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ABSTRACT
Analogous to genomic sequence alignment, biological network ali-
gnment (NA) aims to find regions of similarities between molec-
ular networks (rather than sequences) of different species. NA
can be either local (LNA) or global (GNA). LNA aims to identify
highly conserved common subnetworks, which are typically small,
while GNA aims to identify large common subnetworks, which are
typically suboptimally conserved. We recently showed that LNA
and GNA yield complementary results: LNA has high functional
but low topological alignment quality, while GNA has high topo-
logical but low functional alignment quality. Thus, we propose
IGLOO, a new approach that integrates GNA and LNA in hope
to reconcile the two. We evaluate IGLOO against state-of-the-art
LNA (NetworkBLAST, NetAligner, AlignNemo, and AlignMCL)
and GNA (GHOST, NETAL, GEDEVO, MAGNA++, WAVE, and
L-GRAAL) methods. We show that IGLOO allows for a trade-off
between topological and functional alignment quality better than
the existing LNA and GNA methods considered in our study.

1. INTRODUCTION
Large amounts of protein-protein interaction (PPI) data have be-

come available due to advancements of high throughput biotech-
nologies for data collection [2, 3]. In PPI networks, nodes are pro-
teins and edges correspond to physical interactions between the
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proteins. Network alignment (NA) of PPI data across species is
gaining importance. This is because NA aims to find a good node
mapping between PPI networks of different species that identifies
topologically and functionally similar (i.e., conserved) network re-
gions [9]. As such, NA can guide the transfer of biological knowl-
edge from well- to poorly-studied species between conserved net-
work regions. Consequently, NA is expected to lead to new discov-
eries in evolutionary biology. While we focus on NA in the domain
of computational biology, NA and thus our work has applications in
other domains, such as online social networks [18], pattern recog-
nition [6, 29], and language processing [1].

The challenge arises from the fact that NA is computationally
intractable, since the underlying subgraph isomorphism problem,
which determines if a network is an exact subgraph of another net-
work, is NP-complete. Therefore, efficient heuristic approaches are
needed to solve the NA problem approximately.

There exists two types of NA methods: local network alignment
(LNA) and global network alignment (GNA). LNA aims to find a
many-to-many node mapping (i.e., a node can be mapped to one
or more nodes from the other network) between networks of differ-
ent species that identifies small but highly conserved subnetworks
(Figure 1 (a)) [4, 11, 17, 20, 24]. On the other hand, GNA aims
to find a one-to-one (injective) node mapping (i.e., every node in
the smaller network is mapped to exactly one unique node in the
larger network) that maximizes overall similarity of the compared
networks, which often results in suboptimal conservation in local
network regions (Figure 1 (b)) [5, 7, 12–14, 19, 21–23, 25–28].

We recently showed that LNA and GNA produce complemen-
tary results, especially when gene or protein sequence information
is included on top of PPI network topological information during
the alignment construction process [15]. This is because LNA and
GNA are designed to “optimize” different types of alignment qual-
ity: LNA typically aims to “optimize” functional alignment quality,
while GNA aims to “optimize” topological alignment quality. In-
tuitively, an alignment is of good functional quality if the aligned
nodes perform similar biological functions, and it is of good topo-



(a) (b)

Figure 1: Illustration of (a) LNA and (b) GNA, taken from [15].

logical quality if large and dense network regions are aligned to
each other. It is very challenging to design an NA (LNA or GNA)
method that is of high topological as well as functional quality,
since the topological versus functional fit between aligned networks
conflict to a larger extent than previously realized [5, 15, 21].

Thus, we propose IGLOO, a new NA method that integrates al-
gorithmic components from both LNA and GNA in the hope of
reconciling the two NA types. That is, IGLOO aims to “inherit”
the high functional quality of LNA and the high topological quality
of GNA. IGLOO’s input are two networks and pairwise similar-
ity scores between their nodes, where the scores are computed via
some node cost function. This is the same as the input of existing
LNA and GNA methods. Then, IGLOO produces an alignment in
a similar way as GNA does, by first identifying a high-scoring seed
alignment and then expanding around the seed via an alignment
strategy. However, IGLOO differs from GNA as follows. While
GNA uses as its seed just a single pair of nodes from the compared
networks, IGLOO’s seed is a local alignment (or a part of it) of high
functional quality generated by an existing LNA method. Given the
seed alignment, IGLOO expands around it via an existing align-
ment strategy to increase topological quality of the alignment. The
difference between IGLOO and LNA is that IGLOO builds on top
of the given local alignment to improve its topological quality. The
difference between IGLOO and GNA is that IGLOO uses as the
seed a local alignment of high functional quality (or a part of it)
rather than just a single node pair, in order to improve functional
quality of GNA. As a result, IGLOO’s alignment is local in the
sense that it allows for many-to-many mapping between nodes of
the two compared networks, just as LNA does. Yet, its alignment
is global in the sense that it allows for mapping large conserved
subgraphs across the compared networks, just as GNA does.

