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ABSTRACT
We study the problem of social network graph inference,
whereby the topology of user interaction networks, as well as
the strength of pairwise influences, are inferred from traces
of information cascades. We propose a framework intro-
ducing graph structural priors into the above inference pro-
cess. This framework allows us to capture different priors on
the graph’s degree distribution, including, e.g., stretched ex-
ponential, power-law, and an approximation of log-normal,
which are important due to their natural prevalence in real
social networks and many other complex graphs. We show
that network inference under our model is amenable to the
so-called majorize-minimize method, and that its implemen-
tation is tractable, as each step amounts to solving a con-
vex optimization problem. We evaluate our method over
synthetic datasets as well as real-world datasets from Twit-
ter and a Facebook gifting application. We observe that
network inference incorporating our structural priors signif-
icantly outperforms state-of-the-art inference.

1. INTRODUCTION
Online Social Networks (OSNs) have long been perceived

as platforms over which information spreads and, as such,
they have been extensively used by marketing companies,
grass-roots movements, and political strategists for the im-
plementation of “word-of-mouth” campaigns [8]. Follow-
ing the seminal work by Kempe et al. [16], there has been
an extensive research effort around the optimal design of
such campaigns [17, 5, 13, 2]; typically, such efforts rely on
parametrized models, such as the independent cascade [9]
and the linear threshold model [12, 26]. Motivated by this
state of affairs, learning the parameters of these models—or
variants thereof—from datasets of information cascades has
recently received considerable attention [11, 23, 7, 21, 4].

In short, the above works attempt to solve a problem
commonly referred to as the social network inference prob-
lem. This amounts to observing a sequence of cascades—
e.g., adoptions of a product across a population, the spread
of tweets, hashtags or URLs over Twitter, etc.—and infer-
ring the underlying user-to-user interaction network struc-
ture over which propagations take place and, a fortiori, the
relative influence users exert on each other. The latter is
model dependent; for example, in the independent cascade
model [4, 21, 23], which we also adopt, the influence of user
i to user j is captured by a probability that, given that i is
“recruited”, it successfully recruits user j. Learning pairwise

user influence thus amounts to training these probabilities
from cascade traces, while learning the underlying graph
amounts to classifying the edges between users as existing
or non-existing based on the inferred probability.

In this work, we incorporate graph structural priors to
the network inference problem. This allows us to capture
inherent information that may be known a priori about the
underlying network. For example, social networks have been
reported to follow power law [29, 1, 18, 20], stretched expo-
nential [24, 30, 14], or log-normal [25, 10] degree distribu-
tions. Our approach incorporates such information in the
inference process, leading to better estimation.

Clearly, as the number of graphs grows exponentially with
the graph size, introducing prior distributions may lead to a
combinatorial explosion. As such, a careful selection of the
prior structure is necessary. Moreover, the parameter esti-
mation problem that results from the introduction of priors
should be tractable. In existing prior-free models [4, 21,
23], parameter estimation (i.e., learning the influence prob-
abilities), reduces to solving a convex optimization prob-
lem. Standard regularization approaches can easily break
this convex structure [21, 19]. It is unclear how to intro-
duce, e.g., a power-law or a stretched exponential prior while
maintaining tractability. In this paper, we tackle these chal-
lenges and make the following contributions:

• We present a generic scheme for introducing degree-
dependent priors to social network inference problems.
Even though the resulting inference problem is not con-
vex, we show that our priors are amenable to analysis
through the majorize-minimize (MM) method [15]. It is
also highly scalable: multiple MM iterations, executed
in parallel, lead to an increase in the likelihood of the
computed estimates. Each iteration solves a convex op-
timization problem, thus ensuring tractability.
• We evaluate our method over both synthetic and real

datasets. Despite the lack of convexity and potential
convergence to local minima, our method outperforms
convex methods in inferring both the underlying topology
and the influence strengths.

We describe prior work in Sec. 2. Sections 3 and 4 present
our problem formulation and proposed solution, respectively.
We evaluate our approach in Sec. 5, and conclude in Sec. 6.

