
subgraph2vec: Learning Distributed Representations of
Rooted Sub-graphs from Large Graphs

Annamalai Narayanan†, Mahinthan Chandramohan†, Lihui Chen†, Yang Liu† and
Santhoshkumar Saminathan§

†Nanyang Technological University, Singapore
§BigCommerce, California, USA

annamala002@e.ntu.edu.sg, {mahinthan,elhchen,yangliu}@ntu.edu.sg, santhosh.kumar@yahoo.com

ABSTRACT
In this paper, we present subgraph2vec, a novel approach
for learning latent representations of rooted subgraphs from
large graphs inspired by recent advancements in Deep Learn-
ing and Graph Kernels. These latent representations encode
semantic substructure dependencies in a continuous vector
space, which is easily exploited by statistical models for tasks
such as graph classification, clustering, link prediction and
community detection. subgraph2vec leverages on local in-
formation obtained from neighbourhoods of nodes to learn
their latent representations in an unsupervised fashion. We
demonstrate that subgraph vectors learnt by our approach
could be used in conjunction with classifiers such as CNNs,
SVMs and relational data clustering algorithms to achieve
significantly superior accuracies. Also, we show that the
subgraph vectors could be used for building a deep learning
variant of Weisfeiler-Lehman graph kernel. Our experiments
on several benchmark and large-scale real-world datasets re-
veal that subgraph2vec achieves significant improvements in
accuracies over existing graph kernels on both supervised
and unsupervised learning tasks. Specifically, on two real-
world program analysis tasks, namely, code clone and mal-
ware detection, subgraph2vec outperforms state-of-the-art
kernels by more than 17% and 4%, respectively.

Keywords
Graph Kernels, Deep Learning, Representation Learning

1. INTRODUCTION
Graphs offer a rich, generic and natural way for represent-

ing structured data. In domains such as computational biol-
ogy, chemoinformatics, social network analysis and program
analysis, we are often interested in computing similarities
between graphs to cater domain-specific applications such
as protein function prediction, drug toxicity prediction and
malware detection.

Graph Kernels. Graph Kernels are one of the popu-

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

getSystem
Services

getDeviceId

HttpURL.init

getSystem
Services

getDeviceId

HttpURL.init

Open
Connection

Connect SmsManager.
getDefault

send
TextMessage

getSystem
Services

getDeviceId

HttpURL.init

Open
Connection

(a)
(b)

(c) (d)

Figure 1: Dependency schema of a set of rooted subgraphs of
degree 1 ((a), (d)), 2 ((b)) and 3 ((c)) in an Android malware’s
API dependency graph. The root nodes are marked with a star.
Graph (b) can be derived from (a) by adding a node and an edge.
Graph (c) can be derived from (b) in a similar fashion. Graph (d)
is highly dissimilar from all the other graphs and is not readily
derivable from any of them.

lar and widely adopted approaches to measure similarities
among graphs [3, 4, 6, 7, 14]. A Graph kernel measures
the similarity between a pair of graphs by recursively de-
composing them into atomic substructures (e.g., walk [3],
shortest paths [4], graphlets [7] etc.) and defining a simi-
larity function over the substructures (e.g., number of com-
mon substructures across both graphs). This makes the ker-
nel function correspond to an inner product over substruc-
tures in reproducing kernel Hilbert space (RKHS). Formally,
for a given graph G, let Φ(G) denote a vector which con-
tains counts of atomic substructures, and 〈·, ·〉H denote a
dot product in a RKHS H. Then, the kernel between two
graphs G and G′ is given by

K(G,G′) = 〈Φ(G),Φ(G′)〉H (1)

From an application standpoint, the kernel matrix K that
represents the pairwise similarity of graphs in the dataset
(calculated using eq. (1)) could be used in conjunction with
kernel classifiers (e.g., Support Vector Machine (SVM)) and
relational data clustering algorithms to perform graph clas-
sification and clustering tasks, respectively.

1.1 Limitations of Existing Graph Kernels
However, as noted in [7, 14], the representation in eq. (1)

does not take two important observations into account.

• (L1) Substructure Similarity. Substructures that are
used to compute the kernel matrix are not independent.
To illustrate this, lets consider the Weisfeiler-Lehman (WL)

10.1145/1235

kernel [6] which decomposes graphs into rooted subgraphs1.
These subgraphs encompass the neighbourhood of certain
degree around the root node. Understandably, these sub-
graphs exhibit strong relationships among them. That
is, a subgraph with second degree neighbours of the root
node could be arrived at by adding a few nodes and edges
to its first degree counterpart. We explain this with an
example presented in Fig. 1. The figure illustrates API-
dependency subgraphs from a well-known Android mal-
ware called DroidKungFu (DKF) [18]. These subgraph
portions of DKF involves in leaking users’ private infor-
mation (i.e., IMEI number) over the internet and send-
ing premium-rates SMS without her consent. Sub-figures
(a), (b) and (c) represent subgraphs of degree 1, 2 and
3 around the root node getSystemServices, respectively.
Evidently, these subgraphs exhibit high similarity among
one another. For instance, subgraph (c) could be derived
from subgraph (b) by adding a node and an edge, which
in turn could be derived from subgraph (a) in a similar
fashion. However, the WL kernel, by design ignores these
subgraph similarities and considers each of the subgraphs
as individual features. Other kernels such as random walk
and shortest path kernels also make similar assumptions
on their respective substructures’ similarities.

• (L2) Diagonal Dominance. Since graph kernels regard
these substructures as separate features, the dimensional-
ity of the feature space often grows exponentially with the
number of substructures. Consequently, only a few sub-
structures will be common across graphs. This leads to
diagonal dominance, that is, a given graph is similar to it-
self but not to any other graph in the dataset. This leads
to poor classification/clustering accuracy.

