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ABSTRACT
Relational machine learning methods can significantly im-
prove the predictive accuracy of models for a range of net-
work domains, from social networks to physical and bio-
logical networks. The methods automatically learn net-
work correlation patterns from observed data and then use
them in a collective inference process to propagate predic-
tions throughout the network. While previous work has
indicated that both link density and network autocorrela-
tion impact the performance of collective classification mod-
els, this is based on observations from a limited set of real
world networks available for empirical evaluation. There
has been some work using synthetic data to systematically
study model performance as data characteristics are varied,
but the complexity of generating realistic network structures
made it difficult to consider characteristics jointly. In this
paper, we exploit a recently developed method for gener-
ating attributed networks with realistic network structure
(i.e., parameters learned from real networks) and correlated
attributes. Using synthetic data generated from the model,
we conduct a systematic study of relational learning and
collective inference methods to investigate how graph char-
acteristics interact with attribute correlation to impact clas-
sification performance. Notably, we show that AUC perfor-
mance of the method can be accurately predicted from a
linear function of link density and attribute correlation.

1. INTRODUCTION
Relational machine learning and collective inference have

recently been used to significantly improve the predictive ac-
curacy of node classifications in network domains [1]. These
models exploit network correlation between the attribute
values of linked nodes to improve classification accuracy. For
example, in social networks a pair of linked friends are more
likely to share the same political views than two randomly
selected people. This correlation can arise due to homophily
(i.e., the principle that links between similar people occur
at a higher rate than among dissimilar people) or social in-
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fluence (i.e., the principle that people’s opinions and prefer-
ences are affected by others).

Machine learning methods that automatically identify net-
work correlation patterns in observed network data and then
use them in a collective classification (i.e., joint inference)
process to propagate predictions throughout the network,
have been used successfully across a range of network do-
mains, from social networks to physical and biological net-
works. Many collective classification models consist of local
model templates that are“rolled out”over the heterogeneous
network structure for learning and inference. Thus the local
model structure (e.g., attribute correlation across links) may
interact with the network structure (e.g., graph connectiv-
ity) to impact the predictive accuracy we can obtain using
collective classification methods.

Empirical evaluation across the range of work in rela-
tional learning has indicated that both network structure
and network correlation impact the performance of collec-
tive classification models. However, this is based on obser-
vations from a limited set of real world networks available
for study. There has been some work using synthetic data to
systematically study model performance as data characteris-
tics are varied, but the complexity of generating realistic net-
work structures made it difficult to consider characteristics
jointly. Specifically, Sen et al. [2] studied some of the effects
of varying link density and local homophily (i.e., attribute
correlation) on classification accuracy. However, they only
varied one characteristic at a time while keeping the other
fixed. Thus, there are still open questions about how the
two characteristics jointly impact performance. Moreover,
there are other graph structure and attribute characteristics
that could impact the accuracy of the various methods.

The goal of this work is to investigate the following open
questions: (1) How do attribute correlation and link density
jointly affect the predictive performance of collective classi-
fication methods? (2) Are there other graph/attribute mea-
sures that can help determine the performance of collective
classification methods? (3) In which scenarios is it better to
learn a relational model vs. assuming network correlation
and directly optimizing via label propagation?

In our work, we exploit a recently developed method for
generating attributed networks with realistic network struc-
ture (i.e., parameters learned from real networks) and corre-
lated attributes [3]. Using synthetic data generated from the
model, we conduct a systemic study of relational learning
and collective inference methods to investigate how graph
characteristic interact with attribute correlation to impact
classification performance. Specifically, we jointly vary the



label correlation and link density in order to study these ef-
fects simultaneously, something that wasn’t possible in prior
work.

Our results show that over all characteristics we consider,
link density and attribute correlation show the most asso-
ciation with collective classification performance. As one of
them or both increase, the predictive performance of collec-
tive classification methods generally increase as well. No-
tably, we find that AUC performance can be accurately pre-
dicted from a linear function of link density and attribute
correlation. Moreover, we find that as more labeled data is
available(or if the attribute correlation is negative), it is bet-
ter to learn a relational model than use label propagation.