In this paper, we comprehensively evaluate IGLOO against ex-
isting NA methods both topologically and functionally. We study
the following state-of-the-art LNA methods: NetworkBLAST [24],
NetAligner [20], AlignNemo [4], and AlignMCL [17]. We study
the following state-of-the-art GNA methods: GHOST [21], NE-
TAL [19], GEDEVO [12], MAGNA++ [28], WAVE [26], and L-
GRAAL [14]. We evaluate all methods on four sets of PPI networks
of varying interaction types and confidence levels, with respect to
proven measures of topological and functional alignment quality
(node coverage combined with edge conservation, and precision
and recall of protein function prediction combined into F-score,
respectively) [15]. We show that IGLOO produces a better trade-
off between topological and functional alignment quality than the
existing LNA and GNA methods. Namely, across all NA methods
and network pairs, IGLOO is comparable or superior to the existing
methods both functionally and topologically in 62% of all cases.

2. METHODS

2.1 IGLOO algorithm
IGLOO aligns two networks G1 = (V1,E1) and G2 = (V2,E2),

where Vi is the set of vertices in graph i, and Ei the set of edges in

graph i. IGLOO’s alignment is a list of aligned node pairs, where
a node can appear in multiple aligned pairs. When producing its
alignment, IGLOO aims to “inherit” the advantages of both LNA
and GNA, i.e., the high functional quality of LNA and the high
topological quality of GNA. IGLOO achieves this by using the out-
put of an LNA method (i.e., its local alignment that is of high func-
tional quality, or a part of this alignment) as the seed within a GNA
alignment strategy that will then expand the alignment around the
seed (as GNA typically does) to improve its topological quality.
Typical GNA uses as the seed only a single highly similar pair of
nodes from the compared networks. Instead, we vary the size of
the seed from the entire local alignment (i.e., 100% of it) on one
extreme (we expect this version of IGLOO to resemble LNA the
most) to only a single node pair (i.e., 0% of the local alignment)
as the other extreme (we expect this version of IGLOO to resem-
ble GNA the most), with several in-between-the-extremes versions
of IGLOO that use as the seed a certain portion (between 100%
and 0%) of the local alignment (which we expect will balance be-
tween high functional quality of LNA and high biological quality
of GNA). To achieve this, IGLOO requires four algorithmic steps:

1. Use a state-of-the-art LNA approach to find a local align-
ment, i.e., a set of small conserved subnetworks of high func-
tional quality, which becomes the initial alignment.

2. Compute a new node cost function (as described below) that
will be used in the following steps to modify (decrease or
increase) the current alignment.

3. Iteratively decrease the size of the current alignment by greed-
ily removing (as explained below) the aligned node pair with
the lowest similarity score one at a time, until the user-specifi-
ed alignment size is reached. This step is used to balance the
contributions of the LNA and the GNA during the alignment
process. Namely, the fewer node pairs are removed in step
3 from the local alignment resulting from step 1 (i.e., the
larger the seed size, per our discussion above), the more sim-
ilar IGLOO is to LNA (this corresponds to the first extreme
discussed above); the more node pairs are removed (i.e., the
smaller the seed size), the more similar IGLOO is to GNA
(this corresponds to the second extreme discussed above).
The resulting alignment becomes the new alignment.

4. Greedily expand (as explained below) around the current align-
ment by iteratively adding to the alignment node pairs with
the highest similarity that have remained unaligned up to this
point, until no more node pairs can be added, meaning that
each node in at least one of the two compared networks has
been aligned to some node(s). This step is performed in or-
der to find large conserved subnetworks of high topological
quality, just as GNA does. The resulting alignment becomes
the final alignment and the aligned node pairs (i.e., a many-
to-many node mapping) are returned as IGLOO’s output.

Next, we detail each step.

Step 1: Searching for small conserved subnetworks of high
functional quality

Since IGLOO must first generate a local alignment that has high
functional quality, IGLOO begins by using an LNA method. In this
step, unless otherwise noted, all default parameters (including node
cost function) of the given existing LNA method are used. In order
to evaluate the robustness of IGLOO to the choice of LNA methods,
we use within IGLOO each of AlignMCL and AlignNemo, two of
the best LNA methods [15]. These methods rely on parameter α ,
which balances between the amount of topological versus sequence
information used in node cost function during the alignment con-
struction process. For each method, we use the α value that results



in the highest functional quality of its local alignment, when vary-
ing α from 0 (corresponding to using only sequence information
to compute node cost function) to 1 (corresponding to using only
topological information to compute node cost function) in incre-
ments of 0.1 [15]. For IGLOO under AlignMCL, this results in
α = 0.1 for any network pair. For IGLOO under AlignNemo, this
results in α = 0 for any network pair except yeast-worm (Y2H1)
and yeast-fly (Y2H1), for which the best value of α is 0.1. Note
that we describe the network data that we use in Section 2.2.