1.2 Existing Solution: Deep Graph Kernels
To alleviate these problems Yanardag and Vishwanathan

[7], recently proposed an alternative kernel formulation termed
as Deep Graph Kernel (DGK). Unlike eq. (1), DGK cap-
tures the similarities among the substructures with the fol-
lowing formulation:

K(G,G′) = Φ(G)TMΦ(G′) (2)

whereM represents a |V|× |V| positive semi-definite matrix
that encodes the relationship between substructures and V
represents the vocabulary of substructures obtained from
the training data. Therefore, one can design a M matrix
that respects the similarity of the substructure space.

Learning representation of substructures. In DGK
[7], the authors used representation learning (deep learning)
techniques inspired by the work of Mikolov et al. [15] to learn
vector representations (aka embeddings) of substructures.
Subsequently, these substructure embeddings were used to
compute M and the same is used in eq (2) to arrive at the
deep learning variants of several well-known kernels such as
WL, graphlet and shortest path kernels.

Context. In order to facilitate unsupervised represen-
tation learning on graph substructures, the authors of [7]
defined a notion of context among these substructures. Sub-
structures that co-occur in the same context tend to have

1The WL kernel models the subgraph around a root node
as a tree (i.e., without cycles) and hence is referred as WL
subtree kernel. However since the tree represents a rooted
subgraph, we refer to the rooted subgraph as the substruc-
ture being modeled in WL kernel, in this work.

high similarity. For instance, in the case of rooted sub-
graphs, all the subgraphs that encompass same degree of
neighbourhood around the root node are considered as co-
occurring in the same context (e.g., all degree-1 subgraphs
are considered to be in the same context). Subsequently,
embedding learning task’s objective is designed to make the
embeddings of substructures that occur in the same context
similar to one another. Thus defining the correct context is
of paramount importance to build high quality embeddings.

Deep WL Kernel. Through their experiments the au-
thors demonstrated that the deep learning variant of WL
kernel constructed using the above-said procedure achieved
state-of-the-art performances on several datasets. However,
we observe that, in their approach to learn subgraph embed-
dings, the authors make three novice assumptions that lead
to three critical problems:

• (A1) Only rooted subgraphs of same degree are considered

as co-occurring in the same context. That is, if D
(d)
G =

{sg(d)
1 , sg

(d)
2 , ...} is a multi-set of all degree d subgraphs in

graph G, [7] assumes that any two subgraphs sg
(d)
i , sg

(d)
j

∈ D
(d)
G co-occur in the same context irrespective of the

length (or number) of path(s) connecting them or whether
they share the same nodes/edges. For instance, in the case
of Android malware subgraphs in Fig. 1, [7] assumes that
only subgraphs (a) and (d) are in the same context and
are possibly similar as they both are degree-1 subgraphs.
However in reality, they share nothing in common and are
highly dissimilar. This assumption makes subgraphs that
do not co-occur in the same graph neighbourhood to be
in the same context and thus similar (problem 1).

• (A2) Any two rooted subgraphs of different degrees never
co-occur in the same context. That is, two subgraphs

sg
(d)
i ∈ D

(d)
G and sg

(d′)
j ∈ D

(d′)
G (where d 6= d′) never

co-occur in the same context irrespective of the length
(or number) of path(s) connecting them or whether they
share the same nodes/edges. For instance, in Fig. 1, sub-
graphs (a), (b) and (c) are considered not co-occurring in
the same context as they belong to different degree neigh-
bourhood around the root node. Hence, [7] incorrectly
biases them to be dissimilar. This assumption makes sub-
graphs that co-occur in the same neighbourhood not to
be in the same context and thus dissimilar (problem 2).

• (A3) Every subgraph (sg
(d)
r) in any given graph has ex-

actly same number of subgraphs in its context. This as-
sumption clearly violates the topological neighbourhood
structure in graphs (problem 3).

Through our thorough analysis and experiments we ob-
serve that these assumptions led [7] to building relatively
low quality subgraph embeddings. Consequently, this re-
duces the classification and clustering accuracies when [7]’s
deep WL kernel is deployed. This motivates us to address
these limitations and build better subgraph embeddings, in
order to achieve higher accuracy.

1.3 Our Approach
In order to learn accurate subgraph embeddings, we ad-

dress each of the three problems introduced in the previous
subsection. We make two main contributions through our
subgraph2vec framework to solve these problems:

• We extend the WL relabeling strategy [6] (used to relabel
the nodes in a graph encompassing its breadth-first neigh-

bourhood) to define a proper context for a given subgraph.

For a given subgraph sg
(d)
r in G with root r, subgraph2vec

considers all the rooted subgraphs (up to a certain degree)

of neighbours of r as the context of sg
(d)
r . This solves

problems 1 and 2.

• However this context formation procedure yields radial
contexts of different sizes for different subgraphs. This
renders the existing representation learning models such
as the skipgram model [15] (which captures fixed-length
linear contexts) unusable in a straight-forward manner to
learn the representations of subgraphs using its context,
thus formed. To address this we propose a modification to
the skipgram model enabling it to capture varying length
radial contexts. This solves problem 3.

Experiments. We determine subgraph2vec’s accuracy
and efficiency in both supervised and unsupervised learn-
ing tasks with several benchmark and large-scale real-world
datasets. Also, we perform comparative analysis against sev-
eral state-of-the-art graph kernels. Our experiments reveal
that subgraph2vec achieves significant improvements in clas-
sification/clustering accuracy over existing kernels. Specif-
ically, on two real-world program analysis tasks, namely,
code clone and malware detection, subgraph2vec outper-
forms state-of-the-art kernels by more than 17% and 4%,
respectively.

Contributions. We make the following contributions:

• We propose subgraph2vec, an unsupervised representa-
tion learning technique to learn latent representations of
rooted subgraphs present in large graphs (§5).

