
Within-network classification with label-independent
features and latent linkages

Christopher Alan Ryther
University of Copenhagen

Njalsgade 128-132
DK-2300 Copenhagen S

Denmark
ryther@di.ku.dk

Jakob Grue Simonsen
University of Copenhagen

Njalsgade 128-132
DK-2300 Copenhagen S

Denmark
simonsen@di.ku.dk

Andreas Koch
University of Copenhagen

Njalsgade 128-132
DK-2300 Copenhagen S

Denmark

ABSTRACT
We study within-network classification in sparsely labelled
networks, presenting two separate contributions: (A) a thor-
ough reproduction of a label-independent method for clas-
sification from recent research using statistical relational
learning (SRL) and semi-supervised learning (SSL), and (B)
a novel approach that utilizes node attribute information
to improve SRL and SSL classifier performance called At-
tribute Network Propagation (ANP). (B) uses a method of
linearly combining predictions with a procedure of trans-
forming node attributes into graph edges. For both contri-
butions we use two well-known real-world datasets: the real-
ity mining (RM) cell phone calls dataset and the Cora Por-
tal publication citations dataset (CORA), both formulated
as binary classification problems. We employ an existing
classification framework to run 10 individual SRL- and SSL-
based classifiers and evaluate performance using the area un-
der the ROC curve (AUC). Results from (A) confirms that
label-independent features can improve the performance of
some relational classifiers using iterative methods, but in
most cases, 26 out of 30, deteriorates performance on exist-
ing baselines. Results from (B) show that in 91 out of 100
cases it is possible to improve the performance of relational
classifiers with ANP.
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1. INTRODUCTION
Numerous problems concerning real-world phenomena in-

volve classification of nodes in networks, for instance:

• Anomaly detection: detecting intrusions in networks
based on network traffic. Identified intrusions make
up for a small fraction of all traffic in and out.

• Social Network Analysis: Categorising and modelling
user behaviour to be used in e.g. targeted advertising
or anti-terrorism operations. Typically contains large
amounts of unlabelled data and a small set of labelled
nodes.

• Cell phone fraud: Cell phone fraud is an example where
networks are often very sparsely labelled. We have a
handful of known fraudsters and legitimate users, but
the labels are unknown for the vast majority of users.

Other examples include classification of documents and web-
pages, protein interactions, and product recommendation
systems.

More specifically, the problem of (univariate) within-network
classification is the following: given a quadruple G(V,E,W,L)
where (V,E) is a (possibly directed) graph, a set of labels
W , and a subset L ⊆ V such that each node v ∈ L has one
or more known labels from W , find labels from W for each
of the nodes in V \L. Typically, the labels are sparse (i.e., L
is small compared to V , for large real-world networks, often
|L|/|V | ≤ 1%).

To tackle this problem, several modern approaches try to
augment the traditional node-centric approach (using only
information directly attributed to the individual nodes) with
relational data. Relational data differs from traditional data
in an important way: it violates the instance-independence
assumption. The core concept of relational methods is to
take advantage of these dependencies between instances.
Statistical relational learning (SRL) algorithms have been
shown to perform well on within-network classification prob-
lems [8], especially when two phenomena are present in the
data: homophily and/or co-citation regularity. Homophily
is the correlation between two connected nodes and their
individual labels. Co-citation regularity is related and holds
true when individuals have a tendency to connect to the
same objects in networks. Under these circumstances, the
label-propagation algorithms can assign labels throughout
the network, using edges between nodes as ”pathways”, to
successfully classify previously unlabelled nodes[7]. However
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because of the reliance on existing ground truths, relational
classifiers can degrade significantly when labels are sparse.

Recent research has proposed various methods to tackle
the label sparsity. Collective classification methods have
been shown to improve performance when labels are sparse[15,
16]. Other methods synthetically construct additional rela-
tional data, e.g. directly adding new edges to the graphs [4],
and other approaches employ more complex ways of combin-
ing various attributes and graph structural properties, called
latent graphs, like in [16, 10]. The idea of latent graph meth-
ods is to use existing (node) attributes in graph datasets in
order to construct new – so-called latent – features or graph
augmentations in the underlying graph; with the new fea-
tures, a supervised classifier can then predict class member-
ship for remaining unlabelled nodes [17, 16, 18].