Step 2: Computing node cost function to modify (decrease or
increase) the current alignment in steps 3 and 4

We compute node cost function for steps 3 and 4 in the same
way as NETAL [19] does, by combining node topological similar-
ity (denoted as T S), node sequence similarity (denoted as SS), and
interaction score (denoted as IS): S = β (α · T S+(1−α) · SS)+
(1−β ) · IS. The first measure (i.e., T S) quantifies topological sim-
ilarities between nodes from different networks using graphlet de-
gree vector similarity (GDV-similarity) [15, 16]. The second mea-
sure (i.e., SS) quantifies sequence similarities between nodes from
different networks using normalized E-value [15]. The third mea-
sure (i.e., IS) quantifies the similarity between two nodes as the
number of edges that would be conserved if the two nodes were to
be added next to the current alignment. The reason that we mimic
NETAL’s node cost function is that compared to the existing GNA
methods, NETAL results in the highest topological alignment qual-
ity, especially when using only topological information in node cost
function (corresponding to α = 1) [15]. Note that NETAL’s orig-
inal implementation can use only topological information in node
cost function. For the purpose of IGLOO’s development, we re-
implement NETAL’s node cost function to also allow for using se-
quence similarity in node cost function. Consequently, in terms of
the α parameter, we tested both α = 0 and α = 1, and the results
are similar. Hence, we simply choose α = 1 as was done in the
original NETAL study. In terms of the β parameter above, we use
β = 0.001 because IGLOO relies on NETAL’s node cost function
and this value was suggested in the NETAL study [19].

Unlike SS and T S, which do not get updated throughout steps 3
and 4, IS needs to be updated in each iteration of each of these steps
as IGLOO shrinks or expands the current alignment. When ex-
panding the current alignment, IGLOO mimics NETAL to update
IS. When shrinking the current alignment, IGLOO cannot mimic
NETAL, since NETAL only expands but never shrinks the current
alignment. Thus, we first discuss NETAL’s strategy of updating IS
and then comment on how IGLOO generalizes this strategy to up-
date IS when both expanding and shrinking the current alignment.

For a node pair i ∈ V1 and j ∈ V2, NETAL computes its inter-
action score, IS(i, j), as follows. Under the assumption that nodes
i and j are to be aligned next and thus added to the current align-
ment, NETAL computes: 1) di j, the number of conserved edges
that are incident to the node pair, 2) pi, the expected value of the
number of candidate edges (i.e., edges that are not aligned) that are
incident to i and that will be conserved, and 3) p j, the expected
value of the number of candidate edges that are incident to j and
that will be conserved. The three values are computed as follows.
Let N(x) be the neighbors of a node x. Initially, di j is set to zero
since no conserved edges have formed yet, and all edges that are
incident to i and j are candidate edges. Based on NETAL study,
NETAL assumes that all candidate edges that are incident to a node
x will be chosen to be conserved with equal probability, and the
probability that each candidate edge (x,x′) where x′ ∈ N(x) will be
conserved if x is aligned to a random node is approximately 1

|N(x′)| .

Let i′ and j′ be two nodes from N(i) and N( j), respectively. Since
NETAL’s assumption is that i and j are aligned, the probability that
edge (i, i′) will be conserved is 1

|N(i′)| . Similarly, the probability

that edge ( j, j′) will be conserved is 1
|N( j′)| . Therefore, pi can be

measured by summing up the probabilities of all edges that are inci-
dent to i and that will be conserved: pi = ∑i′∈N(i)

1
|N(i′)| . Similarly,

p j = ∑ j′∈N( j)
1

|N( j′)| . After computing di j, pi, and p j, IS(i, j) is
computed using Equation 1. Since pi and p j are not greater than
|N(i)| and |N( j)|, respectively, IS(i, j) is normalized by the max-
imum node degree over all nodes from any of the two compared
networks (i.e., by maxk∈V1∪V2{|N(k)|}),

IS(i, j) =
min{∑i′∈N(i)

1
|N(i′)| ,∑ j′∈N( j)

1
|N( j′)|}

maxk∈V1∪V2{|N(k)|}
. (1)

After IS(i, j) is computed for the first time, NETAL updates its
value during each iteration of the alignment process from steps 3
and 4. Whenever two nodes x ∈V1 and y ∈V2 are aligned, NETAL
updates IS(i, j) as follows: 1) if x ∈ N(i) and y ∈ N( j), increase
di j by one; otherwise, do not update di j; 2) if x is not aligned to
any node from V2 and x ∈ N(i), decrease pi by 1

|N(x)| ; otherwise
do not update pi; 3) if y is not aligned to any node from V1 and
y ∈ N( j), decrease p j by 1

|N(y)| ; otherwise, do not update p j; and
4) recompute IS(I, j) using Equation 2. For more details on how
NETAL computes and updates IS, see [19].

IS(i, j) =
di j +min{pi, p j}

maxk∈V1∪V2{|N(k)|}
(2)

Now, we go back to explaining how IGLOO computes and up-
dates IS. When expanding the current alignment (steps 4) by adding
a node pair to it, IGLOO initially computes IS based on the current
alignment using Equation 1 and updates IS just as NETAL does.
When shrinking the current alignment (step 3) by removing a node
pair x∈V1 and y∈V2 from it, IGLOO performs the following mod-
ifications: 1) if x ∈ N(i) and y ∈ N( j), decrease di j by one; other-
wise, do not update di j; 2) if x is aligned to y only and x ∈ N(i),
increase pi by 1

|N(x)| ; otherwise do not update pi; 3) if y is aligned

to x only and y ∈ N( j), increase p j by 1
|N(y)| ; otherwise do not

update p j; and 4) recompute IS(i, j) using Equation 2.