2. RELATED WORK
There are several recent approaches inferring the under-

lying unobserved social network from cascade traces [21, 23,



11, 4]. The most relevant to our study is the methodology
by Myers and Leskovec [21], who show that maximum likeli-
hood estimation (MLE) under a version of the independent
cascade model reduces to a convex optimization problem [3]
(see also Appendix A). A similar reduction to a convex op-
timization is used by Netrapalli and Sanghavi [23]. Both
works also observe that the above optimization problems
are separable, and thus amenable to large-scale paralleliza-
tion. Netrapalli and Sanghavi [23] also study the sample
complexity of this inference. Abrahao et al. [4] show that a
simple“first-edge”algorithm infers the graph using a number
of samples within a logarithmic factor from the optimal, if
all nodes appear as seeds sufficiently often—an assumption
that may not hold in practise.

We apply a framework similar to the work of Myers and
Leskovec [21], and Netrapalli and Sanghavi [23], also reduc-
ing maximum likelihood estimation of our model to a par-
allelizable convex optimization problem. Nevertheless, we
depart from this earlier work by incorporating generic pri-
ors on the graph over which cascades take place. Myers
and Leskovec propose incorporating a simple Laplace-based
prior; our work covers a much wider class of priors, a special
case of which is the one provided by Myers and Leskovec.
Additional technical difficulties arise from this generaliza-
tion: in contrast to [21, 23], we go beyond convex optimiza-
tion by using the majorize-minimize (MM) method.

We also showcase how to use our model on power-law
networks, stretched exponential networks and log-normal
networks. These three degree distributions are most com-
monly reported in empirical social network data analyses.
Power-law node degree distribution is usually seen in the
user friendship graphs of large OSN platforms, such as MyS-
pace, Orkut [1], Youtube, Flicker [20], and Sina Microblog-
ging (the Chinese version of Twitter) [29]. The node degrees
of most Twitter users follow power-law distribution as well,
except for extremely popular users (with more than 105 fol-
lowers) who are very rare (less than predicted by power-law)
in Twitter [18]. A log-normal degree distribution has been
observed in Slashdot [10] and the news spreading subnet on
Digg and Twitter [25], while a stretched exponential dis-
tribution has been observed in, e.g., collaboration networks
[30], email communication graphs [24], and in-campus social
networks among music listeners [14].

The MM method has many applications [15], the most
well-known being the Expectation-Maximization (EM) algo-
rithm [28]. Closer to the setting we consider here, Liu and
Ihler propose its use for maximum likelihood estimation of
power-law (i.e., scale-free) graphical models [19]. However,
there are two key differences between the work of Liu and
Ihler and our work. First, we consider a different likelihood-
estimation procedure–namely, graph inference from traces.
This introduces an additional technical difficulty as, in con-
trast to the work of Liu and Ihler, the prior-free case of
graph inference may not be convex. Second, unlike the work
of Liu and Ihler, we do not focus only on power-law models.
In fact, our analysis spans a generic class of priors, which
can be used for graphs with different degree distributions.

3. PROBLEM DESCRIPTION
We consider the following setup. We are given a set of

n users V = {1, . . . , n}, and observe a series of cascades
over these users. In particular, each cascade amounts to the
propagation of, e.g., a piece of information (a hashtag, a ru-

mor), or the adoption of a product. We represent a cascade
c through n time-stamps T c = {tci}i∈V , each indicating the
time at which user i was recruited (i.e., adopted the prod-
uct, obtains the piece of information, etc.). If user i did not
get recruited into cascade c, we assume by definition that
tci = +∞. We denote by C the set of all cascades and by
T = {T c : c ∈ C} the input data traces, i.e., the information
available about who was recruited, and when.

The observed recruitment records are evidence of a cas-
cade over a social network. In particular, there exists a
directed graph G(V,E) whose nodes are the users V and
its edges E connect users that interact with, and hence can
recruit, each other. For example, the existence of an edge
(i, j) ∈ E implies that user i has an influence over user j:
whenever i gets recruited, it may contact user j (e.g., by
posting the new information on their blog or Twitter feed)
and trigger j’s recruitment. Moreover, not all influence re-
lationships are equal: some users may be more influential
than others, and be more likely to recruit their neighbors.

Our goal is to infer both (a) the topology of the underly-
ing interaction network G(V,E) as well as (b) the strength
of influence of each edge, simply by observing the trace of
cascades T . To stress the challenge behind this task, we
only observe when someone was recruited without explicitly
observing who caused this recruitment. In what follows, we
formalize the influence model we use in our analysis.