For instance, Tang uses spectral clustering and modular-
ity maximization [17, 18] to generate a new set of latent
features for each node. Another example, the Latent Net-
work Propagation (LNP) algorithm by Shi et al. [16], trans-
forms the original graph by adding weighted edges, where
the weights are determined by factors such as attribute sim-
ilarity or node proximity in the original graph. The LNP al-
gorithm uses quadratic programming to add weight to edges
between nodes that are likely to share the same class label.
Such indirect edges are called ”latent linkages” and are al-
ready a part of the dataset, but need processing before be-
coming part of the graph structure.

A particularly simple version of this approach is simply to
generate new edges in the underlying graph; using the aug-
mented graph, with the new edges, a label propagation algo-
rithm makes its final class membership predictions. The idea
is that adding edges in this manner allows the ground truths
to propagate more effectively throughout the graph[11]. By
careful design and choice of latent edges, one can improve
classification reliability without the need for relational fea-
tures or more complex collective inference.

Our contribution: We extend the idea of using latent
linkages by creating new graphs with edges based on at-
tribute similarity, but running inference separately, on both
the original graph and the newly constructed latent attribute
graph, and finally combining predictions. We also experi-
ment with a simpler method, merging latent attribute fea-
tures directly into the original graph, to test whether the
added complexity of the first approach provides any im-
provement of classification.

1.1 Related Work
Traditional statistical relational techniques have made use

of label-dependent features. Lu and Getoor’s approach uses
logistic regression to model class membership using neigh-
boring nodes [6], Macskassy and Provost use weighted sums
of neighboring nodes’ labels [8] for label propagation, and
Neville and Jensen [13] use spectral clustering to group nodes
based on their local edge structure, which in turn are used
in learning classifiers.

Handling label-sparsity has been extensively studied: one
approach is to use an iterative procedure, Iterative Classi-
fication Algorithm (ICA), that feeds predictions back into

the network, which in turn are used to inform subsequent
inferences as done by Neville in [12]. ICA is reported as a
somewhat robust method which can be governed by a pro-
cess called Gibbs sampling [6, 5]. Collective classification
has also been proposed to overcome this problem [5, 15],
where they key idea is to combine supervision knowledge
about the graph with edge-structural information from the
graph. However, previous work has shown that even collec-
tive classification can suffer when subjected to very sparsely
labelled graphs [14].

Another approach aims to incorporate extra information,
e.g. attribute information, already present in the data into
the graph, to strengthen classification by providing more
edges for information to travel through. Gallagher et al.
propose a method where ”ghost” edges are added to the orig-
inal network to enable flow of information to hard-to-reach
unlabelled nodes. A similar design by Macskassy [8] adds ad-
ditional edges to the graph based on text-similarity between
nodes in the data. Shi et al. [16] transform the dataset into a
fully connected graph with latent edges, where edge weights
are maximized between training data with the same labels.
Tang and Liu [17] extract social latent dimensions, like affili-
ations, combined with discriminative learning to outperform
relational collective classification methods. Finally work by
Fleming [2] and McDowell et al. [11] compared latent edge
methods with state-of-the-art non-latent methods and con-
firmed that these types of algorithms can perform competi-
tively, but don’t necessarily perform consistently. Our pro-
posed method differs from previous approaches by keeping
latent edges in separate graphs instead of adding them to
the existing edges.

2. METHODOLOGY
To address the problem of label sparsity we propose two

methods: Attribute Network Propagation (ANP) and
MixedEdges (ME) that exploit latent linkages between
nodes based on attribute information already present in data.
For example, in a publication dataset like CORA, in addi-
tion to citations between articles we also have a list of key-
words present in each of the articles’ content. It can be
expected that nearly all of these keywords appear multiple
times across several papers. By adding edges between ar-
ticles, that share keywords, it is possible to derive latent
linkages in the dataset. The intuition behind this idea is
that with the added edges, the ground truths may be able
to propagate throughout the network more effectively. The
problem lies in selecting the most useful shared attributes to
transform into edges and in what way they are best utilized
by relational classifiers.

