
Measuring Graph Proximity with Blink Model

Haifeng Qian, Hui Wan, Mark N. Wegman, Luis A. Lastras, Ruchir Puri
IBM T. J. Watson Center, Yorktown Heights, NY

qianhaifeng,hwan,wegman,lastrasl,ruchir@us.ibm.com

ABSTRACT
This paper proposes a new graph proximity measure. This
measure is a derivative of network reliability. By analyz-
ing its properties and comparing it against other proximity
measures through graph examples, we demonstrate that it
is more consistent with human intuition than competitors.
A new deterministic algorithm is developed to approximate
this measure with practical complexity. Empirical evalua-
tion by two link prediction benchmarks, one in coauthorship
networks and one in Wikipedia, shows promising results. For
example, a single parameterization of the proposed measure
achieves accuracies that are 14–35% above the best accu-
racy for each graph of all predictors reported in the 2007
Liben-Nowell and Kleinberg survey.

1. INTRODUCTION
Humans have intuitions for graph proximity. Given a

graph, certain pairs of nodes are perceived to have stronger
relation strength than others. We know that a larger num-
ber of shorter paths indicate greater proximity, yet a pre-
cise mathematical formulation of such perception is elusive.
Many measures have been defined in the literature that can
be viewed as quantitative proxies of graph proximity: short-
est path, Jaccard’s coefficient [13], Katz [17], personalized
PageRank [24], SimRank [14], Adamic/Adar [1] and oth-
ers [4, 5, 8, 11, 19, 20, 25, 29, 31]. Although they each have
characteristics that suit specific applications, they generally
have varying degrees of agreement with human intuition.

This manuscript adds one more entry to the list. This
graph proximity measure is called the Blink Model and is a
derivative of network reliability. By studying its properties
and a series of graph examples, we argue that it matches
human intuition better than many existing measures. We
develop a practical algorithm to approximately compute this
measure, and demonstrate its predicting power through em-
pirical validations. Some of the contents appeared in [27].

Relational data, or graph-structured data, are ubiquitous.
Graph proximity measures, i.e., the ability to quantify re-
lation strength, are fundamental building blocks in many
applications. They can be used to recommend new contacts
in social networks [21], to make product recommendations
based on a graph model of products and users [2], to rank

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this workowned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MLG ’16 San Francisco, CA, USA
c© 2016 ACM.

web search results or documents in general [24], or to predict
new facts in knowledge graphs [23]. They can also be used
to single out anomalies by identifying implausible links. The
list of applications goes on and on.

The proposed Blink Model measure is a derivative of ter-
minal network reliability [3] and is closely related to random
graphs [12], including percolation theory [6] and uncertain
graphs [15, 22, 25], and the independent cascade model [18]
in network influence works. Network reliability has largely
been ignored as a candidate measure in the aforementioned
applications. For example, [25] concluded that network re-
liability was one of the least predictive measures. We prove
the opposite conclusion with our Blink Model measure by
including the winning measure from [25] in both theoretical
studies and empirical validations. We attribute the discrep-
ancy to the use of only 50 Monte Carlo samples in [25].

Exact evaluation of the Blink Model measure has the same
complexity as terminal network reliability, which is known
to be #P-complete [30]. Most methods from the field of
network reliability [3,7,28] have poor scalability, and Monte
Carlo has been considered the choice for larger and gen-
eral graphs [10, 16]. We will present a new deterministic
algorithm that approximates the proposed measure directly
with practical complexity and thereby enables the proposed
measure in applications.

To quantify the benefit of being consistent with human
intuition, we use two link prediction tasks to compare our
measure against other topological proximity measures. The
first is a replication of [21]. A remarkable conclusion of [21]
was that the best proximity measure is case dependent. A
specific parameterization of a specific measure may perform
well on one graph yet underperform significantly on another,
and there does not exist a consistent winner. We compare
against the oracle, i.e. the highest accuracy for each graph
of all predictors in [21], and demonstrate that a single pa-
rameterization of our measure outperforms the oracle by 14–
35% on each graph. The second task is predicting additions
of inter-wikipage citations in Wikipedia from April 2014 to
March 2015, and again substantial accuracy advantage is
shown. We also demonstrate a simple yet practical and au-
tomatic method of training graph weighting parameters.