3.1 Probabilistic Influence Model
We follow the model by Myers and Leskovec [21] and Ne-

trapalli and Sanghavi [23], which itself is an adaptation of
the classic independent cascades model [16]. Whenever user
i is recruited, it attempts to recruit all its neighbors in G.
Attempts are independent Bernoulli random variables, and
for (i, j) ∈ E the probability that i succeeds in recruiting j is
bij ∈ (0, 1]. If j’s recruiting succeeds, the infection/adoption
manifests after a time t from the time node i was recruited,
where t is sampled from a well-known probability distribu-
tion (e.g., Poisson, exponential, etc.). We denote by w(t),
t ≥ 0, the density function of this distribution.

The above formulation gives a principled means for at-
tempting to discover the graph G(V,E) as well as the in-
fluence strength of each individual through MLE. Let B =
{bij}i,j∈V be the matrix of influence probabilities, with bij =
0 if (i, j) /∈ E. Graph G can be obtained from the support
of B; hence, the estimation of the graph and the strength of
each pairwise influence amounts to estimating B.

Let L(T ;B) be the probability (likelihood) that trace T
occurs, given the influence probabilities B, computed as:

L(T ;B) =
∏
i∈V

[∏
c∈C:tci=∞

(∏
j:tcj<∞

(1−bji)
)

∏
c∈C:tci<∞

(
1−

∏
j:tcj≤t

c
i

(
1− w(tci − tcj)bji

))]
Using this notation, MLE of B from the trace T amounts to
solving the following optimization problem:

Minimize : − logL(T ;B)

subject to : bij ∈ [0, 1], for all i, j ∈ V.
(1)

where

− logL(T ;B) = −
∑
i∈V

[∑
c∈C:tci=∞

∑
j:tcj<∞

log (1−bji)

+
∑
c∈C:tci<∞

log

(
1−

∏
j:tcj≤t

c
i

(
1− w(tci − tcj)bji

))]



The MLE (1) is separable, and thus is amenable to paral-
lelization: it can be reduced to solving n simpler optimiza-
tion problems, one for each i ∈ V , each of which can be
solved by a different processor [21, 23]. Crucially, although
(1) is not convex, there is a way of transforming each of these
n problems to convex optimization problems which can thus
be solved using standard techniques [3]. For completeness,
we review in Appendix A both the separation of (1) into
n constituent problems, as well as the reduction to convex
optimization, as proposed in [21, 23].

3.2 Introducing Graph Priors
We have seen that the problem of estimating B through

MLE (1) reduces to solving n convex optimization problems.
In this work, we wish to incorporate prior information on
G’s structure to this estimation task. In particular, we wish
to embed the prior information such as node degree distri-
butions in G, e.g., a power-law or some other well-known
distribution. In particular, let P (B) be a given prior distri-
bution over the model parameters B; MLE (1) becomes the
following maximum a posteriori estimation in this case:

Minimize : − logL(T ;B)− β logP (B)

subject to : bij ∈ [0, 1], for all i, j ∈ V,
(2)

where the regularization term −β logP (B) penalizes solu-
tions B with small prior probability. The regularization pa-
rameter β > 0 moderates the significance of this penalty.

After introducing the prior term, we face the following
challenge: contrary to (1), the estimation problem (2) may
not be readily reducible to a convex problem! On the other
hand, for many real-world applications, the structure of un-
derlying user interaction network is already known (e.g.,
power-law, stretched exponential or log-normal), and incor-
porating this structure can yield a significant improvement
in the estimation of both the graph G as well as influence
probabilities B. We propose a general class of priors that
are of interest because they can approximate many inter-
esting well-known cases of graph structures, including the
power-law and stretched exponential distribution. The MLE
problems resulting from incorporating these priors are not
necessarily convex, nor can they be reduced to convex prob-
lems: nonetheless, we show that they are amenable to a
solution through the majorization-minimization method.

4. WEIGHT-INVERSE GRAPH PRIORS
We consider a general class of priors of the form:

P (B) =
∏
i∈V f(

∑
j∈V \{i}

1
1−bji

), (3)

where f satisfies the following assumption:

Assumption 1. The density function f is strictly posi-
tive, differentiable, log-convex and non-increasing in R+.

Notice that this is not a limiting assumption, as several
common priors such as Laplace and exponential priors sat-
isfy Assumption 1. More precisely, the Laplace priors:

f(x) = Ce−λx, (4)

the power-law prior:

f(x) = Cx−α, (5)

and the stretched exponential prior:

f(x) = Ce−x
α

, (6)

for some α > 0, C > 0, all satisfy Assumption 1. In all these
cases, the constants C are positive numbers such that the
integral of f is 1 over [0, 1]n−1, the feasible domain of b·i.