The two methods require generation of two types attribute-
augmented graphs, which we name after the dataset they are
based on, with added suffixes: -ANP or -ME. The -ANP
graphs are used by Attribute Network Propagation and the
-ME graphs are used by MixedEdges.

The -ANP graphs are created by first making a copy of
the original graph, without edges, from the original dataset.
The -ME graphs are based completely in the original graph,
nodes and edges. Then, for both -ANP and -ME graphs,
unweighted, undirected edges are added between nodes de-
pending on dataset-specific conditions, explained in detail



in Section 3.4. These conditions are derived from available
attribute information in the individual datasets.

For -ME sets all added edges are merged into the original
graph, but for the ANP algorithm, the two sets of graphs
(original and -ANP) remain separate. Informally, the nodes
of the -ANP graph are only connected based on their shared
attributes and the nodes of the -ME graph are connected
using both shared attributes and the original edges. As de-
scribed earlier in this section, the motivation behind choos-
ing these attributes is the assumption that they connect un-
labelled nodes to more labelled nodes than in the original
graph (ME) or that attributes edges alone can uncover more
meaningful paths for labels to propagate. The attribute
graphs -ANP are each based on multiple attributes, which al-
ternatively could be split into separate graphs, one for each
attribute. This was decided against due to very low edge
counts, (≤ 100 edges) for most attributes, which we expect
would lead to a decrease in performance of label-propagation
methods.

For the ME, node class membership is determined sim-
ply by using relational classifiers directly on the -ME graphs.
For ANP we first run the relational classifiers on both the
original and the -ANP graphs individually. After, ANP com-
bines the results from -ANP sets with the original graphs in
a fashion resembling how the individual classifiers are com-
bined in Section 3.2. The final prediction of each node’s
class is linear combination of results on the original dataset
and the shared attribute graph:

P (C) = w · P original
baseline (C) + (1− w) · P−ANP

baseline(C) (1)

Similar to equation (4) the weight w is calculated based on
the individual performance of the baseline over 10-fold cross-
validation on the original dataset and the -ANP dataset.
The area under the receiver operating characteristic ROC
curve (AUC) is calculated for each fold and then an average

AUC score for each dataset, AUCoriginal
baseline and AUC−ANP

baseline,
is obtained. The weighting parameter w is then defined as:

w =
AUCoriginal

baseline

AUCoriginal
baseline + AUC−ANP

baseline

(2)

The classification processes, ANP and ME on their respec-
tive graphs, -ANP and -ME, is shown in Figure 1.

3. EXPERIMENTAL DESIGN
In the following we first present details about the clas-

sifiers chosen and how label-independent features are used.
Following is a description of the real-world datasets, their
characteristics and how they are sampled. The last part
explains the experiment methodology in detail.

3.1 Label-Independent Features
Relational classifiers typically rely on the network edge-

structure to make use of label information from neighbour-
ing nodes. Another approach to creating relational features
is to use the graph-structural properties of the surround-
ing nodes, such as node degree or other graph-metrics. The
methods of creating relational features can be divided into
two categories, label-dependent features and label-independent
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Figure 1: Methods of classification using attribute edges.
On the left are is the ANP method using and on the right
is the ME method. The red node is an arbitrary node in
the graph, used to show the process of calculating its class
membership P (C). W is the pre-calculated weight using
10-fold cross-validation.

features.

An example using label-dependent features is the network-
only edge-based classifier (nLB) from Lu et al. [6]. It models
a node’s class based on the classes of neighbouring nodes.
A node’s neighbourhood is summarized by edge-weighted
counts of neighbouring nodes for each class. One disadvan-
tage to this approach is that when labels are sparse, the
relational features become useful since neighbouring nodes
will tend not to be labelled.