2. RELATED WORK
Macskassy and Provost [1] explored the performance of

various collective classification methods on homogeneous,
univariate networks (the class label is the only attribute).
Previously there had been no large-scale, systematic ex-
perimental study of machine learning methods for within-
network classification. The authors outlined the two main
components for collective classification, which are the col-
lective inference method and the relational classifier, and
assessed the impact of each component on performance. In
particular, they compared how various choices and combina-
tions of components, as well as percentages of labeled data
in training, impact the accuracy of the predictions. For
collective inference methods, they studied commonly used
approximate inference algorithms: iterative classification al-
gorithm (ICA), relaxation labeling (RL), and gibbs sam-
pling (GS). For relational classifiers, they studied weighted-
vote relational neighbor (WVRN), class-distribution rela-
tional neighbor (CDRN), network-only naive Bayes (NBC),
and network-only link-based classification (NLB). Although
the authors evaluated the methods on a range of available
datasets with varying characteristics, they did not system-
atically explore how the network characteristics impact the
performance of collective classification methods.

P. Sen, G. Namata, M. Bilgic et al. [2] studied some of the
effects of varying link density and local homophily. For col-
lective inference methods, they investigated commonly used
approximate inference algorithms: iterative classification al-
gorithm (ICA) and gibbs sampling (GS). For relational clas-
sifiers, they studied naive Bayes (NB) and logistic regression
(LR). Their results on synthetic data showed that when ho-
mophily in the graph is low, both content-only (CO) and col-
lective classification (CC) algorithms perform equally well,
which was expected given prior work. As they increased
the amount of homophily in the synthetic data (leaving link
density fixed), the performance of all CC algorithms drasti-
cally improved over CO classifiers. Finally, as they increased
the link density of the graphs (leaving correlation fixed), the
accuracy of all CC algorithms increased as well. The impli-
cation of these findings is that as link density and homophily
increase, the performance gains for CC algorithms will in-
crease. However, the authors left an exploration of inter-
actions among network characteristics (and their impact on
CC performance) for future work.

In this work, we systematically study how network struc-
ture and attribute correlation together affect the perfor-
mance of CC algorithms. Furthermore, since the proportion
of labeled vertices in the network has been showed to affect
the results, we will include it in the analysis. Our goal is to

determine the network structure characteristics that affect
CC the most, along with the attribute correlation and the
proportion of labeled vertices, and characterize their impact
in the accuracy of the classifications made. These results
may differ according to the CC subcomponents employed.

3. PROBLEM STATEMENT
The research questions we wish to answer with this work:

(1) How do attribute correlation and link density jointly
affect the predictive performance of collective classification
methods?, (2) Are there other graph structure measures or
attribute correlation measures that can help determine the
performance of collective classification methods? and (3)
When is it better to learn a model for collective classification
rather than directly optimizing via label propagation (e.g.,
with weighted-voting)? More formally, we wish to test the
following hypothesis: As attribute correlation and/or link
density increases, the predictive accuracy of collective clas-
sification models increases.

4. ALGORITHMS
Our experimental setup is similar to that of Macskassy

et al. [1]. The input is a graph G = (V,E,X) where X
are attributes of the vertices V. We assume there is a single
attribute Xi for each vertex vi ∈ V, representing the class,
which can take a binary value, i.e., X = {0, 1}. We use c to
refer to a non-specified class value. The goal is, given known
values xi for some subset of vertices VK , to infer the values
xi of Xi for the remaining unknown vertices, VU = V−VK ,
or a probability distribution over those values.

Let Ni be the 1-hop neighbors of vertex vi (i.e., {vj |eij ∈
E}). Then a relational model based on Ni can be used to
estimate xi. It is worth noting that just like estimates of
the labels of NU

i influence the estimate for xi, then xi also
influences the estimates of the labels of vj ∈ NU

i . In order
to simultaneously estimate these interdependent values xU ,
we need to apply a collective inference method.

4.1 Relational Classifiers
The relational model makes use of the articulated rela-

tionships in the observed network as well as the attribute val-
ues of related entities, possibly through chains of relations.
Given GK (the induced subgraph with known labels), the
relational classifier returns a model MR that will estimate
xi using vi and Ni. Ideally, MR will estimate a probability
distribution over the possible values for xi.

Weighted-voting
Also referred to as weighted-vote relational neighbor classi-
fier (WVRN) [1], it is the simplest classifier that estimates
class-membership probabilities by assuming the existence of
homophily and setting a node’s prediction to be the majority
label of its neighbors.

Given vi ∈ VU , WVRN estimates P (xi|Ni) as the
(weighted) mean of the class-membership probabilities in
Ni:

P (xi = c|Ni) =
1

Z

∑
vj∈Ni

wij · P (xj = c|Nj), (1)

where Z is the usual normalizer. This can be viewed simply
as an inference procedure, or as a probability model.



Relational Naive Bayes
Also referred to as network-only bayes classifier (NBC) [1],
it uses multinomial naive Bayesian classification based on
the classes of vi’s neighbors.