1.1 Problem statement
The problem statement for a graph proximity measure is

the following. The input is a graph G = 〈V,E〉, its node
weights wV : V → (0, 1], and its edge weights wE : E →
(0, 1]. The output is, for any pair of nodes A and B in V , a
value score(A,B).

Note that not all proximity measures consider wV and
wE . Some use wE and ignore wV , while some consider only
topology G. Although wV and wE can be from any source,
we present a simple yet practical method in Section 2.4 to

train a few parameters and thereby set wV and wE. It’s
applicable to all proximity measures and is used in Section 4.

For clarity, we will focus on directed simple edges. Undi-
rected edges can be represented by two directed edges, and
most discussions are extendable to hyperedges.

1.2 Definitions
Let us first define the proposed graph proximity measure.

Consider the input G as a graph that blinks: an edge exists
with a probability equal to its weight; a node exists with a
probability equal to its weight. Edges and nodes each blink
independently. A path is considered existent if and only if
all edges and all intermediate nodes on it exist; note that
we do not require the two end nodes to exist. The proposed
proximity measure is

s (A,B) = − log (1− b (A,B)) (1)

where b (A,B) = P [a path exists from A to B] (2)

We will refer to (1) as the Blink Model measure, its prop-
erties and generalizations to be presented in Section 2. It is
straightforward to see that s and b are monotonic functions
of each other and hence order equivalent, and the reason to
choose s over b will be evident in Section 2.1.

Next we define several competing measures. For brevity,
SimRank [14] and commute-time [11] are omitted and they
are compared in Section 2.3.

Personalized PageRank (PPR) [24] with weights considers
a Markov chain that has the topology of G plus a set of
edges from each node to node A. These additional edges all
have transition probability of α ∈ (0, 1). For each original
edge e ∈ E, let X be its source node, let wsum,X be the
sum of weights of X’s out-going edges, and the transition
probability of edge e is (1− α) · wE(e)/wsum,X. The PPR
measure scorePPR (A,B) is defined as this Markov chain’s
stationary distribution on node B. PPR does not use node
weights.

The original Katz measure [17] does not use edge or node
weights, and we define a modified Katz measure which does:

scoreKatz (A,B) =
∞
∑

l=1

βl ·
∑

length-l A-to-B path i

pi,l

 (3)

where β ∈ (0, 1) is a parameter, and pi,l is the product of
edge weights and intermediate node weights for the ith path
with length l. This measure is divergent if β is larger than
the reciprocal of the spectral radius of the following matrix
M : entry Mi,j is the product of the ith node weight and the
sum of edge weights from the ith node to the jth node.

The effective conductance (EC) measure is defined as the
effective conductance between two nodes by viewing edges
as resistors. It can be generalized to be a directed measure,
and notable variants include cycle-free effective conductance
(CFEC) [19] and EC with universal sink [9,29].

Expected Reliable Distance (ERD) is the winning measure
in [25]. Consider the same blinking graph as in the Blink
Model and let D be the shortest-path distance from A to B:

scoreERD (A,B) = E [D|D 6= ∞] (4)

Note that this is an inverse-proximity measure.
Our implementation of Adamic/Adar [1] in Section 4.2 is:

scoreAdamic/Adar (A,B) =
∑

C

nA,C · nC,B

log dC,in + log dC,out
(5)

where nA,C is the number of A-to-C edges, nC,B is the num-
ber of C-to-B edges, and dC,in and dC,out are the numbers
of in-coming and out-going edges of node C.

1.3 Basic arithmetic
For clarity of presentation and without loss of generality1,

this section assumes all node weights being 1.
Exact evaluation of the Blink Model can be as follows.

Enumerate all subgraphs of G, each of which is a state of
the blinking graph and has a probability that is equal to
the product of wE(e) for edges e that exist and 1 − wE(e)
for edges e that do not. (2) is the sum of probabilities of
subgraphs where a path exists from A to B, and (1) gets
calculated accordingly. This has impractical complexity.