Label-independent (LI) features are calculated using only
the structural properties of the graph – labels and attributes
are not included. The hypothesis is there is a correlation
between the class label of a node and the network struc-
ture and that they can be used in cases where label-sparsity
impedes traditional relational features. However, results
have shown that label-independent features alone are not
enough to model class membership in the graph, therefore
additional information is needed. From the design of Gal-
lagher & Eliassi-Rad [3] we use a logistic regression clas-
sifier (logLI) that is trained on the following four label-
independent node features: number of neighbouring nodes
(node degree), number of incident edges, the betweenness
centrality coefficient, and the clustering coefficient. The
results using label-independent features are then combined
with predictions from baseline classifiers, described in detail
in Section 3.2.

3.2 Classifiers
The work is based on 10 individual classifiers, some of

which are hybrid methods combining results from multiple
algorithms. In order to use the label-independent features of
[3] we combine baseline classifiers with the logistic regression
model ”logLI”, trained on the LI features, from Section 3.1.
We use the implementations in NetKit, a modular toolkit
for classification in networked data by Masckassy et al.[8].
The full list of methods used is as follows:

• wvRN: The weighted-vote relational neighbor classi-



fier which is a non-learning classifier that uses label-
propagation and an average weighted sum of neigh-
boring nodes’ labels to determine class membership[8].
The wvRN classifier calculates the class membership
of a node i as:

P (Ci = c|N) =
1

Li

∑
j∈N

{
wi,j if Ci = c

0 otherwise
(3)

where N is set of neighbors for node i, wi,j is the num-
ber of edges between node i and j and Li is the number
edges connecting i to labelled nodes.

• wvRNICA: Uses the wvRN classifier with collective
classification as described in Section 3.2.1.

• wvRN+li: Is a combination of wvRN and the logLI
logistic regression classifier, described in Section 3.1.

• wvRNICA+li: combination of wvRNICA and logLI.

• nLB: The network-only edge-based classifier [6]. Uses
a logistic regression model to infer a node’s class. A
node’s summary is the number of neighboring nodes.
A node’s features are neighboring nodes’ summaries.

• nLBICA: Uses the nLB classifier with collective clas-
sification as described in Section 3.2.1.

• nLB+li: Is a combination of nLB and logLI, described
in Section 3.1.

• nLBICA+li: Is a combination of nLBICA and logLI,
described in Section 3.1.

• GRF: Is the semi-supervised Gaussian Random Field
classifier of Zhu et al.[19].

• GRF+li: Is a combination of GRF and logLI, described
in Section 3.1.

The methods which use logLI to improve predictions, cal-
culate the probability of each class as:

P (C) = w · Pbaseline(C) + (1− w) · PlogLI(C) (4)

where Pbaseline(C) is the class membership prediction of the
baseline, i.e. wvRN, nLB, GRF, and PlogLI(C) is the predic-
tion from logLI. The weight w is calculated once per dataset
and is used throughout all trials for that specific graph. The
calculation is based on the individual performance of the
baseline algorithm and logLI over 10-fold cross-validation
on the labelled nodes of the dataset. The area under the re-
ceiver operating characteristic (ROC) curve (AUC) is calcu-
lated for each fold and an average AUC score for each classi-
fier, AUCbaseline and AUClogLI , is obtained. The weighting
parameter w is then defined as:

w =
AUCbaseline

AUCbaseline + AUClogLI
(5)

thereby enabling utilization of label-independent features.
The intuition is that the label-independent features should
be used to a degree based on their expected performance.

3.2.1 Collective Classification
To perform collective classification (CC) we use the Iter-

ative Classification Algorithm (ICA) up to 1000 iterations
with both the nLB (nLBICA) and wvRN (wvRNICA). We
chose the Iterative Classification Algorithm over other meth-
ods, eg. Gibbs Sampling, to follow the methodology de-
scribed in [3]. For partially labelled datasets, there are two
approaches when using ICA: Perform collective classification
on the entire graph or perform collective classification only
on the core set of nodes. The latter is chosen because it is
has been shown to perform better[3].