P (xi = c|Ni) =
P (Ni|c) · P (c)

P (Ni)
, (2)

where

P (Ni|c) =
1

Z

∏
vj∈Ni

P (xj = x̃j |xi = c)wij

where Z is a normalizing constant and x̃j is the class ob-
served at node vj . As usual, because P (Ni) is the same
for all classes, normalization across the classes allows us to
avoid explicitly computing it. Laplace smoothing is applied
with m = |X| (i.e., the number of classes).

Relational Logistic Regression
This classifier is based similar to the approach of Lu and
Getoor [4] and Macskassy and Provost [1]. The relational
part consists of creating a feature vector of aggregated labels
for a node’s 1-hop neighborhood. In particular, the feature

vector ~fi for a node vi ∈ VU consists of the unnormalized
class label counts and ratio of class labels of the neighbors.
Then, a logistic regression classifier (LR) is used to build a
discriminative model based on these feature vectors. The
learned model is then applied to estimate P (xi = c|Ni).

4.2 Collective Inference Methods
The collective inference component determines how the

unknown values are estimated together, possibly influencing
each other. Given a partially labeled graph G, where VK

refers to the labeled vertices and VU refers to the unlabeled
vertices (i.e., V = VK +VU ), a relational model MR, and a
set of prior estimates for XU , this module applies collective
inference to G to estimate XU .

The initialization of class probabilities can be done in sev-
eral ways, e.g.,: (1) using a local classifier (which only uses
the attributes of the vertex vi), or (2) randomly initializing a
value based on the class prior. The predicted probability for
each unlabeled vertex vi is computed using the relational
model MR. Then, the predictions are iteratively updated
according to the collective inference method’s update step.
Finally, we incorporate “bootstrapping” [2] by allowing the
relational model MR to see the true labels of the labeled
vertices VK at each iteration when making predictions for
VU .

Gibbs Sampling
The update step here is to sample a class label value us-
ing the estimated probability from the relational model MR.
The process is repeated 200 times without keeping any statistics–
this is known as the burnin period. Then, it is repeated for a
maximum of 2000 iterations. The method counts the num-
ber of times each Xi is assigned a particular value c ∈ X.
Normalizing these counts forms the final class probability
estimates (see e.g., [1]).

Relaxation Labeling
The update step here is to estimate the class membership
probabilities as follows:

ĉi
(t+1) = β(t+1) ·MR(v

(t)
i ) + (1− β(t+1)) · ĉi

(t), where

β0 = k, and β(t+1) = β(t) · α

and where t is the current iteration, k is a constant between
0 and 1 and α is a decay constant—set to 1.0 and 0.99, re-
spectively, following the experimental setup by Macskassy et
al. [1]. The maximum number of iterations for this method
is set to 100.

5. DATA
Using the recent work of Robles et al. [3], we generate syn-

thetic attributed networks with varying network structure
and attribute dependence. The CSAG generative model [3]
combines a mixed Kronecker product graph model (mKPGM)
with an attribute model, to generate network samples with
both correlated attributes and complex structure. More
specifically, CSAG is a new method to approximate sam-
pling from P (G,X) using a 2-stage constrained sampling
process from a proposal distribution based on a generative
network model (e.g., mKPGM). The mKPGM is used to
sample realistic network structures (its parameters can be
learned from observed networks) and the attribute model is
used to generate correlated attributes.

In the first dataset of networks generated, we set the ini-
tial values in the mKPGM θ initiatior matrix to a previous
set of parameters learned from a real-world network [5]:

θ =

[
0.7466 0.6629
0.6629 0.1402

]
(3)

We then varied the individual θs in small increments to de-
crease or increase the link density. The values for θ11, θ12, θ22
were constrained such that θ11 was the largest value (to en-
force identifiability [6]) and θ21 = θ12 (to create undirected
graphs [5]). To change the level of attribute correlation,
we simply increased or decreased the parameters of the at-
tribute model in a similar manner. We generated 168 differ-
ent networks using this process.

To further investigate the results we obtained using the
θ initiatior matrix in Equation (3), we also created a second
set of networks from a combination of possible values for
each individual θ in the initiator matrix:

θ =

[
θ11 θ12
θ21 θ22

]
(4)

We varied θ11 ∈ {0.99, 0.95, 0.9, 0.85, 0.8}, θ12 ∈ {0.55, 0.45,
0.35, 0.25, 0.15} and θ22 ∈ {0.75, 0.65, 0.55, 0.45, 0.35}. The
theta in Equation (4) were constrained in the same manner
as described above. We generated 401 networks using this
process.

All the graphs created have one binary label per vertex
for the attributes, with balanced classes across the graph,
and the edges are all weighted the same (i.e., wij = 1 ∀
eij ∈ E).