Step 3: Decreasing the size of the current alignment to balance
between LNA and GNA

IGLOO shrinks the current alignment greedily. Specifically, in
each iteration, the node pair with the lowest similarity is removed
from the current alignment, and the IS is updated. The removal pro-
cess terminates when the number of remaining aligned node pairs
in the current alignment equals the user-specified alignment size
t. We test five values of t to study its effect on alignment qual-
ity: 100%, 75%, 50%, 25%, and 0%. These five values of t will
produce five alignments that IGLOO (i.e., its five versions) that
will be expanded on in step 4. The five versions of IGLOO are:
IGLOO 4, IGLOO 3, IGLOO 2, IGLOO 1 and IGLOO 0, respec-
tively. IGLOO 4 takes the exact alignment produced by the given
LNA method as the current alignment and expands around it, while
IGLOO 0 does not use any of the local alignment and aligns the
two networks from scratch, just as GNA does (Step 4). Therefore,
we expect IGLOO 4 to be the most similar to LNA and IGLOO 0
the be the most similar to GNA, while the remaining versions of
IGLOO will balance between high functional quality of LNA and
high topological quality of GNA.



Step 4: Searching for large conserved subnetworks of high topo-
logical quality

IGLOO expands around the current alignment greedily to find
large conserved subnetworks of high topological quality, similar to
how GNA works. In each iteration, IGLOO adds to the current
alignment the node pair from different networks that has remained
unaligned up to that point and that has the highest node similarity
score, and then IGLOO updates node cost function scores accord-
ingly. Each of the nodes that are aligned cannot be used again in
this expansion process. The expansion process stops when no more
node pairs can be added to the alignment. IGLOO returns the latest
current alignment as its final alignment. Note that any expansion
(i.e., alignment) strategy [8, 10]) can be used in IGLOO’s step 4,
including our recent alignment strategy called WAVE [26]. We ver-
ified that using WAVE yields qualitatively identical results as does
using the above described expansion strategy. Consequently, for
brevity and simplicity, we leave out discussion of WAVE’s results
and instead focus on results of the above described strategy.

2.2 Data
We evaluate each NA (LNA, GNA, and IGLOO) method on four

real-world PPI network sets from our recent study [15] contain-
ing interactions of different types and confidence levels: 1) only
yeast two-hybrid physical PPIs, where each PPI is supported by
at least one publication (Y2H1), 2) only yeast two-hybrid physi-
cal PPIs, where each PPI is supported by at least two publications
(Y2H2), 3) all physical PPIs, where each PPI is supported by at
least one publication (PHY1), and 4) all physical PPIs, where each
PPI is supported by at least two publications (PHY2). Each network
set contains four PPI networks of different species: S. cerevisiae
(yeast), D. melanogaster (fly), C. elegans (worm), and H. sapiens
(human). For each network, we use its largest connected compo-
nent, just as in [15]. We do not include those pairs involving Y2H2
and PHY2 networks of worm and yeast, since these four networks
are extremely small and sparse, with random-like topology.

AlignNemo is able to produce an alignment for six of the afore-
mentioned network pairs (it cannot run for the other network pairs,
for reasons discussed in [15]). Thus, since IGLOO is partly based
on AlignNemo, in order to fairly evaluate IGLOO against the exist-
ing NA methods, we focus on the six network pairs that AlignNemo
is able to run on. The network pairs are: yeast-fly (Y2H1), yeast-
worm (Y2H1), worm-fly (Y2H1), yeast-human (Y2H2), yeast-worm
(PHY1), and fly-worm (PHY1). The size of each network is shown
in Table 1. For more details on each data set, see [15].

Table 1: Sizes of networks used in this study.
Network # of nodes # of edges
yeast (Y2H1) 3,427 11,348
fly (Y2H1) 7,094 23,356
worm (Y2H1) 2,871 5,194
yeast (Y2H2) 744 966
human (Y2H2) 1,191 1,567
yeast (PHY1) 6,168 82,368
fly (PHY1) 7,885 36,271
worm (PHY1) 3,003 5,501

2.3 Alignment quality measures
We evaluate each NA (LNA, GNA, and IGLOO) method in terms

of both topological and functional alignment quality. We focus on
node coverage (NCV) combined with the generalized symmetric

substructure score (GS3) measure of edge conservation as a mea-
sure of topological alignment quality, where the combined topolog-
ical measure is denoted as NCV-GS3. Also, we focus on precision
(P-FP) and recall (R-PF) of protein function prediction combined
into F-score as a measure of functional alignment quality, where
the combined functional measure is denoted as F-PF. We use these
measures because they are already proven evaluation criteria for
both LNA and GNA that can compare the two fairly [15].