• We develop a modified version of the skipgram language
model [15] which is capable of modeling varying length
radial contexts (rather than fixed-length linear contexts)
around target subgraphs (§5.2).

• We discuss how subgraph2vec’s representation learning
technique would help to build the deep learning variant
of WL kernel (§5.3).

• Through our large-scale experiments on several bench-
mark and real-world datasets, we demonstrate that sub-
graph2vec could significantly outperform state-of-the-art
graph kernels (incl. [7]) on graph classification and clus-
tering tasks (§6).

2. RELATED WORK
The closest work to our paper is Deep Graph Kernels [7].

Since we have discussed it elaborately in §1, we refrain from
discussing it here. Recently, there has been significant in-
terest from the research community on learning represen-
tations of nodes and other substructures from graphs. We
list the prominent such works in Table 1 and show how our
work compares to them in-principle. Deep Walk [8] and
node2vec [10] intend to learn node embeddings by gener-
ating random walks in a single graph. Both these works
rely on existence of node labels for at least a small por-
tion of nodes and take a semi-supervised approach to learn
node embeddings. Recently proposed Patchy-san [9] learns
node and subgraph embeddings using a supervised convolu-
tional neural network (CNN) based approach. In contrast
to these three works, subgraph2vec learns subgraph embed-
dings (which includes node embeddings) in an unsupervised
manner.

Table 1: Representation Learning from Graphs

Solution
Learning
Paradigm

node
vector

subgraph
vector

Context used for
rep. learning

Deep Walk [8] Semi-sup
Fixed-length
random walks

node2vec [10] Semi-sup
Fixed-Length biased
random walks

Patchy-san [9] Sup
Receptive field of sequence
of neighbours of nodes

Deep Graph
Kernels

[7] Unsup
Subgraphs occurring
at same degree

subgraph2vec Unsup
Subgraphs of different
degrees occurring in the
same local neighbourhoods

In general, from a substructure analysis point of view, re-
search on graph kernel could be grouped into three major
categories: kernels for limited-size subgraphs [12], kernels
based on subtree patterns [6] and kernels based on walks [3]
and paths [4]. subgraph2vec is complementary to these ex-
isting graph kernels where the substructures exhibit reason-
able similarities among them.

3. PROBLEM STATEMENT
We consider the problem of learning distributed represen-

tations of rooted subgraphs from a given set of graphs. More
formally, let G = (V,E, λ), represent a graph, where V is a
set of nodes and E ⊆ (V × V) be a set of edges. Graph G
is labeled2 if there exists a function λ such that λ : V → `,
which assigns a unique label from alphabet ` to every node
v ∈ V . Given G = (V,E, λ) and sg = (Vsg, Esg, λsg), sg
is a sub-graph of G iff there exists an injective mapping
µ : Vsg → V such that (v1, v2) ∈ Esg iff (µ(v1), µ(v2)) ∈ E.

Given a set of graphs G = {G1, G2, ..., Gn} and a positive
integer D, we intend to extract a vocabulary of all (rooted)
subgraphs around every node in every graph Gi ∈ G en-
compassing neighbourhoods of degree 0 ≤ d ≤ D, such that
SGvocab = {sg1, sg2, ...}. Subsequently, we intend to learn
distributed representations with δ dimensions for every sub-
graph sgi ∈ SGvocab. The matrix of representations (embed-

dings) of all subgraphs is denoted as Φ ∈ R|SGvocab|×δ.
Once the subgraph embeddings are learnt, they could be

used to cater applications such as graph classification, clus-
tering, node classification, link prediction and community
detection. They could be readily used with classifiers such
as CNNs and Recurrent Neural Networks. Besides this,
these embeddings could be used to make a graph kernel
(as in eq(2)) and subsequently used along with kernel classi-
fiers such as SVMs and relational data clustering algorithms.
These use cases are elaborated later in §5.4 after introducing
the representation learning methodology.

4. BACKGROUND: LANGUAGE MODELS
Our goal is to learn the distributed representations of sub-

graphs extending the recently proposed representation learn-
ing and language modeling techniques for multi-relational
data. In this section, we review the related background in
language modeling.

Traditional language models. Given a corpus, the
traditional language models determine the likelihood of a
sequence of words appearing in it. For instance, given a
sequence of words {w1, w2, ..., wT }, n-gram language model

2For graphs without node labels, we follow the procedure
mentioned in [6] and label nodes with their degree.

targets to maximize the following probability:

Pr(wt|w1, ..., wt−1) (3)

Meaning, they estimate the likelihood of observing the tar-
get word wt given n previous words (w1, ..., wt−1) observed
thus far.

Neural language models. The recently developed neu-
ral language models focus on learning distributed vector rep-
resentation of words. These models improve traditional n-
gram models by using vector embeddings for words. Unlike
n-gram models, neural language models exploit the of the
notion of context where a context is defined as a fixed num-
ber of words surrounding the target word. To this end, the
objective of these word embedding models is to maximize
the following log-likelihood:

T∑
t=1

logPr(wt|wt−c, ..., wt+c) (4)

where (wt|wt−c, ..., wt+c) are the context of the target word
wt. Several methods are proposed to approximate eq. (4).
Next, we discuss one such a method that we extend in our
subgraph2vec framework, namely Skipgram models [15].

4.1 Skip Gram
The skipgram model maximizes co-occurrence probability

among the words that appear within a given context win-
dow. Give a context window of size c and the target word wt,
skipgram model attempts to predict the words that appear
in the context of the target word, (wt−c, ..., wt−c). More pre-
cisely, the objective of the skipgram model is to maximize
the following loglikelihood,

T∑
t=1

log Pr(wt−c, ..., wt+c|wt) (5)

where the probability Pr(wt−c, ..., wt+c) is computed as

Π−c≤j≤c,j 6=0Pr(wt+j |wt) (6)

Here, the contextual words and the current word are as-
sumed to be independent. Furthermore, Pr(wt+j |wt) is de-
fined as:

exp(ΦTwtΦ
′
wt+j)∑V

w=1 exp(Φ
T
wtΦ

′
w)

(7)

where Φw and Φw
′ are the input and output vectors of

word w.