6. METHODOLOGY
Experiment 1. Our goal is to study how the results of
collective classification are affected by: (1) graph character-



istics, (2) attribute characteristics, (3) collective classifica-
tion methods, and (4) percentage of available node labels
in the “bootstrapping” [2] of the predictions. By exploring
these characteristics, we can obtain a better understanding
of the conditions needed to obtain good results using collec-
tive classification. This understanding will be particularly
useful for employing these methods on real data.

For the learning step, we vary the size of the training set
in the experiments as 20%, 50%, and 80%, and use cross-
validation. The relational model MR is learned from the
folds used for training (i.e. VK). In the classification step,
some existing background knowledge is needed to be able to
get good results [1]. Therefore, we use the vertices from VK

(the vertices with known labels) as background knowledge.
To assess the contributions for the different subcompo-

nents, we perform the experiments on all combinations of
the collective inference methods with the classifiers, as de-
scribed in Section 3.

With the generated networks, we measure the quality
of the predictions made by different collective classification
methods using the area under the ROC curve (AUC). An-
other aspect of the performance that we evaluate, is how the
percentage of available node labels in the“bootstrapping” [2]
of the predictions can also impact the results we observe.

Likewise, although we vary parameters such as link den-
sity and correlation for the generation of networks, differ-
ent θ initiator matrices for mKPGM will affect network
structure. Therefore, additional networks were generated
by varying the θ initiator matrix values, as previously de-
scribed in Section 5.

In regards to the graph and attribute characteristics that
may affect the quality of the predictions, the graph char-
acteristics we studied are: (1) link density, (2) clustering
coefficient, (3) average path length, (4) size of the largest
connected component, (5) average node degree, (6) s-metric
value of the network [7], and (7) eigengap of the two largest
eigenvalues. For attribute characteristics, we studied the fol-
lowing: (1) 1-hop neighborhood class correlation (i.e., Pear-
son correlation coefficient), (2) 2-hop neighborhood class
correlation, (3) average class entropy, (4) baseline network
correlation due to random chance.

Experiment 2. To compare the difference of learning a
model versus doing label propagation, we plotted the in-
crease in AUC scores of the NBC over WVRN. We show the
resulting plots for the results from Experiment 1, where RL
is used as the collective inference method.

Experiment 3. To answer our third question—when is it
better to learn a model versus doing direct optimization with
label propagation?—we need to characterize the impact of
the (1) proportion of labeled vertices (for bootstrapping), (2)
graph density, and (3) attribute correlation, in the resulting
AUC scores obtained with collective classification. Thus, we
learned a linear regression model on the CC results so that
we can predict the AUC score for CC depending on the three
previously mentioned characteristics of the input graph. We
included these three characteristics as the features for the
model and we predict the AUC score. Our input here are
the graph characteristics used for Experiment 1, as features,
and the resulting AUC score, for the linear regression task.
We used 5-fold cross-validation to evaluate the model. We
learned three versions of the model, (1) for all networks (that
we generated in Section 5) and for those with (2) positive

correlation only, and (3) negative correlation only.

7. RESULTS
In the Figures for Experiments 1 and 2, the small cir-

cles represent a graph generated with the given metric (e.g.,
correlation) and value on the y-axis, and the given metric
(e.g., link density in Figure 2, clustering coefficient in Fig-
ure 3) and value on the x-axis. The space is filled with color
according to the AUC score using the score of the nearest
points (i.e., graphs). In particular, this is done by finding
the convex hull [8] [9] of all points and then doing a Delaunay
triangulation to separate the spaces for coloring according
to the AUC score.

Experiment 1. In the experiments for the first set of net-
works from the θ in Equation (3), it seems that the charac-
teristics that jointly affect the AUC scores in a monotonic
manner are the 1-hop attribute correlation combined with
the link-density (See Figure 2). The results and plots (omit-
ted for space) for the second set of networks from the θ in
Equation (4), exhibit the same behavior to those of the first
θ in Equation (3). NBC performs well with higher correla-
tion (positive or negative) or density. WVRN performs well
with higher correlation (positive) or density. LR performed
poorly with the relational features used; the AUC scores
were near random and the plots are omitted for space.

From the rest of combinations of attribute characteris-
tics and graph characteristics, the 1-hop attribute correla-
tion combined with the clustering coefficient seems to also
have a relationship behaving similar to the previous results,
although it does not seem completely monotonic (See Fig-
ure 3). Another combination of characteristics that seems
to have a relation with the AUC score, is the 1-hop attribute
correlation and eigengap of the two largest eigenvalues. In
particular, if you take a look at Figures 6d and 6h, as there
are more labeled nodes available for “bootstrapping”, the
eigengap has more impact on the scores. The rest of the
graph characteristics we evaluated, did not have a mono-
tonic relationship with any of the attribute characteristics
(See Figures 5 and 6, for sample plots).