Intuitively, NCV-GS3 quantifies the size of the given alignment
in terms of the amount of both conserved nodes (NCV) and con-
served edges (GS3). Let f be an alignment between two graphs
G1(V1,E1) and G2(V2,E2), and let G′1(V

′
1,E
′
1) and G′2(V

′
2,E
′
2) be

subgraphs of G1 and G2 that are induced on node sets f (V2) and
f (V1). NCV is the percentage of nodes from G1 and G2 that are
also in G′1 and G′2 (i.e., |V

′
1 |+|V ′2 |
|V1|+|V2| ). GS3 is the percentage of con-

served edges out of the total of both conserved and non-conserved
edges. NCV-GS3 is the geometric mean of NCV and GS3.

Before we define F-PF, we note that this measure is computed
with respect to Gene Ontology (GO) gene-function annotation data
[13]. We only use gene-GO term annotations that have been ob-
tained experimentally. That is, we discard those functional anno-
tations that have been obtained e.g., computationally via sequence
alignment. We do this because the NA methods that we evaluate
already use sequence information within node cost function when
producing their alignments, and thus evaluating such alignments
with respect to sequence-based functional annotations would lead
to a circular argument, which is undesirable [13].

Now, we go back to defining F-PF. This measure quantifies how
similar the aligned nodes are in terms of their functions [15]. To
compute F-PF, we first hide proteins’ true GO terms and then pre-
dict the proteins’ GO terms based on GO terms of their aligned
counterpart(s) [15]. Next we compute the P-PF and R-PF of the
resulting predicted GO terms with respect to the true GO terms.
Finally, F-PF is the harmonic mean of P-PF and R-PF.

For more details on the NCV-GS3 and F-PF measures, see [15].

2.4 Parameters of the existing methods
Different α values (i.e., where parameter α balances between

the amount of topological versus sequence information in the given
method’s node cost function) might result in different alignment
quality. Thus, for each existing NA method and each network pair,
we choose the α value that results in the best trade-off between
topological and functional quality when varying α from 0 to 1
in increments of 0.1 [15]. We measure the trade-off between the
two quality types (i.e., between NCV-GS3 and F-PF) by computing
their geometric mean. We report results only for the α value that
results in the maximum geometric mean.

3. RESULTS AND DISCUSSION
We evaluate the considered NA methods in terms of both align-

ment quality (Section 3.1) and running time (Section 3.2).

3.1 Comparison in terms of alignment quality
Setup. Here, we show results for IGLOO when considering the to-
tal of 10 IGLOO versions: IGLOO 0–4 when each of AlignMCL
and AlignNemo are used in step 1 of the IGLOO algorithm. When
we compare the different methods (the existing LNA and GNA
methods, and the 10 IGLOO versions), for a given network pair
and a given existing NA method, we obtain results for four possible
cases: 1) IGLOO is comparable or superior both topologically and
functionally, meaning that at least one version of IGLOO is com-
parable or superior both topologically and functionally; 2) IGLOO



is comparable or superior only functionally but not topologically,
meaning that no version of IGLOO is comparable or superior both
topologically and functionally, and at least one version of IGLOO is
comparable or superior only functionally but not topologically; 3)
IGLOO is comparable or superior only topologically but not func-
tionally, meaning that none of the versions of IGLOO are compara-
ble or superior both topologically and functionally, and at least one
version of IGLOO is comparable or superior only topologically but
not functionally; and 4) IGLOO is inferior both topologically and
functionally, meaning that all versions of IGLOO are inferior. Note
that cases 2 and 3 could occur at the same time, since it is possible
that some version of IGLOO is comparable or superior only topo-
logically but not functionally, while another version is comparable
or superior only functionally but not topologically. However, none
of cases 1, 2, and 4, or cases 1, 3, and 4, can occur at the same time.

Overall comparison. Our findings are as follows. Overall, IGLOO
is comparable or superior to the existing NA methods considered in
our study (Figures 2 (a) and 3). Specifically, when considering all
combinations of the existing NA methods and network pairs, in
62% of them, IGLOO is comparable or superior both topologically
and functionally (case 1). In 38% of the combinations, IGLOO
is comparable or superior only functionally but not topologically
(case 2). In 25% of the combinations, IGLOO is comparable or su-
perior only topologically but not functionally (case 3). IGLOO is
never inferior both topologically and functionally (case 4). Note
that 25% of the combinations are in the overlap of cases 2 and
3. When considering two given methods to be comparable if their
alignment quality scores are within 1% or 5% of each other, IGLOO
is even more comparable or superior both topologically and func-
tionally, in up to 78% of all cases (Figure 2 (a)). That is, often,
when the existing methods are superior to IGLOO, their superiority
is only within 1% or 5% of IGLOO alignment quality. Equivalent
results when considering only the five AlignMCL-based IGLOO
versions and only the five AlignNemo-based IGLOO versions (as
opposed to all 10 versions of IGLOO) are shown in Supplementary
Figures S1 and S2, respectively.