In general, the “weight-inverse” graph priors (3) have the
following properties: First, increasing bji decreases the prob-
ability P . Therefore, the estimation problem (2) penalizes
solutions with large values of B. Second, they heavily pe-
nalize influence probabilities approaching 1. This induces
sparsity, which is a highly desirable property in problems
with few traces; indeed, the term P in (2) acts as a regular-
ization factor.

Setting f to be the Laplace prior (4) allows us to recover
the prior used by Myers and Leskovec as a special case of (3).
In contrast to general f , in this setting (2) can then be re-
duced to a single convex optimization problem [21]. Though
this reduction does not apply to (2) in the general case, we
show that (2) can still be solved through the majorization-
minimization (MM) method [15]. For completeness, we give
a brief description of MM below.

4.1 The MM Method
Consider an optimization of the form

Minimize : L(x) = G(x) + F (x)

subject to : x ∈ D
(7)

where D is some subset of Rd (not necessarily convex) and
F is concave and differentiable in D. MM amounts to:

xk+1 = arg min
x∈D

(
G(x) +∇F (xk)T (x− xk)

)
(8)

Note that implementing MM presumes that the minimiza-
tion (8) can be computed efficiently, which is the case if,
e.g., G is a convex function and D is a convex domain. In
any case however, the following theorem implies that the
procedure (8) finds a “local minimum” of (7).

Theorem 1. Procedure (8) satisfies L(xk+1) ≤ L(xk),
for all k ≥ 0, i.e., the objective decreases with each step.

We provide a proof in Appendix B.

4.2 Application of MM to Graph Inference
The product form of (3) implies that the problem (2) is

separable, and can be solved by solving n optimization prob-
lems. For each i ∈ V it suffices to solve:

Minimize : Li(T ; b·i)− β log f(
∑

j∈V \{i}

1

1− bji
)

subject to : bij ∈ [0, 1], for all j ∈ V \ {i},

where Li is given by

Li(T ; b·i) = −
∑
c∈C:tci=∞

∑
j:tcj<∞

log (1−bji)

−
∑
c∈C:tci<∞

log
(

1−
∏
j:tcj≤t

c
i

(
1− w(tci − tcj)bji

))
.

(9)

Using the transformation yj = 1
1−bji

, and letting y = {yj}j∈V \{i}
we can rewrite this as:

Minimize : Li(T ; y) + βF (y)

subject to : y ∈ Rn−1
+

(10)
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Figure 1: Performance comparison between structural prior and previously proposed Laplace prior that does
not include the graph structure information. Experiments are done upon synthetic power-law network, when
best edge weight inference accuracy is obtained.

where F (y) = − log f(
∑
j∈V \{i} yj). Under Assumption 1,

F (y) is differentiable and concave. Hence, we can apply
MM to (10), yielding the following iterative procedure:

yk = arg min
y∈Rn−1

+

(
Li(T ; y) + β∇F (yk−1)T (y − yk−1)

)
(11)

Though Theorem 1 ensures that (11) yields an improvement
with each step, the minimization involved may still not be
a convex optimization problem. Nevertheless, we show that,
under Assumption 1, it can be reduced to one through an
appropriate transformation of variables:

Theorem 2. Under Assumption 1, the estimation method
of (11) decreases the objective in (10) with each step. More-
over, the minimization in (11) can be converted to a convex
optimization problem.

Proof. The first statement follows from Theorem 1 and
Assumption 1. To prove the second statement, define dji ≡
log(1−bji) = − log yj , and γc ≡ 1−

∏
j:tcj≤t

c
i

(
1− w(tci − tcj)bji

)
.

Let d = {dji}j∈V \{i}, and γ = {γc}c∈C , and

G(d, γ) = −
∑

c∈C:tci=∞

∑
j:tcj<∞

dji −
∑

c∈C:tci<∞

γc, and

F (d) = − log f
(∑

j∈V \{i}(1− e
dji)
)

Then, we can rewrite (10) as:

Minimize: G(d, γ) + β
∑

j∈V \{i}

∂F (yk)

∂yj
(e−dji − ykj )

subject to: (d, γ) ∈ D.

(12)

where D is the convex set of constraints in the prior-free
problem (14), in Appendix A. Under Assumption 1, F is

non-decreasing, so ∂F (yk)
∂yj

≥ 0 for all j ∈ V \ {i}. As a

result,
∑
j∈V \{i}

∂F (yk)
∂yj

(e−dji − ykj ) is convex.