4.2 Negative Sampling
The posterior probability in eq. (6) could be learnt in

several ways. For instance, a novice approach is to use a
classifier like logistic regression. This is prohibitively expen-
sive if the vocabulary of words is very large.

Negative sampling is an efficient algorithm that is used to
alleviate this problem and train the skipgram model. Neg-
ative sampling selects the words that are not in the context
at random instead of considering all words in the vocabu-
lary. In other words, if a word w appears in the context of
another word w′, then the vector embedding of w is closer
to that of w′ compared to any other randomly chosen word
from the vocabulary.

Once skipgram training converges, semantically similar
words are mapped to closer positions in the embedding space

Algorithm 1: subgraph2vec (G, D, δ, e)
input : G = {G1, G2, ..., Gn}: set of graphs such that each

graph Gi = (Vi, Ei, λi) from which embeddings are
learnt
D: Maximum degree of subgraphs to be considered for
learning representations. This will produce a
vocabulary of subgraphs, SGvocab = {sg1, sg2, ...} from
all the graphs in G
δ: number of dimensions (embedding size)
e: number of epochs

output: Matrix of vector representations of subgraphs

Φ ∈ R|SGvocab|×δ
1 begin
2 SGvocab = BuildSubgraphVocab(G) //use Algorithm 2

3 Initialization: Sample Φ from U |SGV ocab|×δ

4 for e = 0 to e do
5 G = Shuffle (G)
6 for each Gi ∈ G do
7 for each v ∈ Vi do
8 for d = 0 to D do

9 sg
(d)
v := GetWLSubgraph(v,Gi, d)

10 RadialSkipGram (Φ, sg
(d)
v , Gi, D)

11 return Φ

revealing that the learned word embeddings preserve seman-
tics. An important intuition we extend in subgraph2vec is
to view subgraphs in large graphs as words that are gener-
ated from a special language. In other words, different sub-
graphs compose graphs in a similar way that different words
form sentences when used together. With this analogy, one
can utilize word embedding models to learn dimensions of
similarity between subgraphs. The main expectation here
is that similar subgraphs will be close to each other in the
embedding space.

5. METHOD: LEARNING SUB-GRAPH REP-
RESENTATIONS

In this section we discuss the main components of our sub-
graph2vec algorithm (§5.2), how it enables making a deep
learning variant of WL kernel (§5.3) and some of its usecases
in detail (§5.4).

5.1 Overview
Similar to the language modeling convention, the only re-

quired input is a corpus and a vocabulary of subgraphs for
subgraph2vec to learn representations. Given a dataset of
graphs, subgraph2vec considers all the neighbourhoods of
rooted subgraphs around every rooted subgraph (up to a
certain degree) as its corpus, and set of all rooted subgraphs
around every node in every graph as its vocabulary. Subse-
quently, following the language model training process with
the subgraphs and their contexts, subgraph2vec learns the
intended subgraph embeddings.

5.2 Algorithm: subgraph2vec
The algorithm consists of two main components; first a

procedure to generate rooted subgraphs around every node
in a given graph (§5.2.1) and second the procedure to learn
embeddings of those subgraphs (§5.2.2).

As presented in Algorithm 1 we intend to learn δ dimen-
sional embeddings of subgraphs (up to degree D) from all
the graphs in dataset G in e epochs. We begin by building
a vocabulary of all the subgraphs, SGvocab (line 2) (using

Algorithm 2: GetWLSubgraph (v,G, d)

input : v: Node which is the root of the subgraph
G = (V,E, λ): Graph from which subgraph has to be
extracted
d: Degree of neighbours to be considered for extracting
subgraph

output: sg(d)v : rooted subgraph of degree d around node v

1 begin

2 sg
(d)
v = {}
if d = 0 then

3 sg
(d)
v := λ(v)

4 else
5 Nv := {v′ | (v, v′) ∈ E}
6 M

(d)
v := {GetWLSubgraph(v′, G, d− 1) | v′ ∈ Nv}

7 sg
(d)
v := sg

(d)
v ∪ GetWLSubgraph

(v,G, d− 1)⊕ sort(M(d)
v)

8 return sg
(d)
v

Algorithm 3: RadialSkipGram (Φ, sg
(d)
v , G,D)

1 begin

2 context
(d)
v = {}

3 for v′ ∈ Neighbours(G, v) do
4 for ∂ ∈ {d− 1, d, d+ 1} do
5 if (∂ ≥ 0 and ∂ ≤ D) then

6 context
(d)
v = context

(d)
v ∪

GetWLSubgraph(v′, G, ∂)

7 for each sgcont ∈ context(d)v do

8 J(Φ) = −log Pr (sgcont|Φ(sg
(d)
v))

9 Φ = Φ− α ∂J
∂Φ

Algorithm 2). Then the embeddings for all subgraphs in
the vocabulary (Φ) is initialized randomly (line 3). Subse-
quently, we proceed with learning the embeddings in several
epochs (lines 4 to 10) iterating over the graphs in G. These
steps represent the core of our approach and are explained
in detail in the two following subsections.