Importantly, for case 2, whenever IGLOO is comparable or su-
perior to the existing methods functionally but not topologically, or
in other words whenever the existing methods outperform IGLOO
topologically but not functionally, the topological superiority of the
existing methods (in terms of NCV-GS3) comes only from GS3 but
not NCV (Figure 4 (a)). Similarly, for case 3, whenever IGLOO
is comparable or superior to the existing methods topologically but
not functionally, or in other words whenever the existing methods
outperform IGLOO functionally but not topologically, the func-
tional superiority of the existing methods (in terms of F-PF) comes
only from recall (R-PF) but not precision (P-PF) in 20-33.4% of
all cases (Figure 4 (b)); for biological scientists, precision of pro-
tein function prediction (making as accurate predictions as possi-
ble, even if few of them) is likely more important than R-PF (mak-
ing as many predictions as possible, even if less accurate).

Next, we zoom into these results to compare IGLOO to each of
LNA and GNA individually (Figure 2 (b) and (c), respectively).

Comparison to LNA. The comparison results against LNA are as
follows. IGLOO is comparable or superior to all of the existing
LNA methods considered in our study both topologically and func-
tionally for all network pairs. When measuring the within 1% or
within 5% accuracy (as described above), IGLOO remains com-
parable or superior both topologically and functionally. That is,
IGLOO is at least 5% better than any of the existing LNA methods,
both functionally and topologically. Thus, since IGLOO improves
both topological and functional alignment quality of the existing

(a) LNA and GNA combined

(b) LNA

(c) GNA

Figure 2: Overall comparison of IGLOO (the best of its ver-
sions) and (a) LNA and GNA combined, (b) LNA, and (c) GNA,
when considering 10 different IGLOO versions: IGLOO 0-4
for each of AlignMCL and AlignNemo used in step 1 of the al-
gorithm. The comparison is shown for three different method
“superiority levels” (denoted as p): 0%, 1%, and 5%. By a
“superiority level”, we mean the following. Given two methods
A and B with alignment quality scores x and y, respectively, if
|x−y|

max(x,y) ≤ p, we say that A and B are comparable; otherwise, if
x is greater/less than y, we say that A is superior/inferior to B.
For a given network pair and a given existing method, only the
best version of IGLOO is considered. The four cases are: 1)
IGLOO is comparable or superior both topologically and func-
tionally; 2) IGLOO is comparable or superior only function-
ally but not topologically; 3) IGLOO is comparable or superior
only topologically but not functionally; and 4) IGLOO is infe-
rior both topologically and functionally. The y-axes indicate the
percentage of the combinations of the existing NA methods and
network pairs for which the given case occurs.



LNA methods, at the minimum, IGLOO’s contribution is the new
best LNA method.

Comparison to GNA. The comparison results against GNA are as
follows. When considering all combinations of the existing GNA
methods and network pairs, in 36% of them, IGLOO is comparable
or superior both topologically and functionally (case 1). In 64%
of the combinations, IGLOO is comparable or superior only func-
tionally but not topologically (case 2). In 42% of the combinations,
IGLOO is comparable or superior only topologically but not func-
tionally (case 3). IGLOO is never inferior both topologically and
functionally (case 4). Note that 42% of the combinations are in the
overlap of cases 2 and 3. When measuring the within 1% or within
5% accuracy, similar trends hold, except that now IGLOO is com-
parable or superior in up to 64% of all cases both topologically and
functionally. That is, often, when the existing GNA methods are
comparable or superior to IGLOO, their superiority is only within
1% or 5% of IGLOO’s alignment quality.

Further, over all combinations of the existing GNA methods and
network pairs in which IGLOO improves functional quality of the
GNA methods but lowers their topological quality (case 2), the av-
erage improvement in functional quality is 331% (standard devia-
tion of 276%), while the average decrease in topological alignment
quality is only 40% (standard deviation of 11%). Thus, IGLOO
gains more than it loses. Over all combinations of the existing
GNA methods and network pairs in which IGLOO improves topo-
logical quality of the GNA methods but lowers their functional
quality (case 3), the average improvement in topological quality
is 18% (standard deviation of 12%), while the average decrease in
functional alignment quality is 73% (standard deviation of 31%).
Therefore, IGLOO overall beats the existing GNA methods for case
2, while the existing GNA methods beat IGLOO for case 3.

Statistical significance of IGLOO’s improvement. Next, we sum-
marize the performance of each method over all analyzed network
pairs (Figure 3) and compute the statistical significance of the im-
provement of one method over another (where we use the paired
t-test to compare alignment scores of two methods of interest over
all network pairs). Based on these results, we comment on which
version of IGLOO (out of IGLOO 0-4) is the best.

For LNA, there is a version of IGLOO, in particular IGLOO 4
under AlignNemo, which is superior in a statistically significantly
manner (p-value < 0.05) to each considered LNA method in terms
of both topological and functional alignment quality (Figure 3).
In addition, IGLOO 3-4 under AlignMCL and IGLOO 2-4 under
AlignNemo are statistically significantly superior to two of the four
considered LNA methods (NetAligner and NetworkBlast).