We note that, inder the Laplace-based prior in [21], the
MM method (11) becomes degenerate: it reaches a fixed
point in a single iteration.

5. EVALUATION
Our evaluation includes both data from synthetically gen-

erated networks as well as real OSN data from Twitter and
a Facebook app, iHeart. We investigate the performance of
network inference from two perspectives: the accuracy of in-
ferring the existence of edges and the accuracy of inferring
the edge weight (recruitment probability).

We study three degree distributions that are frequently
observed in OSNs and many other complex real world graphs,
namely power-law [1, 20, 29, 18], stretched exponential [30,
14, 24], and log-normal [10, 25]. We compare these to the
Laplace prior (4) used by Myers and Leskovec [21]; recall
that under the latter, MM (2) terminates in one iteration;
equivalently, MLE reduces to solving a single convex opti-
mization problem. Despite the lack of convexity, MM sig-
nificantly outperforms this simple prior.

5.1 Evaluation on Synthetic Data
Our synthetic data experiments follow the setup in the

experiments of Myers and Leskovec [21] and begin with the
construction of underlying network. We first distribute 1000
nodes according to a homogeneous Poisson point process in
a (2-dimensional) space of unit area. Then we randomly
assign the in-degree for each node according to the power-
law, stretched exponential, or log-normal distribution. For
each node with in-degree l, we add l directed edges into the
network using this node as the ending point. The starting
point of an added edge is chosen randomly according to the
WPR model [27], in which the connection probability be-
tween two nodes is a function of each node’s distance to the
ending point. After this network is constructed, each edge
is assigned a uniformly random weight (recruitment proba-
bility) between 0 and 1.

Over this randomly constructed network, we generate cas-
cades by first selecting 100 random starting nodes. The
propagation of the cascade starts from these nodes using
the independent cascade model. The time t, for which ev-
ery newly recruited node waits before manifesting the infec-
tion, follows an exponential distribution (to mimic the ex-
ponential waiting time distribution observed in all the real
datasets we have). This generation process is repeated until
a predetermined number of cascades are generated. For each
cascade, we only record the time when every node gets re-
cruited, which constitutes the input our inference algorithm.
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(b) Stretched Exponential network
(AUC of structural prior is 0.7774,
AUC of Laplace prior is 0.7013).
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(c) Log-normal network (AUC of
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Laplace prior is 0.7147).

Figure 2: Performance comparison when best edge existence inference accuracy is obtained, upon synthetic
networks. AUC of structural prior and previously proposed Laplace prior which does not include the graph
structure information are calculated for each study.

In our experiments, we quantify the performance of infer-
ence using two sets of metrics. First, we calculate the error
between the inferred edge weight (recruitment probability)
and the real weight to evaluate the inference accuracy. Sec-
ond, our algorithm can also be used to infer the existence
of edges in the underlying user interaction network. For
this kind of inference, we can apply a threshold based bi-
nary classifier upon the estimated edge weights. With a
given threshold, the classifier identifies those inferred edges,
the estimated weights of which are lager than the thresh-
old, as present in the real network and rest edges as not
in the network. We then compute the receiver operating
characteristic (ROC) curve [6], which illustrates the perfor-
mance the classifier system as its discrimination threshold
varies, to analyze how good the inference accuracy could be.
The area under curve (AUC) of ROC is used as a quantita-
tive measurement for this evaluation. For each experiment,
we refer to the inference using corresponding prior degree
distribution as “with structural prior”, and compare it to
inference with Laplace prior, which includes no structural
information. Our experiments are conducted under optimal
regularization parameter β found through exaustive search.

5.1.1 Power-Law Synthetic Graph
The exponent parameter α of our power-law synthetic

graph (5) is set to be 1.5 (as observed in our empirical
datasets, this value is generally between 1.5 to 3).

Our experiment results are based on 30 synthetic cascades,
which can provide similar average number of node recruit-
ment as we observed in empirical data. We find that differ-
ent β is required for obtaining the lowest error in edge weight
(recruitment probability) inference and the highest AUC in
edge existence inference. We get the best edge weight infer-
ence when setting the regularization parameter to be 150 for
our method and 10 for the existing method with a Laplace
regularization term [21].