5.2.1 Extracting Rooted Subgraphs
To facilitate learning its embeddings, a rooted subgraph

sg
(d)
v around every node v of graph Gi is extracted (line

9). This is a fundamentally important task in our approach.
To extract these subgraphs, we follow the well-known WL
relabeling process [6] which lays the basis for the WL kernel
and WL test of graph isomorphism [6, 7]. The subgraph
extraction process is explained separately in Algorithm 2.
The algorithm takes the root node v, graph G from which
the subgraph has to be extracted and degree of the intended
subgraph d as inputs and returns the intended subgraph

sg
(d)
v . When d = 0, no subgraph needs to be extracted and

hence the label of node v is returned (line 3). For cases
where d > 0, we get all the (breadth-first) neighbours of v
in Nv (line 5). Then for each neighbouring node, v′, we get

its degree d − 1 subgraph and save the same in list M
(d)
v

(line 6). Finally, we get the degree d − 1 subgraph around
the root node v and concatenate the same with sorted list
M

(d)
v to obtain the intended subgraph sg

(d)
v (line 7).

Example. To illustrate the subgraph extraction pro-
cess, lets consider the examples in Fig. 1. Lets consider

the graph 1(c) as the complete graph from which we in-
tend to get the degree 0, 1 and 2 subgraph around the root
node HttpURL.init. Subjecting these inputs to Algorithm
2, we get subgraphs {HttpURL.init}, {HttpURL.init ->
OpenConnection} and {HttpURL.init -> OpenConnection
-> Connect} for degrees 0, 1 and 2, respectively.

5.2.2 Radial Skipgram
Once the subgraph sg

(d)
v , around the root node v is ex-

tracted, Algorithm 1 proceeds to learn its embeddings with
the radial skip gram model (line 10). Similar to the vanilla
skipgram algorithm which learns the embeddings of a target
word from its surrounding linear context in a given docu-
ment, our approach learns the embeddings of a target sub-
graph using its surrounding radial context in a given graph.
The radial skipgram procedure is presented in Algorithm 3.

Modeling the radial context. The radial context around
a target subgraph is obtained using the process explained be-
low. As discussed previously in §4.1, natural language text
have linear co-occurrence relationships. For instance, skip-
gram model iterates over all possible collocations of words in
a given sentence and in each iteration it considers one word
in the sentence as the target word and the words occurring
in its context window as context words. This is directly
usable on graphs if we model linear substructures such as
walks or paths with the view of building node representa-
tions. For instance, Deep Walk [8] uses a similar approach to
learn a target node’s representation by generating random
walks around it. However, unlike words in a traditional text
corpora, subgraphs do not have a linear co-occurrence rela-
tionship. Therefore, we intend to consider the breadth-first
neighbours of the root node as its context as it directly fol-
lows from the definition of WL relabeling process.

To this end, we define the context of a degree-d subgraph

sg
(d)
v rooted at v, as the multiset of subgraphs of degrees

d−1, d and d+1 rooted at each of the neighbours of v (lines
2-6 in Algorithm 3). Clearly this models a radial context
rather than a linear one. Note that we consider subgraphs of
degrees d−1, d and d+1 to be in the context of a subgraph of
degree d. This is because, as explained with example earlier
in §1.1, a degree-d subgraph is likely to be rather similar to
subgraphs of degrees that are closer to d (e.g., d− 1, d+ 1)
and not just degree-d subgraphs only.

Vanilla Skip Gram. As explained previously in §4.1,
the vanilla skipgram language model captures fixed-length
linear contexts over the words in a given sentence. However,
for learning a subgraph’s radial context arrived at line 6 in
Algorithm 3, the vanilla skipgram model could not be used.
Hence we propose a minor modification to consider a radial
context as explained below.

Modification. The embedding of a target subgraph,

sg
(d)
v , with context context

(d)
v is learnt using lines 7 - 9 in

Algorithm 3. Given the current representation of target sub-

graph Φ(sg
(d)
v), we would like to maximize the probability

of every subgraph in its context sgcont (lines 8 and 9). We
can learn such posterior distribution using several choices of
classifiers. For example, modeling it using logistic regres-
sion would result in a huge number of labels that is equal
to |SGvocab|. This could be in several thousands/millions
in the case of large graphs. Training such models would re-
quire large amount of computational resources. To alleviate
this bottleneck, we approximate the probability distribution
using the negative sampling approach.

5.2.3 Negative Sampling
Given that sgcont ∈ SGvocab and |SGvocab| is very large,

calculating Pr(sgcont|Φ(sg
(d)
v)) in line 8 is prohibitively ex-

pensive. Hence we follow the negative sampling strategy
(introduced in §4.2) to calculate above mentioned poste-
rior probability. In our negative sampling phase for ev-
ery training cycle of Algorithm 3, we choose a fixed num-
ber of subgraphs (denoted as negsamples) as negative sam-
ples and update their embeddings as well. Negative sam-
ples adhere to the following conditions: if negsamples =
{sgneg1, sgneg2, ...}, then negsamples ⊂ SGvocab, |negsamples| <<
|SGvocab| and negsamples ∩ context

(d)
v = {}. This makes

Φ(sg
(d)
v) closer to the embeddings of all the subgraphs its

context (i.e.Φ(sgcont) | ∀sgcont ∈ context(d)v) and at the same
time distances the same from the embeddings of a fixed num-
ber of subgraphs that are not its context (i.e.Φ(sgnegi) | ∀sgnegi ∈
negsamples).

5.2.4 Optimization
Stochastic gradient descent (SGD) optimizer is used to op-

timize these parameters (line 9, Algorithm 3). The deriva-
tives are estimated using the back-propagation algorithm.
The learning rate α is empirically tuned.