For GNA, no version of IGLOO is superior in a statistically sig-
nificantly manner to any existing GNA method in terms of both
topological and functional alignment quality. However, importantly:
1) IGLOO is still superior to the existing GNA methods in many
cases, as shown in Figure 2, it is just that its superiority is not
statistically significant, and 2) none of the existing GNA methods
is statistically significantly superior to any version of IGLOO in
terms of both topological and functional alignment quality. Clearly,
each of IGLOO and an existing GNA method is at best statistically
significantly superior either functionally or topologically, but not
both. So, for GNA, we split the discussion into two cases: 1) when
IGLOO is statistically significantly better than the given existing
GNA method in terms of only functional alignment quality, and 2)
when IGLOO is statistically significantly better than the given ex-
isting GNA method in terms of only topological alignment quality.

For the first case above (IGLOO is statistically significantly su-
perior to GNA only functionally), IGLOO 3-4 under any of Align-

(a)

(b)

Figure 3: Topological (NCV-GS3; x-axis) and functional (F-PF;
y-axis) alignment quality for the existing LNA methods (trian-
gles), existing GNA methods (stars), and IGLOO versions (cir-
cles), averaged over all aligned network pairs, when consider-
ing (a) AlignMCL and (b) AlignNemo in the first step of the
IGLOO algorithm. For detailed results for each network pair
individually, see Supplementary Figures S3 and S4.

(a) (b)

Figure 4: Reasons behind the superiority of the existing meth-
ods over IGLOO in (a) case 2 and (b) case 3. For case 2 (when-
ever the existing methods outperform IGLOO topologically but
not functionally), we show the percentage of all instances in
which the topological superiority of the existing methods is with
respect to NCV only, GS3 only, or both. Similarly, for case 3
(whenever the existing methods outperform IGLOO function-
ally but not topologically), we show the percentage of all in-
stances in which the functional superiority of the existing meth-
ods is with respect to P-PF only, R-PF only, or both.

MCL or AlignNemo are statistically significantly superior to each
considered GNA method. In addition, IGLOO 1-2 under Align-
Nemo are statistically significantly superior to each considered GNA
method except L-GRAAL. The remaining versions out of IGLOO
1-4 under either AlignMCL or AlignNemo are statistically signifi-
cantly superior to at least one of the considered GNA methods. Of
all IGLOO versions, only IGLOO 0 under any of AlignMCL and
AlignNemo is never statistically significantly superior to any of the



existing GNA methods in terms of functional alignment quality.
For the second case above (IGLOO is statistically significantly

superior to GNA only topologically), no version of IGLOO beats
NETAL or MAGNA++. This is not surprising, because these are
among the best GNA methods in terms of topological alignment
quality [15]. For the remaining four GNA methods, IGLOO 0 un-
der AlignMCL is statistically significantly superior to each of the
four methods. Also, IGLOO 0 under AlignNemo is statistically
significantly superior to each of the four methods except GEDEVO.
Finally, IGLOO 1 under AlignNemo is statistically significantly su-
perior to L-GRAAL. No other version of IGLOO is statistically
significantly superior to any GNA method topologically.

In summary, in terms of functional alignment quality, IGLOO 4
is the strongest compared to both LNA and GNA, and it is followed
by IGLOO 3 and IGLOO 2. In terms of topological alignment qual-
ity, IGLOO 4 is the strongest compared to LNA, and it is followed
by IGLOO 3 and IGLOO 2, while IGLOO 0 is the strongest com-
pared to GNA, and it is followed by IGLOO 1.

Robustness to the choice of LNA method in step 1 of the IGLOO
algorithm. The results in terms of superiority of IGLOO over the
existing LNA and GNA methods are qualitatively the same inde-
pendent of whether AlignMCL or AlignNemo is used as IGLOO’s
input (Supplementary Figures S1 and S2). Hence, qualitatively,
IGLOO is robust to the choice of LNA method. Yet, we note that
using AlignMCL results in slightly better topological alignment
quality compared to using AlignNemo, while using AlignNemo
results in slightly better functional alignment quality compared to
using AlignMCL (Figure 3 and Supplementary Figures S3-S4).

3.2 Comparison in terms of running time
Here, we compare IGLOO when using AlignMCL in the first

step of the algorithm against each of the existing LNA and GNA
methods in terms of computational complexity. We run all NA
methods on the same Linux machine with 64 CPU cores (AMD
Opteron (tm) Processor 6378) and 512 GB of RAM. All meth-
ods can run on a single core with the exception of GHOST, which
can run on at least two cores. Three of the existing GNA methods
(GHOST, GEDEVO, and MAGNA++) can run on multiple cores.
The maximum number of cores that the parallelizable methods can
use is bounded by the number of cores that our machine has. We
analyze the methods’ entire running times, which encompass both
computing node similarities and constructing alignments. Also, we
measure only running times needed to construct alignments, ignor-
ing the time needed to precompute node similarities. We show the
results for worm and yeast PPI networks of Y2H1 type, since both
networks are relatively small, and even the slowest NA method
could finish aligning the two networks on a single core within a
reasonable time (within one day). For any other network pair, it
could take much longer time for the slowest method to finish.