The experiment results are shown in Figure 1. We can see
from Figure 1 (a) and (b) that the distribution of inference
error centers at the peak where error 0. In addition, the ex-
periment results also show that the average absolute error of
our algorithm incorporating prior knowledge on the underly-
ing network structure is as low as 67% of the error incurred
by [21]. On the other hand, for the best inference of edge
existence, the regularization parameter should be set to 15
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(a) Stretched exponential
network (average error of
structural prior and Laplace
prior are 0.1461 and 0.2249).
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(b) Log-normal network (av-
erage error of structural prior
and Laplace prior are 0.2047
and 0.2433, respectively).

Figure 3: Performance comparison when best edge
weight inference accuracy is obtained, upon syn-
thetic networks. The average relative absolute in-
ference error of structural prior and previously pro-
posed Laplace prior which does not include the
graph structure information are calculated.

for our method and 0.025 for Laplace regularization. The
resulting performance is illustrated in Figure 2 (a), which
also shows that our method outperforms [21].

5.1.2 Stretched Exponential Synthetic Graph
In the stretched exponential degree distribution (6) graph

generation, α is set as 0.5, which is similar to the value of
several real networks reported in previous studies [14, 24].

The experiment results when regularization parameters
are set for best edge weight inference (β = 150 for our struc-
tural prior, β = 20 for Laplace prior) are shown in Figure
3 (a). Our algorithm incorporating prior knowledge on the
underlying network structure achieves an average absolute
error only 62.9% of the error incurred by [21]. On the other
hand, when the best edge existence inference is obtained
(β = 15 for structural prior, β = 0.01 for Laplace regular-
ization), Figure 2 (b) shows that the AUC of our method is
0.7774 while the AUC of exiting method applying Laplace
regularization is 0.7013.

5.1.3 Log-Normal Synthetic Graph (Approximation)



The probability density function (PDF) of log-normal dis-
tribution, f(x), takes the following form

log f(x) = − log(x)− 1

2

(
log(x)− µ

σ

)2

+ const

In the synthetical graph generation, µ is set as 1 and σ is
set as 2, which are within the value ranges that have been
observed in real networks [10]. Unfortunately, f(x) does not
follow the Assumption 1, so our approach cannot be directly
used in this case. As suggested by Liu et al. [19], we use
only the first term − log(x) as an approximation of log f(x).

The experiment results when regularization parameters
are set for best edge weight inference (β = 350 for our struc-
tural prior, β = 25 for Laplace prior) are shown in Figure
3 (b). Our algorithm incorporating prior knowledge on the
underlying network structure achieves an average absolute
error around 84.1% of the error incurred by [21]. On the
other hand, Figure 2 (c) shows the comparison results when
the best edge existence inference is obtained (β = 20 for
structural prior, β = 0.05 for Laplace regularization). Al-
though our algorithm does not perform as good as in the
power-law and stretched exponential experiments, it is still
outperforms the Laplace prior used in [21].

5.2 Evaluation on Real Data
Two real datasets are used in our evaluation experiments.

One is a Twitter trace (from Aug 1, 2009 to Aug 31, 2009),
made publicly available by the Stanford Network Analysis
Project (SNAP). The other is based on a popular Facebook
gifting application operated by Manakki LLC at the time of
data collection (from the 25th week of 2009 to the 28th week
of 2009). An empirical study of this application can be found
in the work of Nazir et al. [22]. Both datasets are summa-
rized in Table 1. Due to the large number of user activi-
ties recorded in the data, we sample a small subset of users
for our experiment. The node sampling is done through a
breadth first sampling (BFS) through the network, starting
from nodes that have participated in the largest number of
cascades. BFS is used for sampling because we are inter-
ested in preserving the complete structure of the subgraph,
among which influence expands through a selected subset of
nodes in the original graph.

Since in real datasets the ground truth of edge weight
(recruitment probability) is unavailable, in this section we
evaluate the accuracy of weight inference by simulating the
user recruitment process based on estimated recruitment
probabilities, and compare the resulting cascades with real
records. We conduct a group of experiments for each dataset.
In every experiment, the propagation of one cascade is sim-
ulated. We call this cascade as the “target cascade”. For a
target cascade, all involved nodes can be divided into two
groups: (1) seeders and (2) invited nodes. Seeders are users
who are, as observed in the empirical records, involved in the
target cascade without any neighbor being recruited earlier,
and the users other than seeders are categorized as invited
nodes. In an experiment, we set the recruitment time for
seeders to be exactly the same as in empirical records, and
simulate how the invited users behave according to the the
independent cascade model.

