P STEP-PA GNF
Enron N/A N/A 25% 75%
AS-Oregon 35% 35% 35% 71%
Chocolate 56% 56% 56% 88%

creases. The summary assembly time is proportional to the number
and size of candidate structures provided by the clustering method.

Considering the summarization power generally, SLASHBURN
overpowers the other methods in quantity of discovered structures,
especially stars. Cliques are identified by a selection of methods in-
cluding KCBC, LOUVAIN, and SPECTRAL, which are often faster
than SLASHBURN. All in all, each method has some advantages
and disadvantages, and introduces different biases for the structure
types that can compose the graph summaries.

5.4 Comparison of Summary Assembly
Methods

Here we compare our proposed summary assembly heuristics
STEP, STEP-P, and STEP-PA to the previously proposed GNF with
respect to runtime and encoding cost. For these experiments we
considered the set of candidate structures as the union of the sub-
graphs generated by all clustering methods described in Section 2.
For our STEP-PA experiments, we chose x = 3 such that each
active partition got three “chances” before being declared inactive.
We ran our experiments on a single Ubuntu Linux server with 12
processors and 264 GB of RAM. In terms of parallel implementa-
tion, we set the maximum number of STEP-P processes running at
any given moment equal to the number of processors on the ma-
chine to avoid thrashing. It is worth noting that the runtime of
STEP-P is thus highly machine-dependent.

We give the runtime comparison of STEP, STEP-P, STEP-PA,
and GNF in Table 8 and the encoding cost comparison in Table
9. For Enron, a graph of around 2.1 million edges with a set of
candidate structures of around 11000 structures, the STEP heuristic
was terminated after running for over two weeks. Although STEP-
P is a parallelized version of STEP, it does not scale very well with
input size, and it needs significantly more than 4 days to complete
in the case of Enron. This highlights the significance of STEP-PA,
our parallelized method that has additional optimizations, which
completed in about 3.5 days.

OBSERVATION 4. We see that while GNF is faster, STEP and its
variants yield summaries that are 30-50% more compact. We also
find that that the optimizations introduced with STEP-PA have no
effect on the encoding cost of the final summary compared to STEP,
but significantly reduce the runtime, rendering it more useful than
STEP or STEP-P in practice as it retains quality while decreasing
runtime.

6. RELATED WORK
Work related to VOG-CONTRAST comprises MDL-based and

graph clustering approaches.

MDL and Graph Mining. Many data mining problems are re-
lated to summarization and pattern discovery, and, thus, are intrin-
sically related to Kolmogorov complexity [12]. While not com-
putable, it can be practically implemented by the Minimum De-
scription Length principle [27] (lossless compression). Examples
of applications in data mining include clustering [9], community
detection in matrices [7], and outlier detection [1].

Graph Clustering. We have already presented several graph
clustering and community detection methods [5, 19, 16] in Sec-
tion 2, which are all biased toward heavily connected subgraphs,
such as cliques and bipartite cores. Other methods include the
blockmodels representation [6], and community detection algo-
rithms tailored to social, biological, and web networks [15, 4, 13].
Work on clustering attributed graphs [20, 30, 32] is related but does
not apply in our case. Leskovec et al.’s work [24] is relevant to ours
since it compares several clustering methods, but their focus is on
classic measures of cluster quality, while we propose an evaluation
of these method in terms of summarization power. Some methods
[25, 10] are related to VOG, but cannot be used as proxies to eval-
uate the summarization power of clustering techniques.

7. CONCLUSION
In this paper we evaluate various graph clustering and commu-

nity detection methods in terms of summarization power, in con-
trast to the literature that focuses on measures of cluster quality.
We propose an MDL-based graph summarization approach, VOG-
CONTRAST, which leverages the clusters found by graph decompo-
sition methods and is also edge-overlap aware (VOG-OVERLAP).
Moreover, we present KCBC, a highly efficient, scalable, and
parameter-free graph clustering algorithm based on k-cores. Fi-
nally, we introduce STEP, a model selection method that produces
more compact summaries than GNF, and we parallelize STEP with
STEP-P and STEP-PA to scale the algorithm to larger inputs. Our
thorough experimental analysis on real-world graphs shows that
each clustering approach has different strengths and weaknesses
in terms of summarization power. Understanding their biases and
combining them accordingly can give stronger better graph sum-
maries with more diverse and high-quality structures.
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