Monte Carlo evaluation of the Blink Model measure can
be as follows. Each sample traverses the subgraph reachable
from A in one instance of the blinking graph. (2) is approx-
imated by the fraction of samples that reach B, and (1) gets
approximated accordingly. This can be expensive. In Ta-
ble 2, we demonstrate that at least tens of thousands of sam-
ples are needed to reliably discern different pairs of nodes.
Yet in Section 4.2 for a graph that represents Wikipedia ci-
tation network, practical run time allows only 100 samples.

If two edges e1 = (X,Y) and e2 = (Y,Z) are the only
edges to/from node Y, they can be replaced by a single edge
from X to Z with weight wE(e1) · wE(e2), without altering
the Blink Model measure for any pair of nodes.

Two parallel edges e1 and e2 can be replaced by a single
edge with weight 1 − (1 − wE(e1)) · (1 − wE(e2)), without
altering the Blink Model measure for any pair of nodes. x
parallel edges with weight w is equivalent to a single edge
with weight 1−(1−w)x. In other words, an edge with weight
1− (1−w)x is x times as strong as an edge with weight w.

2. THE MEASURE

2.1 Properties
Let us begin with two properties of (1), additivity and

monotonicity, which are important in the coming sections.
Additivity. Let G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 be two

graphs such that V1 ∩ V2 = {A,B}, E1 ∩ E2 = ∅. Let G3 =
〈V1 ∪ V2, E1 ∪ E2〉 be a combined graph that has the same
node and edge weights as in G1 and G2. Let sG1

(A,B),
sG2

(A,B) and sG3
(A,B) be the measure value (1) in these

three graphs respectively. Then this condition holds:

sG3
(A,B) = sG1

(A,B) + sG2
(A,B) (6)

Among competitors defined in Section 1.2, Adamic/Adar
and EC have the same additivity property. Katz does not
have this property, as in general (3) in G3 is more than the
sum of that in G1 and G2, and may even be divergent.

The additivity property of the proposed measure is con-
sistent with human intuition. When multiple independent
sets of evidence are combined, our perception of proxim-
ity becomes the sum of proximity values derived from each
individual set. To state the same in more general terms,
the proposed proximity measure (1) is proportional to the

1Blinking graphs with edge weights alone, setting all node
weights to 1, are equally expressive. A node weight can be
expressed as an edge weight by splitting a node into two
nodes, one being sink of in-coming edges, one being source
of out-going edges, and adding an auxiliary edge between the
two, with edge weight equal to the original node weight [3].

amount of evidence, which is why we choose it over (2). This
additivity property is also crucial to the development of the
approximation algorithm in Section 3.

Monotonicity. Let G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 be
two graphs such that V1 ⊆ V2, E1 ⊆ E2, and that their
weights satisfy that wV1

(X) ≤ wV2
(X) ,∀X ∈ V1 and that

wE1
(e) ≤ wE2

(e) ,∀e ∈ E1. Let sG1
(A,B) and sG2

(A,B)
be the measure value (1) in these two graphs respectively.
Then the following condition holds.

sG1
(A,B) ≤ sG2

(A,B) ,∀A,B ∈ V1 (7)

In plain language, if an edge is added to a graph or if a
node/edge weight is increased in a graph, then the proposed
measure (1) will not decrease for any pair of nodes. This
again is consistent with human intuition.

Among competitors defined in Section 1.2, Katz and EC
have the same monotonicity property, assuming that the ad-
ditional edges or added weights do not cause (3) to diverge.
In Adamic/Adar’s (5), if the denominator is viewed as recip-
rocal of wV (C) which implies a specific choice2 of wV , then
it also satisfies the monotonicity property. Note that (in-
verse) ERD is not monotonic because additional edges may
form a new long path from A to B and hence increase (4).

2.2 Generalizations
The measure (1) is defined on a particular event, “a path

exists from A to B”. This definition is a pair-wise proximity
measure and is useful in for example link-prediction appli-
cations. For other applications, the definition (1) can be
generalized to other events in the blinking graph: e.g., for a
set of nodes SA and another set of nodes SB,

s̃ (SA, SB) = − log(1− P[a path exists from any of SA

to each of SB]) (8)

Or for three nodes A, B and C,

˜̃s (A,B,C) = − log(1− P[a path exists from A to B

but no path exists from A to C]) (9)

And there are many more possibilities. In particular, when
edges are labeled to indicate types of relations [23], the
choice of event can involve edge labels.