To ensure the reliability of our results, we perform N-
fold cross validation (N is the number of cascades), i.e. we
remove the data of one cascade when inferring recruitment
probabilities, and then evaluate the inference results by sim-

Table 1: Dataset Overview
Data Duration Total

Users
Sampled
Users

Selected
Cascade Num

iHeart 28 days 1.1M 3642 40

Twitter 31 days 484K 3352 100

ulating on the cascade that was taken out. Because the area
covered by each cascade distributes unevenly among real so-
cial networks, the number of users each node recruited in a
data trace varies dramatically. As a result, in our empirical
traces some nodes are recruited for very few times. Certain
portion of nodes even get recruited only once in the whole
data record. For those nodes, if the cascade in which they
are recruited is taken out for cross validation, the rest data
can provide no information for our algorithm to make any
useful inference on them. Under such a condition, any com-
parison between our structural prior based MLE and [21]
would be meaningless. To deal with this issue of too few re-
cruitments, we select only part of cascades from each dataset
for the cross validation experiment. The selection rule is: for
nodes participating each cascade, we calculate the average
number that they have been recruited in the whole dataset,
and then pick the top 10 cascades.

5.2.1 Evaluation Based on iHeart Data
iHeart is a facebook based gifting application launched in

June 2009, and was ranked as one of the top three Facebook
applications by monthly active users in December 2009. In
iHeart, users send different types of virtual “hearts” (a par-
ticular type of virtual gifts) to each other, and new types
of hearts are launched by the developer over time. For ev-
ery new heart (or gift) type, some users adopt it on their
own and send it to other users. When received, these new
types of hearts constitute a form of invitation, exposing re-
ceivers to new hearts and effectively recruiting them as new
adopters. A receiver in the data trace is considered “success-
fully recruited”when he/she starts sending this same type of
hearts to other users. iHeart represents an important kind
of OSN cascades, where users can explicitly choose which
neighbors they want to influence. We use the time when
every invited node gets recruited (the time would be infinite
if the recruitment does not happen) in each cascade as input
for the inference algorithms, and evaluate the results.

Since in the dataset of iHeart, we have the exact record
of sender ID and receiver ID for each virtual gift sent, it
is possible to recover the ground truth of which edge ex-
ists in the underlying user-to-user interaction network. The
node degree distribution of this underlying network can be
fitted to power-law distribution with exponent parameter α
= 2.59 using least square fitting. We first set regulariza-
tion parameter for best edge existence inference (β = 10 for
our structural prior, β = 0.05 for Laplace prior), and the
corresponding ROCs are shown in Figure 4 (a).

Then the regularization parameter is set for best edge
weight (pairwise influence) inference (β = 150 for our struc-
tural prior, β = 15 for Laplace prior). For the simulations
on the expansion of cascades, the statistics on the average
relative absolute errors of all simulation results are shown
in Table 2. Since, after a cascade starts, it takes certain
time for the growth of user number to become stable, we
calculate the error 48 hours after the cascade starts. We
also randomly select 1 simulation result and illustrate it in
Figure 4 (c).
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Figure 4: Real data based performance comparison, between structural prior and previously proposed Laplace
prior that excludes graph structure information. (a) and (b) are the results when best edge existence inference
accuracy is obtained, while (c) and (d) are the results when best edge weight inference accuracy is obtained.

Table 2: Statistics on the Average Relative Abso-
lute Error of Simulation Results for Different Set of
Experiments, Using iHeart Data

Experiment Mean Max Min

structural prior, best weight
inference

0.3354 0.6201 0.1563

structural prior, best existence
inference

0.4089 0.8029 0.1536

Laplace prior, best weight
inference

0.4125 0.7213 0.1528

Laplace prior, best existence
inference

0.5924 1.280 0.3655

Table 3: Statistics on the Average Relative Abso-
lute Error of Simulation Results for Different Set of
Experiments, Using Twitter Data

Experiment Mean Max Min

structural prior, best weight
inference

0.4633 0.6252 0.1221

structural prior, best existence
inference

0.792 1.1376 0.5312

Laplace prior, best weight
inference

0.6289 0.8907 0.3043

Laplace prior, best existence
inference

1.152 1.8621 0.7101

In general, the observations from the experiments on iHeart
agree with our findings in the synthetic experiments. Our
method can achieve a smaller error in the simulation exper-
iment than existing approach when β is properly set. More-
over, when used for inferring the topology of underlying user
interaction network, our method can also get a AUC higher
than inference applying Laplace prior, which does not in-
clude graph structural information.