3.3 Datasets
We employ data from two sources, chosen for their ap-

pearance in the research papers that inspired this article:
Reality Mining (RM) cell phone calls/texts1 and CORA Re-
search Paper Classification Dataset.2. CORA is a co-citation
dataset originally created by crawling the internet for ma-
chine learning articles [9]. Shi et al. use the dataset to per-
form multi-class classification using latent graphs [16]. The
publications themselves correspond to nodes in the graph
and citations correspond to edges between publications. Each
node is categorized into one of seven classes: Case Based,
Genetic Algorithms, Neural Networks, Probabilistic Meth-
ods, Reinforcement Learning, Rule Learning and Theory.
To pose a binary classification problem in the context of the
CORA dataset, we formulate the classifiers’ task as: identify
papers with the topic ”Probabilistic Methods”.

The CORA data is already cleaned and pre-processed by
[15]. Each publication in the dataset is represented by a la-
bel (machine learning topic) and a 0/1-valued word vector
indicating the absence/presence of the corresponding word
from the dictionary. The dictionary consists of 1433 unique
words and there are 7 topics as the set of labels.

The RM data originates from an experiment at a col-
lege campus where 100 mobile phones were tracked over
the course of 9 months [1]. Gallagher et al. used the col-
lected data to create a graph where each user is considered
a node and cell phone communications are considered edges
between users [3]. They used the graph to evaluate a clas-
sification method using label-independent features. For the
Reality Mining data our task is to identify whether or not a
person is a student. In the RM graph there exists a subset
of nodes, we call ”core” nodes, for which we known the true
class labels. For the rest of the RM nodes there exists no
true class labels.

With RM we remove from the dataset any participants
who do not communicate with other individuals. The re-
sulting graph is then sampled using breadth first search, as
done in [3], following edges based on communication. The
pseudocode for the procedure is show in algorithm 1. Nodes
are sampled using BFS starting from a core node. When
1000 nodes have been chosen, all edges present between
them are added to the sample. The breadth-first sampling
of the RM datasets in algorithm 1 is sensitive to which core
node is chosen as the seed. To overcome this we create

1http://realitycommons.media.mit.edu/realitymining.html
2http://linqs.umiacs.umd.edu/projects/projects/lbc/

http://realitycommons.media.mit.edu/realitymining.html
http://linqs.umiacs.umd.edu/projects/projects/lbc/


Algorithm 1: BFS Dataset Sampling

1 input : Graph Gi(Ei, Vi) , SampleSize
2 output : Graph Go(Eo, Vo)
3 begin
4 nodequeue ← getCoreNode (Vi )
5 Go(Eo, Vo) = ∅
6 while notEmpty(nodequeue) and |Vo| < SampleSize
7 vi ← pop(nodequeue)
8 Vo ← Vo ∪ vi
9 nodequeue← nodequeue ∪ (getNeighbors(vi) \ Vo)

10 i f |Vo| == SampleSize
11 break
12 end
13 foreach vo in Vo

14 Eo ← Eo ∪ allEdges(vo, Vo)
15 return Go(Eo, Vo)
16 end

Table 1: Dataset characteristics
Data Set |V | |E| |L| P (+)
RM Full 10.050 140.703 101 0.63
RM Samples 1K 16k-42k 18-92 0.04-1.00
RM-ANP Samples 1K 100-1800 18-92 0.04-1.00
RM-ME Samples 1K 16k-44k 18-92 0.04-1.00
CORA 2708 5429 2708 0.16
CORA-ANP 2708 220k 2708 0.16
CORA-ME 2708 225k 2708 0.16

|core nodes| = |L| number of datasets Gi
o(Ei

o, V
i
o ) for RM,

one for each possible core node seed. The order of RM seed
core nodes is unimportant since the experiments are run on
the resulting samples independently of each other.

Table 1 contains the following information about the orig-
inal and sampled datasets from RM as well as the CORA
co-citation network: |V | is the total number of nodes in
the dataset, |L| is the number of labelled nodes, |E| is the
number of edges and P (+) is the fraction of labelled nodes
which have a positive class label. Since the RM dataset is
sampled multiple times, we give intervals in which the indi-
vidual characteristics lie. The sets with suffix ’-ANP’ and ’-
ME’ are datasets based on latent attribute graphs described
in Section 2.

