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ABSTRACT
Network inference is an important problem in a variety of domains.
In computational biology, gene interaction networks can be learned
using the mRNA expression levels of genes. These networks cap-
ture how genes influence each other and can be used to identify
potential malfunctions. In the context of social network analysis,
network inference refers to the problem of inferring underlying net-
work of influence, given time series data of when users performed
certain actions (e.g., post, retweet, share). These networks capture
the dynamics of influence and information diffusion.

In this position paper, we discuss various strategies to learn sparse
networks with the help of the k-support norm, which corresponds
to the tightest convex relaxation of sparsity combined with an l2
penalty. We also discuss specific applications of these strategies to
the domains of computational biology and social network analysis.
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1. INTRODUCTION
Inference of complex networks from data is a vital problem in a

variety of domains like computational biology, social network anal-
ysis, operations research etc. With an explosion in the availability
of data, the need of the hour is algorithms adept at modeling com-
plex networks.

In the domain of biology, an important goal is understanding the
regulation of various cellular processes and their responses to stim-
uli. Genes and proteins are at the core of all cellular processes.
Genes produce messenger RNA during a process known as tran-
scription, and mRNA in turn is processed into proteins. Proteins
synthesized by genes may act as transcription factors for the synthe-
sis of mRNA from other genes, or may be used in other important
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cellular activities. A set of genes can either promote or suppress
the production of mRNA from a target gene. These interactions
can be visualized as complex gene regulatory networks (GRNs).
Inference of these networks then becomes crucial to understanding
the underpinnings of cellular processes. This insight can be used to
analyze altered gene expression, a result of conditions like cancer,
for potential drug targets.

In social networks, information diffusion is often modelled as a
stochastic process that occurs over an underlying network of influ-
ence. The diffusion of a single piece of contagion (a news snip-
pet/meme/hashtag) occurs in a cascade like fashion. What is usu-
ally observed is the time series data of when users performed cer-
tain actions (also referred to as when a user is infected), for each
contagion, but the underlying network is unobserved, or partially
observed, where we have information such as who follows whom
[11]. Inferring this underlying network of influence, a directed
graph where the pairwise edges indicate strength of influence, is es-
sential to understand the dynamics of information diffusion, and to
solve problems such as influence maximization [6], design of viral
marketing campaigns, or to stem the flow of malicious information.

Networks in both of the domains described above, although com-
plex, involve a small number of interacting entities and can be rep-
resented using sparse models [5]. The lasso [14] technique has
proved very popular in learning parsimonious models. However,
the lasso, despite acting as a good surrogate for cardinality, is not
very good at controlling the magnitude of parameters and is known
at times to push too many variables down at zero. Thus, many
problems require parameter re-estimation once lasso has been used
to establish the support of the parameters. Also, in case of corre-
lated variables, Lasso can sometimes arbitrarily select one out of a
group of correlated variables. This can be problematic if the param-
eters are used to perform a predictive task like regression. In recent
years, techniques like the elastic net [17] have been proposed to
provide a balance between sparsity and the Euclidean norm of the
parameters.

In this position paper, we discuss using the k-support norm for
learning sparse networks. The k-support norm is tighter than the
elastic net and provides a better convex relaxation for a sparse, low
l-2 norm parameter vector. Since the k-support norm is not differ-
entiable, we discuss fast proximal gradient descent algorithms for
optimization. We also discuss various approaches for incorporating
constraints on network learning during optimization.



2. BACKGROUND AND RELATED WORK
In computational biology, the low connectivity property [13] of

biological networks and sparsity of gene regulatory networks have
introduced challenges in employing sparsity prior knowledge. This
sparsity prior knowledge has been used as explicit constraints on
the connectivity of network components [4]. Other works adopt
L1-norm [14] regularization to build sparse networks. For exam-
ple, [10] uses sparse regression with an L1-penalty induced for se-
lecting the non-zero partial correlations and discover an undirected
network encoding direct relations between genes. [3] infers gene
regulatory network with the L1 norm method based on the auto-
regressive model. [16, 15] propose a linear program that fits the
data and satisfies the sparse structure with weighted L1 relaxation
as the cost function, with additional linear constraints. Recently,
Zavlanos et al. [16, 15] have shown that the inference performance
is significantly improved by explicitly imposing the stability con-
dition on the network.

In social network inference, survival theory has been used to
model information propagation, where the instantaneous rate of in-
fection of a user (hazard rate) depends on the infection times of
previously infected users, as explanatory variables or covariates.
The hazard rate has been modeled using parametric distributions
such as Weibull and power law, or using non-parametric methods.
The objective function for network inference has been shown to be
convex in the space of pairwise influence parameters. Since these
networks are in general sparse, Daneshmand et al [2] have used an
L1 norm penalty to promote sparsity in the solution.