5.2.2 Evaluation Based on Twitter Data
We use the dataset crawled from Twitter by Yang and

Leskovec (2011) and made publicly available by SNAP. It
was collected between June and December 2009, and in-
cludes about 20-30% of all tweets posted during this period.
We focus on a single month of the trace (August 2009). We

consider information cascades formed by spreading posted
URLs through the follower/followee graph. When a user
first posts a URL, we consider her/him as recruited into the
corresponding cascade, and record the recruitment time as
input for the inference algorithm. We take out spamming
URLs which are only tweeted or intensively re-tweeted by
their seeders, and randomly select 100 URLs from the rest
for our experiments. The selected URLs are anonymized
and indexed with integer numbers from 1 to 100. Different
from iHeart, Twitter represents the other kind of cascades
where the spreading of influence is broadcasting in nature,
i.e. users cannot choose specific neighbors to “recruit”.

From the Twitter data, we cannot extract the ground
truth of the exact underlying user-to-user interaction net-
work. As a result, we can only use the follower-followee
network available in our dataset as an approximation. Ac-
cording to our empirical analysis on twitter, for most users,
certain portion of their followers never react to any informa-
tion they post. This means that the approximation we use
is actually a super set of the underlying user-to-user interac-
tion network. The node degree distribution of the follower-
followee network can be fitted to power-law distribution with
exponent parameter α = 2.12 using least square fitting. We
first set the regularization parameter for best edge existence
inference (β = 10 for our structural prior, β = 0.025 for
Laplace prior), and the corresponding ROCs are illustrated
Figure 4 (b). The result shows that the AUC is higher for
our method than the existing estimation algorithm applying
Laplace prior, which excludes graph structural information.

We then set the regularization parameter for best edge
weight (pairwise influence) inference (β = 150 for our struc-
tural prior, β = 10 for Laplace prior). The experiment re-
sults are shown in Table 3 and Figure 4 (d) (a randomly se-
lected cascade), indicating that our method based on struc-
tural priors outperforms the Laplace prior approach in cas-
cade expansion simulations as well.

6. CONCLUSIONS
In this paper we propose a framework to incorporate graph

structural priors, which capture the structural character-
istics of a wide array of graph degree distributions, into
the problem of inferring the underlying topology of user-



to-user interactions and influence. We demonstrate how to
iteratively solve our inference problem using the so-called
majorize-minimize method, which is tractable, as each step
amounts to solving a convex optimization problem. The
performance of our method is demonstrated over synthetic
datasets as well as real-world datasets from Twitter and a
Facebook gifting application.
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APPENDIX
A. PRIOR-FREE CASE

The MLE (1) [23, 21] is separable, i.e., can be reduced to
solving n simpler optimization problems, each of which can
be solved by a different processor [21, 23]: for each i ∈ V ,
one can solve

Minimize : Li(T ; b·i)

subject to : bij ∈ [0, 1], for all j ∈ V \ i,
(13)

where b·i = {bji}j 6=i be the vector of influence probabilities
of users influencing i and Li is given by (9).

The above problem, though not convex, can be trans-
formed to a convex optimization problem [21, 23] and, as
such, can be solved using well known techniques [3]. In par-
ticular, it can be shown that it reduces to solving, for each
i ∈ V :

Min.: −
∑

c∈C:tci=∞

∑
j:tcj<∞

dji −
∑

c∈C:tci<∞

γc (14a)

s.t.: dji ≤ 0, for all j ∈ V \ {i} (14b)

γc ≤ 0, for all c ∈ C (14c)

log
(
eγc+

∏
j:tcj≤t

c
i

(
1−w(tci−tcj)(1−edji)

))
≤ 0 (14d)

which is indeed a convex optimization problem. The solution
B results by taking bji = 1 − exp dji, where {dji}i,j∈V are
obtained by solving the above n optimization problems.

B. PROOF OF THEOREM 1
Proof. Since F is concave and differentiable,

F (x)− F (x′) ≤ ∇F (x′)T (x− x′)

which implies

L(x)− L(x′) ≤ L(x) +∇F (x′)T (x− x′)− L(x′)

Hence,

L(xk)− L(xk−1) ≤ L(xk) +∇F (xk−1)T (xk − xk−1)− L(xk−1)

= min
x∈D

(
L(x) +∇F (xk−1)T (x− xk−1)− L(xk−1)

)
≤ 0

where the latter inequality follows from the fact that the
function minimized is zero for x = xk−1.
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