3.4 Experimental Methodology
Classifiers have access to the entire graph during both

training and evaluation, but in the experiments we hide a
proportion of the labelled nodes’ labels, so they can be used
for evaluation. The proportion of labelled nodes used for
training is varied from 0.1 to 0.9 in 0.2 size increments. For
each proportion we run 30 trials with each classifier. For
each trial we perform a class-stratified sampling containing
100× (proportion labeled)% nodes as a training set and the
remaining as a test set. The samples are chosen carefully so
that each node appears the same amount of test sets over
all trials. The train/test splits are the same for all classifiers
and across the -ME -ANP types as well. The experiment
setup described is repeated for each graph Gi

o sampled of
RM. The process is shown in algorithm 2.

In this work we extract latent linkages from two datasets:
a network of communications (RM) and an article citation
network (CORA). The attributes extracted from RM are
based on a questionnaire filled out by participants in the

Algorithm 2: RM -ANP -ME Experiment Setup

1 input : Graphs Gi
o(E

i
o, V

i
o )

2 output : AUC
3 begin
4 f o r graph Gi(Ei, Vi) in Gi

o(E
i
o, V

i
o )

5 f o r c in c l a s s i f i e r s
6 10− f o l d cross−va l i d a t i on on Gi us ing c
7 Calcu la te w from averaged AUC
8 f o r p in proport ion { 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , 0 . 9 }
9 f o r t r i a l in 30 t r i a l s :

10 t e s t s e t = ge tC l a s sS t r a t i f i e dSamp l i ng
11 t r a i n i n g s e t = G\ t e s t s e t
12 I n i t i a l i z e uniform p r i o r s
13 Run c l a s s i f i e r s us ing t r a i n i n g s e t l a b e l s
14 Use weight w to combine p r ed i c t i o n s
15 Calcu la te AUCs f o r t r i a l
16 end
17 Average AUC per r a t i o f o r a l l t r i a l s
18 end
19 end
20 return avg . AUC per r a t i o f o r a l l graphs Gi

o

original paper and in CORA we use article keywords. As
described in Section 2 we add edges depending on dataset-
specific conditions. The conditions are the same for both
-ANP and -ME graphs:

• RM: Two nodes are connected if, based on their an-
swers in the dataset’s questionnaire, they both con-
sider each other a friend or they spend any time in
the same physical vicinity. The intuition here is that
students tend to be friends, and spend time on cam-
pus, with other students and less so with people who
are not students.

• CORA: Two nodes are connected if they share any of
the first 1200 word-vector features, sorted by ascending
frequency, which are included in the dataset. Without
using a cutoff – thereby including all word-vectors –
resulted in a heavily connected graph (≈ 2.5M edges)
where inference was computationally infeasible. The
idea behind is that there exists a strong correlation
between articles’ use of globally infrequent words, and
the topic of the article. By connecting articles that use
the same words we hope to improve relational classi-
fiers.

We use the area under the ROC curve (AUC) to com-
pare the classifiers’ performance since the class distribution,
shown in table 1 under P (+), is skewed and the accuracy
measure alone therefore is not discriminative enough. For
the RM samples we compute average AUCs for every sam-
ple and finally report the harmonic mean over all samples’
AUCs.

4. RESULTS
Results for baselines and addition of label-indpendent fea-

tures are shown in Figures 2 and 3. Clearly, the base-
lines’ performance suffers when the ratio of labelled nodes is
around ≈ 0.1 on the original datasets. The lacklustre per-
formance of the baselines is most likely due to the sparse
labelling: the algorithms employed rely on label propaga-
tion, but without enough labels the original network may
not propagate correct labels effectively. In addition, the
baselines cannot, in their original setup, make use of latent
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Figure 2: RM – Baseline vs. label-independent method.
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Figure 3: CORA – Baseline vs. label-independent method.
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Figure 4: RM – Label-independent method vs. ANP method.
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Figure 5: CORA – Label-independent method vs. ANP method.
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Figure 6: RM – Baseline vs. ME method vs. ANP method.
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Figure 7: CORA – Baseline vs. ME method vs. ANP method.

features or attributes inherent in the data.