Experiment 2. As observed in Figure 4, learning a model
(NBC) performs better for negative correlation so this is the
area where we see the most gain in AUC scores. There are
also some gains when the networks have positive correlation
and we have more training data available.

Experiment 3. Figure 1 shows the coefficients learned in
the regression model to predict AUC performance. Note
that the coefficient for the density feature is much larger
in part due to the densities being very small proportions
compared to the other features (i.e., the features are not
normalized). Table 1 lists the mean accuracy obtained on
the cross-validation folds (as determined by absolute error)
of predicting the AUC scores. We can most accurately pre-
dict the AUC scores when the collective inference method is
relaxation labeling (RL). WVRN is a simple classifier, and
thus the collective inference method does not have an effect
on how well we can predict the AUC score.

8. DISCUSSION
Experiment 1. Some observations from the results in Fig-
ure 2:

• The weighted-voting classifier does not learn (it as-



Network
Samples

NBC
& RL

NBC
& GS

WVRN
& RL

WVRN
& GS

All 36% 18% 15% 14%
Positive
correlation

80% 66% 91% 91%

Negative
correlation

86% 86% 90% 90%

Table 1: Mean accuracy of predicting AUC scores
for CC using networks generated from θ in Eq. (3).
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Figure 1: Linear Regression Coefficients

sumes homophily) and thus cannot model negative cor-
relation. Therefore, it needs high (positive) correlation
and high density to work well.

• Logistic regression needs more correlation to linearly
separate classes; Naive Bayes is significantly more ac-
curate on these networks.

• Relaxation labeling often performs better than Gibbs
sampling.

• At least 20-30% correlation is needed to improve accu-
racy, depending on the graph density

• When there is low density, a higher correlation is needed
to learn a better model; As density increases, lower
correlation can achieve similar results.

Regarding our hypothesis, the results indicate that: as
attribute correlation and/or link density increases, the ac-
curacy of collective classification models also increases. The
significance of this is that even if we have lower levels of
label autocorrelation, if our network is more dense then we
can achieve higher accuracy.

Experiment 2. As we have more labeled data (known
vertices) it is better to learn a model like NBC versus doing
label propagation with WVRN, as observed in Figure 4.

Experiment 3. We have shown, in Figure 1 and Table 1,
that it is possible to predict the AUC score we can obtain
with CC methods. The significance of this is that with the
learned linear regression coefficients for a CC method on
some networks, we can just predict the AUC score and use

this to pick the CC method that will likely perform the best
for a particular network.

In Figure 1, it is interesting that (1) when predicting
AUC scores for NBC, we have more accuracy in the learned
model for negative correlation, than for positive correlation,
and (2) for WVRN the proportion of labeled vertices has
little impact.
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(e) WVRN & RL, 50% training set
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(f) WVRN & RL, 80% training set
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(g) NBC & GS, 20% training set
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(h) NBC & GS, 50% training set
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(i) NBC & GS, 80% training set
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(j) NBC & RL, 20% training set
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(k) NBC & RL, 50% training set
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(l) NBC & RL, 80% training set

Figure 2: Attribute Correlation (1-hop) vs Link-Density
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(a) WVRN & RL, 20% training set
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(b) WVRN & RL, 50% training set
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(c) WVRN & RL, 80% training set
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(d) NBC & RL, 20% training set
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(e) NBC & RL, 50% training set
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(f) NBC & RL, 80% training set

Figure 3: Attribute Correlation (1-hop) vs Clustering Coefficient
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(a) GS, 20% training set
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(b) GS, 50% training set
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(c) GS, 80% training set
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(d) RL, 20% training set

0.005 0.010 0.015 0.020 0.025 0.030

density

0.6

0.4

0.2

0.0

0.2

0.4

0.6

co
rr

e
la

ti
o
n

RL (Train 50%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A
U

C
 s

co
re

(e) RL, 50% training set
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(f) RL, 80% training set

Figure 4: Difference of learning a model: Attribute Correlation (1-hop) vs Link-Density
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(b) 1-hop correlation &
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(d) 1-hop correlation &
eigengap (50%)
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(h) 1-hop correlation &
eigengap (80%)

Figure 5: WVRN & RL, 50% training set
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(d) 1-hop correlation &
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Figure 6: NBC & RL, 50% training set