5.3 Relation to Deep WL kernel
As mentioned before, each of the subgraph in SGvocab

is obtained using the WL re-labelling strategy, and hence
represents the WL neighbourhood labels of a node. Hence
learning latent representations of such subgraphs amounts to
learning representations of WL neighbourhood labels. There-
fore, once the embeddings of all the subgraph in SGvocab are
learnt using Algorithm 1, one could use it to build the deep
learning variant of the WL kernel among the graphs in G.
For instance, we could compute M matrix such that each
entry Mij computed as 〈Φi,Φj〉 where Φi corresponds to
learned δ-dimensional embedding of subgraph i (resp. Φj).
Thus, matrixM represents nothing but the pairwise similar-
ities of all the substructures used by the WL kernel. Hence,
matrix M could directly be plugged into eq. (2) to arrive
at the deep WL kernel across all the graphs in G.

5.4 Use cases
Once we compute the subgraph embeddings, they could be

used in several practical applications. We list some promi-
nent use cases here:

(1) Graph Classification. Given G, a set of graphs and Y ,
the set of corresponding class labels, graph classification is
the task where we learn a model H such that H : G → Y .
To this end, one could feed subgraph2vec’s embeddings to a
deep learning classifier such as CNN (as in [9]) to learn H.
Alternatively, one could follow a kernel based classification.
That is, one could arrive at a deep WL kernel using the sub-
graph embeddings as discussed in §5.3, and use kernelized
learning algorithm such as SVM to perform classification.

(2) Graph Clustering. Given G, in graph clustering, the
task is to group similar graphs together. Here, a graph ker-
nel could be used to calculate the pairwise similarity among
graphs in G. Subsequently, relational data clustering algo-
rithms such as Affinity Propagation (AP) [16] and Hierar-
chical Clustering could be used to cluster the graphs.

It is noted that subgraph2vec’s use cases are not confined
only to the aforementioned tasks. Since subgraph2vec could
be used to learn node representations (i.e., when subgraph of

Table 2: Benchmark dataset statistics

Dataset # samples
nodes
(avg.)

distinct
node labels

MUTAG 188 17.9 7
PTC 344 25.5 19

PROTEINS 1113 39.1 3
NCI1 4110 29.8 37

NCI109 4127 29.6 38

degree 0 are considered, subgraph2vec provides node embed-
dings similar to Deep Walk [8] and node2vec [10]). Hence
other tasks such as node classification, community detec-
tion and link prediction could also performed using sub-
graph2vec’s embeddings. However, in our evaluations in this
work we consider only graph classification and clustering as
they are more prominent.

6. EVALUATION
We evaluate subgraph2vec’s accuracy and efficiency both

in supervised and unsupervised learning tasks. Besides ex-
perimenting with benchmark datasets, we also evaluate sub-
graph2vec on with real-world program analysis tasks such
as malware and code clone detection on large-scale Android
malware and clone datasets. Specifically, we intend to ad-
dress the following research questions: (1) How does sub-
graph2vec compare to existing graph kernels for graph clas-
sification tasks in terms of accuracy and efficiency on bench-
mark datasets, (2) How does subgraph2vec compare to state-
of-the-art graph kernels on a real-world unsupervised learn-
ing task, namely, code clone detection (3) How does sub-
graph2vec compare to state-of-the-art graph kernels on a
real-world supervised learning task, namely, malware detec-
tion.

Evaluation Setup. All the experiments were conducted
on a server with 36 CPU cores (Intel E5-2699 2.30GHz pro-
cessor), NVIDIA GeForce GTX TITAN Black GPU and 200
GB RAM running Ubuntu 14.04.

6.1 Classification on benchmark datasets
Datasets. Five benchmark graph classification datasets

namely MUTAG, PTC, PROTEINS, NCI1 and NCI109 are
used in this experiment. These datasets belong to chemo-
and bio-informatics domains and the statistics on the same
are reported in Table 2. MUTAG dataset consists 188 chem-
ical compounds where class label indicates whether or not
the compound has a mutagenic effect on a bacterium. PTC
dataset comprises of 344 compounds and the classes indicate
carcinogenicity on female/male rats. PROTEINS is a graph
collection where nodes are secondary structure elements and
edges indicate neighborhood in the amino-acid sequence or
in 3D space. NCI1 and NCI109 datasets contain compounds
screened for activity against non-small cell lung cancer and
ovarian cancer cell lines. Graphs are classified as enzyme or
non-enzyme. All these datasets are made available in [6, 7].

Comparative Analysis. For classification tasks on each
of the datasets, we use the embeddings learnt using sub-
graph2vec and build the Deep WL kernel as explained in
§5.3. We compare subgraph2vec against the WL kernel [6]
and Yanardag and Vishwanathan’s formulation of deep WL
kernel [7] (denoted as Deep WLYV).

Configurations. For all the datasets, 90% of samples
are chosen at random for training and the remaining 10%
samples are used for testing. The hyper-parameters of the
classifiers are tuned based on 5-fold cross validation on the
training set.

Table 3: Average Accuracy (± std dev.) for subgraph2vec and state-of-the-art graph kernels on benchmark graph classification datasets

Dataset MUTAG PTC PROTEINS NCI1 NCI109
WL [6] 80.63 ± 3.07 56.91 ± 2.79 72.92 ± 0.56 80.01 ± 0.50 80.12 ± 0.34
Deep WLYV [7] 82.95 ± 1.96 59.04 ± 1.09 73.30 ± 0.82 80.31 ± 0.46 80.32 ± 0.33
subgraph2vec 87.17 ± 1.72 60.11 ± 1.21 73.38 ± 1.09 78.05 ± 1.15 78.39 ± 1.89

Figure 2: Deep WL kernel Vs subgraph2vec Pre-training Dura-
tions.

Table 4: Clone Detection Dataset Statistics

Dataset # samples # clusters
nodes
(avg.)

edges
(avg.)

Clone260 [17] 260 100 9829.15 31026.30

Evaluation Metric. The experiment is repeated 5 times
and the average accuracy (along with std. dev.) is used
to determine the effectiveness of classification. Efficiency is
determined in terms of time consumed for learning subgraph
embeddings (aka pre-training duration).