Figures 2 and 3 also show the effects of adding label-
independent features to classification methods. In general,
the label-independent features do not seem affect the AUCs
in an easily predictable way. For 26 out of the 30 different
ratios of labeled-to-unlabeled data, the performance of nLB,
wvRN and GRF decreases when using the LI method, and it
is apparent that label-sparsity has a strong negative impact
on both baselines and LI-methods. In addition, the logLI
logistic regression classifier, run by itself, shows poor perfor-
mance compared to all other baselines. This could explain
why there are so few examples where LI-methods outper-
form the baseline. The only cases where the LI approach
improved AUC are when collective classification (ICA) is
used for trials with ratio ≥ 0.3, but even then the improve-
ment of AUC is negligible, ≤ 1%, for the CORA dataset.

Results for our proposed method of Attribute Network
Propagation are shown in Figures 4 and 5. We compare
the results from the label-independent methods against the
ANP method described in Section 2. In 48 out of the 50
comparisons, our proposed method outperforms the label-
indpendent method; the benefit is most pronounced for lower
ratios of labeled-to-unlabed data (e.g., ratio ≤ 0.5 for the
RM dataset), A prominent example of this effect can be
seen for wvRN+ANP with ratio = 0.1 that outperforms
wvRN+li, even when the latter is given access to a much
higher proportion of labelled nodes ratio = 0.7.

Our results from Figure 4 and 5 show that using edges
based on shared attributes may improve the AUC when re-
lational classifiers are used on sparsely-labelled problems,

but they are not enough to confirm that the complexity of
our method of linearly combining predictions with ANP is
justified.

In the last two figures 6 and 7 we have results from ANP
compared with results of the less complex method ME. Its
easily apparent from the CORA results in Figure 7 that
simply adding edges based on shared attributes with ME
can lead to a decrease in AUC scores. For all ratios of
labelled-to-unlabelled data in the CORA dataset, the mixed
approach +ME performs worse than baseline algorithms on
the original dataset. In total, ANP performs better than ME
in 43 out of 50 cases. Running inference on separate graphs,
like with ANP, can in this case be an advantage. This phe-
nomenon may be due to how relational classifiers like wvRN
and nLB use neighboring nodes’ labels. The added edges
method of ME might cause more confusion when calculat-
ing the wvRN weighted sum in equation 3 by adding edges to
nodes which have opposite labels of the one being classified,
whereas with ANP the separation of edge types potentially
avoids this problem. However we have not been able to con-
firm this yet.

5. CONCLUSIONS AND FUTURE WORK
We have proposed a method for within-network classifica-

tion where attributes generate new graph edges, thus tak-
ing advantage of latent linkages otherwise not present. Our
method combines several ideas from recent research: (i) cre-
ate a parallel attribute-graph for each dataset where edges
only indicate shared node attributes, and (ii) run inference
separately on both graphs using simple relational classifiers,
and combine predictions after. We implement and repro-



duce results from a recent paper that proposed a label-
independent approach. In experiments on two disparate
real-world datasets, we have compared our methods to base-
lines and the label-independent method under varying label-
sparsity conditions. Our experiments showed that: (1) The
baseline methods perform poorly when very few labels are
available; (2) Label-independent features do not consistently
produce accurate predictions and can in some case worsen
the performance of the constituent baseline methods; (3)
Linearly combining predictions from multiple subgraphs can
be superior to simply adding edges to the original graph.

In our current model we do not assign weight or value
to individual attributes. However, we have observed ad hoc
that certain attributes predict classification more than oth-
ers others; thus we are currently investigating automatic
ways of attribute selection and recombination of predictions.
The attribute edges used by ANP and ME represent re-
lations based only on homophily, but future work should
incorporate co-citation regularity phenomena as well. Fur-
thermore ME could be modified to handle classes of edges,
instead of treating original and added edges the same. Fi-
nally, it remains to compare the performance of our method
to recent complex methods like [16, 18, 17], as well as multi-
relational network methods, on these types of binary classi-
fication problems.
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