There is ample evidence for the importance of learning parsimo-
nious models for both gene and social networks. In the following
subsections, we discuss two popular models for inferring sparse
gene and social networks.

2.1 Modeling gene networks as Linear Dynam-
ical Systems

Gene regulatory networks of a set of p genes can be modeled as
p−dimensional non-linear dynamical systems:

dx
dt

= f(x, u) (1)

Where x represents gene expression concentrations for genes and
u represents perturbations applied to each gene. Both x and u are
p-dimensional vectors. This is an effective model because the ex-
pression of a gene depends on the current gene expression of itself
and its neighbours. u represents a systematic perturbation applied
to a gene expression system at equilibrium.

Non-linear dynamical systems reach equilibrium when the rate
of change of gene expression for all genes becomes zero, i.e. all
genes attain steady-state values of mRNA concentrations.

Under small-perturbations on a steady-state system, these non-
linear systems can be approximated to a first-order model [4]. The
change in concentrations can be approximated using the following
linear model:

dx’
dt

= Ax + u (2)

x’ is the change in concentration of mRNA for all genes from
previous equilibrium. The matrix A is n × n dimensional and en-
codes pairwise relationships between genes. Specifically, Aji rep-
resents the influence of gene j on gene i. The vector u represents
perturbations applied to all genes. The problem is then reduced to
learning a sparse and consistent matrix A.

At steady-state, the system reaches equilibrium and the rate of
change of gene expression is almost zero. Moreover, multiple per-
turbation experiments can be carried out to help make better infer-
ence. If there are m such experiments, then the steady-state matrix
form of equation 2 is:

0 ≈ AX + U (3)

X and U are p×m matrices. This model was introduced by [4].
They used the assumption that m < n, and imposed restrictions
on the number of connections each gene can have to solve for an
under-determined system by using multiple linear regressions.

A simple objective function for learning sparse A is:

min t||A||1 + (1− t)ε (4)
subject to

||AX + U||1 <= ε, ε > 0

where t is a factor that controls the relative importance of spar-
sity and ε is the desired error threshold. This objective can be min-
imized using interior point methods.

2.2 Objective Formulation for Social Network
Inference

We use the objective formulation in [2] for network inference.
Let there be N nodes in the network. Let A be the matrix of influ-
ence parameters for each pair of nodes. Let Ai = {Aji, 1 ≤ j ≤
N, j 6= i}. Note that A captures the underlying graph of influence,
where Aji = 0 implies that a directed edge does not exist from j
to i.
The observed data comprises a set of cascades t = {t1, t2, .., tn},
where n cascades are observed from time 0 to T . Each cascade
comprises of a time series of infection timestamps of nodes, with
the time∞ assigned to a node which is not observed in the cascade.

2.2.1 Data Generative Process
We use the continuous time diffusion model proposed in [11].

The process starts with a source node being infected at time 0 .
Every node that is infected transmits the contagion via outgoing
edges to other nodes. The infection timestamp for other nodes is
drawn from a transmission function f(ti|tj ,Aji), where the infec-
tion spreads from j to i. When multiple nodes propose a timestamp
for an uninfected node, it chooses the earliest proposed timestamp.

2.2.2 Objective Formulation
In [2], it is shown that the objective function decomposes into a

convex formulation per node, in the following form:

min li(Ai) + λ||Ai||1,
s.t.

Aji ≥ 0, 1 ≤ j ≤ N, j 6= i

where li(Ai) corresponds to the negative log-likelihood of ob-
serving the infection times corresponding to node i.

The log-likelihood function comprises of terms involving the
transmission function for pair of observed infection timestamps be-
tween nodes j and i : f(ti|tj ,Aji). Whenever an infection of i is
observed after j in a cascade, the log-likelihood has a positive term
involving f(ti|tj ,Aji), and whenever infection of i is not observed
after j in a cascade, the log-likelihood has a negative term involving
f(ti|tj ,Aji).



3. METHODS

3.1 K - support norm
Networks in biology - gene, protein or of other kinds - are gen-

erally sparse in nature [5]. It is well-understood that only a handful
of genes affect the expression of a particular gene. So is the case
for social networks, where one person can affect only a handful
of people directly. Learning parsimonious models thus becomes a
necessity. A strategy to learn these networks is to use a sparsity
regularizer such as the lasso [14]. In this work, we propose the use
of the k-support norm[1] to ensure sparsity of the learned network.

The k-support norm has been previously used for classification
[1]. Its superiority to Lasso has been shown in different settings
[12],[8]. It has also been extended to apply to matrices and not just
vectors [7]. To the best of our knowledge, this is the first time it is
being used for gene regulatory network inference.