6.1.1 Results and Discussion.
Accuracy. Table 3 lists the results of the experiments. It

is clear that SVMs with subgraph2vec’s embeddings achieve
better accuracy on 3 datasets (MUTAG, PTC and PRO-
TEINS) and comparable accuracy on the remaining 2 datasets
(NCI1 and NCI109).

Efficiency. Out of the methods compared, only Deep
WLYV kernel and subgraph2vec involve pre-training to com-
pute vectors of subgraphs. Evidently, pre-training helps
them capture latent similarities between the substructures in
graphs and thus aids them to outperform traditional graph
kernels. Therefore, it is important to study the cost of pre-
training. To this end, we report the pre-training durations
of these two methods in Fig. 2. Being similar in terms of
pre-training, both methods require very similar durations
to build the pre-trained vectors. However, for the datasets
under consideration, subgraph2vec requires lesser time than
Deep WLYV kernel as its radial skipgram involves slightly
lesser computations than the vanilla skipgram used in Deep
WLYV kernel.

However it is important to note that classification on these
benchmark datasets are much simpler than real-world clas-
sification tasks. In fact, by using trivial features such as
number of nodes in the graph, [13] achieved comparable ac-
curacies to the state-of-the-art graph kernels. It would be
incomplete if we evaluate subgraph2vec only on these bench-
mark datasets. Hence in the two subsequent experiments,
we involve real-world datasets on practical graph clustering
and classification tasks.

6.2 Clone Detection
Android apps are cloned across different markets by un-

scrupulous developers for reasons such as stealing adver-
tisement revenue [17]. Detecting and removing such cloned

Table 5: Clone Detection - Results

Kernel WL [6] Deep WLYV [7] subgraph2vec
Pre-training duration - 421.7 s 409.28 s

ARI 0.67 0.71 0.88

apps is an important task for app market curators that helps
maintaining quality of markets and app ecosystem. In this
experiment, we consider a set of Android apps and our goal
is to cluster them such that clone (semantically similar) apps
are grouped together. Hence, this amounts to unsupervised
code similarity detection.

Dataset. We acquired a dataset of 260 apps collected
from the authors of a recent clone detection work, 3D-CFG
[17]. We refer to this dataset as Clone260. All the apps
in Clone260 are manually analyzed and 100 clone sets (i.e.
ground truth clusters) are identified by the authors of [17].
The details on this dataset are furnished in Table 4. As it
could be seen from the table, this problem involves graphs
that are much larger/denser than the benchmark datasets
used in §6.1.

Our objective is to reverse engineer these apps, obtain
their bytecode and represent the same as graphs. Subse-
quently, we cluster similar graphs that represent cloned apps
together. To achieve this, we begin by representing reverse
engineered apps as Inter-procedural Control Flow Graphs
(ICFGs). Nodes of the ICFGs are labeled with Android
APIs that they access3. Subsequently, we use subgraph2vec
to learn the vector representations of subgraphs from these
ICFGs and build a deep kernel matrix (using eq. (2)). Fi-
nally, we use AP clustering algorithm [16] over the kernel
matrix to obtain clusters of similar ICFGs representing clone
apps.

Comparative Analysis. We compare subgraph2vec’s
accuracy on the clone detection task against the WL [6] and
Deep WLYV [7] kernels.

Evaluation Metric. A standard clustering evaluation
metric, namely, Adjusted Rand Index (ARI) is used to de-
termine clone detection accuracy. The ARI values lies in the
range [-1, 1]. A higher ARI means a higher correspondence
to ground-truth clone sets.

6.2.1 Results and Discussion.
Accuracy. The results of clone detection using the three

kernels under discussion are presented in Table 5. Following
observations are drawn from the table:

• subgraph2vec outperform WL and Deep WLYV kernels
by more than 21% and 17% , respectively. The difference
between using Deep WL kernel and subgraph2vec embed-
dings is more pronounced in the unsupervised learning
task.

• WL kernel perform poorly in clone detection task as it, by
design, fails to identify the subgraph similarities, which is
essential to precisely captures the latent program seman-
tics. On the other hand, Deep WLYV kernel performs rea-
sonable well as it captures similarities among subgraphs
of same degree. However, it fails to capture the complete
3For more details on app representations, we refer to [11].

Table 6: Malware Detection Dataset Statistics

Dataset Class Source # apps
nodes
(avg.)

edges
(avg.)

Train10K
Malware Drebin [18] 5600 9590.23 19377.96
Benign Google Play [2] 5000 20873.71 38081.24

Test10K
Malware Virus Share [1] 5000 13082.40 25661.93
Benign Google Play [2] 5000 27032.03 42855.41

semantics of the program due to its strong assumptions
(see §1.2). Whereas, subgraph2vec was able to precisely
capture subgraph similarities spanning across multiple de-
grees.

Efficiency. From Table 5, it can be seen that the pre-
training duration for subgraph2vec is slightly better than
Deep WLYV kernel. This observation is inline with the
pretraining durations of benchmark datasets. WL kernel
involves no pre-training and deep kernel computation and
hence much more efficient than the other two methods.

6.3 Malware Detection
Malware detection is a challenging task in the field of

cyber-security as the attackers continuously enhance the so-
phistication of malware to evade novel detection techniques.
In the case of Android platform, many existing works such
as [11], represent benign and malware apps as ICFGS and
cast malware detection as a graph classification problem.
Similar to clone detection, this task typically involves large
graphs as well.
Datasets. Drebin [18] provides a collection of 5,560 An-
droid malware apps collected from 2010 to 2012. We col-
lected 5000 benign top-selling apps from Google Play [2]
that were released around the same time and use them along
with the Drebin apps to train the malware detection model.
We refer to this dataset as Train10K . To evaluate the per-
formance of the model, we use a more recent set of 5000
malware samples (i.e., collected from 2010 to 2014) provided
by Virus share [1] and an equal number of benign apps from
Google Play that were released around the same time. We
refer to this dataset as Test10K . Hence, in total, our mal-
ware detection experiments involve 20,600 apps. The statis-
tics of this dataset is presented in Table 6.
Comparative Analysis and Evaluation Metrics. The
same type of comparative analysis and evaluation metrics
against WL and Deep WLYV kernels used in experiments
with benchmark datasets in §6.1 are used here as well.