Regarding the entire running times, the findings are as follows
(Figure 5 (a)). Since IGLOO uses AlignMCL and NETAL within
its algorithm, it is not surprising that IGLOO is (slightly) slower
than these two methods. Of the remaining methods, IGLOO is
faster than two methods (i.e., serial GEDEVO and serial MAGNA++),
it is relatively comparable to three methods (i.e., AlignNemo, serial
GHOST, and WAVE), and it is slower than six methods (i.e., Net-
workBLAST, NetAligner, parallelized GHOST, parallelized GE-
DEVO, parallelized MAGNA++, and L-GRAAL).

Regarding only the times for computing alignments, the findings
are as follows (Figure 5 (b)). Again, IGLOO is (slightly) slower
than AlignMCL and NETAL. Of the remaining methods, IGLOO
is faster than eight methods (NetworkBLAST, serial GHOST, par-
allelized GHOST, serial GEDEVO, parallelized GEDEVO, serial

MAGNA++, parallelized MAGNA++, and L-GRAAL), it is rela-
tively comparable to two methods (NetAligner and WAVE), and it
is slower than one method (AlignNemo). Importantly, all methods
except perhaps serial and parallelized GEDEVO and serial MAGN-
A++ have reasonably low running times.

(a)

(b)

Figure 5: Representative running time comparison of the dif-
ferent NA methods, for (a) the entire running times and (b) only
the times for constructing alignments. For each method that is
parallelizable, its single-core version is marked with a ‘$’ sym-
bol, and its 64-core version is marked with a ‘$$’ symbol. All
other methods are run on a single core. Results are shown for
using AlignMCL in the first step of IGLOO algorithm.

4. CONCLUSION
We propose a new NA method, IGLOO, which aims to combine

the advantages of both LNA and GNA in order to better balance
between functional and topological alignment quality. We demon-
strate that IGLOO outperforms all considered LNA methods with
respect to both alignment quality types. Also, it outperforms the
considered GNA methods in many cases.

IGLOO is generalizable as it can include any existing LNA and
GNA methods into its algorithm. (The existing methods we test
are simply a proof of concept of combining LNA with GNA.) As
the field of NA evolves, including newer and more sophisticated
methods could further improve the alignment quality of IGLOO.
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(a) LNA and GNA combined

(b) LNA (c) GNA

Figure S1: Overall comparison of IGLOO (the best of its versions) and (a) LNA and GNA combined, (b) LNA, and (c) GNA, when
considering five different versions of IGLOO (IGLOO 0-4) under AlignMCL in the first step of the algorithm. The comparison
is shown for three different method “superiority levels” (denoted as p): 0%, 1%, and 5%. By a “superiority level”, we mean the
following. Given two methods A and B with alignment quality scores x and y, respectively, if |x−y|

max(x,y) ≤ p, we say that A and B are
comparable; otherwise, if x is greater/less than y, we say that A is superior/inferior to B. For a given network pair and a given existing
method, only the best version of IGLOO is considered. The four cases are as follows: 1) IGLOO is comparable or superior both
topologically and functionally; 2) IGLOO is comparable or superior only functionally but not topologically; 3) IGLOO is comparable
or superior only topologically but not functionally; and 4) IGLOO is inferior both topologically and functionally. The y-axes indicate
the percentage of the combinations of the existing NA methods and network pairs for which the given case occurs.



(a) LNA and GNA combined

(b) LNA (c) GNA

Figure S2: Overall comparison of IGLOO (the best of its versions) and (a) LNA and GNA combined, (b) LNA, and (c) GNA, when
considering five different versions of IGLOO (IGLOO 0-4) under AlignNemo in the first step of the algorithm. The comparison
is shown for three different method “superiority levels” (denoted as p): 0%, 1%, and 5%. By a “superiority level”, we mean the
following. Given two methods A and B with alignment quality scores x and y, respectively, if |x−y|

max(x,y) ≤ p, we say that A and B are
comparable; otherwise, if x is greater/less than y, we say that A is superior/inferior to B. For a given network pair and a given existing
method, only the best version of IGLOO is considered. The four cases are as follows: 1) IGLOO is comparable or superior both
topologically and functionally; 2) IGLOO is comparable or superior only functionally but not topologically; 3) IGLOO is comparable
or superior only topologically but not functionally; and 4) IGLOO is inferior both topologically and functionally. The y-axes indicate
the percentage of the combinations of the existing NA methods and network pairs for which the given case occurs.
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Figure S3: Topological (NCV-GS3; x-axis) and functional (F-PF; y-axis) alignment quality for the existing LNA methods (triangles),
existing GNA methods (stars) and IGLOO versions (circles), for each aligned network pair, when considering AlignMCL in the first
step of IGLOO algorithm.
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Figure S4: Topological (NCV-GS3; x-axis) and functional (F-PF; y-axis) alignment quality for the existing LNA methods (triangles),
existing GNA methods (stars) and IGLOO versions (circles), for each aligned network pair, when considering AlignNemo in the first
step of IGLOO algorithm.