3.1.1 Definition
Consider a general vector w, which could be a regression vec-

tor. The k-support norm is the gauge function associated to the set
conv{w|‖w‖0 ≤ k, ‖w‖2 ≤ 1}. It can be computed as

‖w‖spk =

(
k−r−1∑
i=1

(|w|↓i )
2 +

1

r + 1

( d∑
i=k−r

|w|↓i
)2) 1

2

with |w|↓i the ith largest element of vector w and r is the unique
integer in the set {1,...,k-1} such that

|w|↓k−r−1 >
1

r + 1

d∑
i=k−r

|w|↓i ≥ |w|
↓
k−r

3.1.2 Relationship to lasso and ridge penalty
Also, in case of correlated variables, Lasso can sometimes arbi-

trarily select one out of a group of correlated variables. This can be
problematic if the parameters are used to perform a predictive task
like regression.

We observe that in the k = 1 case, the k-support norm is actually
the same as the l1 norm. When k = d and w ∈ Rd, the k-support
norm is equivalent to the l2 norm. While the Lasso leads to sparse
solutions, it doesn’t capture group structure and randomly selects
one variable among a group correlated variables. It also tends to
push down a lot of variables to zero or values close to zero, requir-
ing parameter re-estimation once the support has been found. By
tuning the parameter k, we can choose the cardinality of the so-
lution and therefore choose to keep groups of correlated variables.
Hence, less sparse, but with more predictive power solutions can
be chosen.

As observed by the authors of [12], for an objective minw λ‖w‖spk +
f(w,X, y), when k = d, this minimization problem is equivalent
to minw λ‖w‖2+f(w,X, y). This problem differs from the tradi-
tional l2 regularized one. However, by noting that this objective is
the Lagrangian of the constrained minimization problem that min-
imizes f subject to ‖w‖2 ≤ B and that this constraint is equivalent
to ‖w‖2 ≤ B2, we have, for any constant λ the existence of a
constant λ̃ such that:
argminwλ‖w‖2+f(w,X, y) = argminwλ̃‖w‖22+f(w,X, y)

which is the usual l2 regularizer.

3.1.3 Relationship to the elastic net
One common setting in microarray studies is to have high dimen-

sional data with few examples. In this situation, the Lasso saturates
as it can select a number of variables at most equal to the number

Algorithm 1 Computation of the proximal operator

Input: v ∈ Rd
Output: q = prox 1

2β
(‖.‖sp

k
)2(v)

Find r ∈ {0, ..., k − 1}, l ∈ {k, ..., d} such that

1

β + 1
zk−r−1 >

Tr,l
l − k + (β + 1)r + β + 1

≥ 1

β + 1
zk−r

(6)

zl >
Tr,l

l − k + (β + 1)r + β + 1)
≥ zl+1 (7)

where z := |v|↓, z0 := +∞, zd+1 := −∞, Tr,l :=
∑l
i=k−r zi

qi ←


β
β+1

if i = 1, ..., k − r − 1

zi −
Tr,l

l−k+(β+1)r+β+1
if i = k − r, ..., l

0 if i = l + 1, ..., d
reorder and change signs of q to conform with v

of features. To address this limitation, [17] introduced the elastic
net, which linearly combines the l1 and the l2 regularizations:

argminw
1

2
‖Xw − y‖2 + λ1‖w‖1 + λ2‖w‖22 (5)

Like k-support, the elastic net interpolates between the l1 and
the l2 norms. [1] show that the k-support norm is tighter than the
elastic net by a factor of at most

√
2

3.2 Optimization
Optimization using the k-support norm can be performed using

the negative log-likelihood and a regularization term. Since the
k-support norm is not differentiable, we resort to proximal algo-
rithms. The smooth part of the cost function is the negative log-
likelihood and is convex and differentiate. The formulation of these
two terms naturally suits proximal gradient descent, which we use
to solve the problem [9]. Computation of the proximal operator is
described in Algorithm 1, and the overall optimization algorithm is
described in Algorithm 2.

The proximal operator can be computed inO(d(k+log k)) steps
which is given in the algorithm 1 of [1], indicated in Algorithm 1 al-
though faster algorithms have been developed in the last two years.

Other constraints like maintaining positive-definiteness of the
network can be handled using projection methods or eigenvalue
thresholding.

Algorithm 2 Iterative soft-thresholding for parameter learning

Input: Data and initial parameter w0 ∈ Rd
Iterate: For t = 0, 1, 2... until convergence of w:

1. Compute gradient of negative log-likelihood

2. Solve for w : wt = Proxλst(w
t−1 − stgrad) where

Proxλst is the proximal operator described in Algorithm
1.

Output: w
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