6.3.1 Results & Discussion.
Accuracy. The results of malware detection using the

three kernels under discussion are presented in Table 7. Fol-
lowing observations are drawn from the table:

• SVM built using subgraph2vec embeddings outperform
WL and Deep WLYV kernels by more than 12% and 4%,
respectively. This improvement could be attributed to
subgraph2vec’s high quality embeddings learnt from apps’
ICFGs.

• On this classification task, both Deep WLYV and sub-
graph2vec outperform WL kernel by a significant margin
(unlike the experiments on benchmark datasets). Clearly,
this is due to the fact that the former methods capture
the latent subgraph similarities from ICFGs which helps
them learn semantically similar but syntactically different
malware features.

Efficiency. The inferences on pre-training efficiency dis-
cussed in §6.1 and §6.2 hold for this experiment as well.

Table 7: Malware Detection - Results

Classifier WL [6] Deep WLYV [7] subgraph2vec
Pre-training duration - 2631.17 s 2219.28 s

Accuracy 66.15 71.03 74.48

7. CONCLUSION
In this paper, we presented subgraph2vec, an unsuper-

vised representation learning technique to learn embedding
of rooted subgraphs that exist in large graphs. Through our
large-scale experiments involving benchmark and real-world
graph classification and clustering datasets, we demonstrate
that subgraph embeddings learnt by our approach could be
used in conjunction with classifiers such as CNNs, SVMs
and relational data clustering algorithms to achieve signifi-
cantly superior accuracies. On real-world application involv-
ing large graphs, subgraph2vec outperforms state-of-the-art
graph kernels significantly without compromising efficiency
of the overall performance. We make all the code and data
used within this work available at: https://sites.google.com/

site/subgraph2vec

8. REFERENCES
[1] Virus Share malware dataset: http://virusshare.com

[2] Google Play Store: https://play.google.com/store

[3] Vishwanathan, S. V. N., et al. ”Graph kernels.” The Journal of
Machine Learning Research 11 (2010): 1201-1242.

[4] Borgwardt, Karsten M., and Hans-Peter Kriegel. ”Shortest-path
kernels on graphs.” Data Mining, Fifth IEEE International
Conference on. IEEE, 2005.

[5] Shervashidze, Nino, et al. ”Efficient graphlet kernels for large
graph comparison.” International conference on artificial
intelligence and statistics. 2009.

[6] Shervashidze, Nino, et al. ”Weisfeiler-lehman graph kernels.” The
Journal of Machine Learning Research 12 (2011): 2539-2561.

[7] Yanardag, Pinar, & S. V. N. Vishwanathan. ”Deep graph
kernels.” Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM,
2015.

[8] Perozzi, Bryan, et al. ”Deepwalk: Online learning of social
representations.” Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data
mining. ACM, 2014.

[9] Niepert, Mathias, et al. ”Learning Convolutional Neural
Networks for Graphs.” Proceedings of the 33rd annual
international conference on machine learning. ACM, 2016.

[10] Grover, Aditya, & Leskovec, Jure. ”node2vec: Scalable Feature
Learning for Networks.” Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining. ACM, 2016.

[11] Narayanan, Annamalai, et al. ”Contextual Weisfeiler-Lehman
Graph Kernel For Malware Detection.” The 2016 International
Joint Conference on Neural Networks (IJCNN). IEEE, 2016.

[12] Horváth, Tamás, et al. Cyclic pattern kernels for predictive
graph mining. In Proceedings of the International Conference on
Knowledge Discovery and Data Mining (KDD), pages 158–167,
2004.

[13] Orlova, Yuliia, et al. ”Graph kernel benchmark data sets are
trivial!” ICML Workshop on Features and Structures FEATS
2015.

[14] Yanardag, Pinar, and S. V. N. Vishwanathan. ”A Structural
Smoothing Framework For Robust Graph Comparison.”
Advances in Neural Information Processing Systems. 2015.

[15] Mikolov, Tomas, et al. ”Efficient estimation of word
representations in vector space.” ICLR Workshop, 2013.

[16] Frey, Brendan J., and Delbert Dueck. ”Clustering by passing
messages between data points.” science 315.5814 (2007):
972-976.

[17] Chen, Kai, et al. ”Achieving accuracy and scalability
simultaneously in detecting application clones on android
markets.” Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014.

[18] Arp, Daniel, et al. ”Drebin: Effective and explainable detection
of android malware in your pocket.” Proceedings of the Annual
Symposium on Network and Distributed System Security
(NDSS). 2014.

https://sites.google.com/site/subgraph2vec
https://sites.google.com/site/subgraph2vec
http://virusshare.com
https://play.google.com/store

	Introduction
	Limitations of Existing Graph Kernels
	Existing Solution: Deep Graph Kernels
	Our Approach

	Related Work
	Problem statement
	Background: Language Models
	Skip Gram
	Negative Sampling

	Method: Learning sub-graph representations
	Overview
	Algorithm: subgraph2vec
	Extracting Rooted Subgraphs
	Radial Skipgram
	Negative Sampling
	Optimization

	Relation to Deep WL kernel
	Use cases

	Evaluation
	Classification on benchmark datasets
	Results and Discussion.

	Clone Detection
	Results and Discussion.

	Malware Detection
	Results & Discussion.

	Conclusion
	References