The measure (1) is a proximity measure. Another varia-
tion is a distance measure:

d (A,B) = − log (b (A,B)) (10)

It is straightforward to verify that the above definition sat-
isfies the triangle inequality. It also has the monotonicity
property. It has an additivity property that differs from
that in Section 2.1, but is defined on two graphs in series.

2.3 Graph studies
This section uses graph examples to compare the proposed

proximity measure against competitors to demonstrate that
it is more consistent with human intuition. Comparison
against Adamic/Adar (5) or common-neighbor (replacing
the sum in (5) by a sum of 1’s) is straightforward since they
are limited to length-2 paths, and an example is omitted.

2Such choice of weights is shown to be beneficial in for exam-
ple social networks [1]. With Blink Model, this can easily
be encoded as domain knowledge, to be described in Sec-
tion 2.4. In fact similar schemes are used in Section 4.

Figure 1: A pair of graph examples.

In examples in Figures 1–3, we argue that human intuition
would say that node A has stronger relation to node B2 than
to B1. A key notion is that human intuition not only prefers
more and shorter paths, but also prefers structures that are
mutually corroborated. If an edge or path has no corrobora-
tion, its existence in the graph may be a random coincidence
and hence does not indicate strong proximity. On the flip
side, proximity is strong for an aggregate structure that is
impervious to edges randomly existing.

In discussing all examples, we assume uniform node weights
of 1 and uniform edge weights of w < 1.

Table 1: Some proximity measures on Figure 1.

Measure A1,B1 A2,B2

1/shortest-path 1/(2w) 1/(2w)
1/commute-time 1/(8w) 1/(10w)
EC w w
CFEC w 8w/9

Let us begin with Figure 1 of two undirected graphs. It
could be perceived that there are two random paths from
A1 to B1, while the two length-2 paths from A2 to B2 are
less likely to be random because the crossing edge provides
mutual corroboration between them, and therefore human
intuition prefers (A2,B2) over (A1,B1). Table 1 lists vari-
ous proximity scores, where none is consistent with human
intuition. Shortest-path and EC conclude that (A1,B1) and
(A2,B2) are equally related, while CFEC [19] and commute-
time [11] conclude that (A1,B1) is stronger than (A2,B2).
In contrast, the Blink Model score is −2 · log(1 − w2) for
(A1,B1) and − log(1−2w2−2w3 +5w4−2w5) for (A2,B2),
and the latter is strictly larger than the former. This shows
a weakness of EC in that it sees no effect from the crossing
edge in the second graph; the EC variant of CFEC [19] exac-
erbates this trait; another EC variant [9,29] adds a universal
sink to the EC model, and it is straightforward to verify that
it also ranks (A1,B1) as stronger than (A2,B2), and similar
effects of the universal sink have been reported in [19]. A
spectrum of measures was proposed in [31], where shortest-
path is one end of the spectrum while commute-time is the
other end; although we are unable to judge intermediate
variants of [31], Table 1 suggests that both of its corner
variants produce counterintuitive rankings for Figure 1.

Next let us consider Figure 2(i). There are two equal-
length paths from A to B1 and to B2, but there are more
paths going from A to B2. So it seems there’s more reason to
believe that it’s not a coincidence that B2 is connected to A
than B1. PageRank scores are scorePPR (A,B1) = (1−α)2/2
and scorePPR (A,B2) = (1 − α)2/4. In other words, PPR
considers that A has greater proximity to B1 than to B2,
and this holds true for any parameterization. In contrast,
the Blink Model score (1) is higher for B2 than B1.

Now consider the Katz measure (3) on Figure 2(ii). It’s
straightforward to verify that, with any w and β values, we
have scoreKatz (A,B1) = scoreKatz (A,B2), including when w
is 1 and (3) becomes the original Katz. In other words, the
(modified) Katz measure cannot discern B1 and B2 relative
to A, because it sees no difference between the four paths to
B1 and those to B2. In contrast, the Blink Model measure

(i)

(ii)

(iii)

Figure 2: Graph examples for PPR, Katz and ERD.

Figure 3: A graph example.

(1) is able to recognize that the edge to the left of A, which
all paths to B1 depend on, has no corroboration, and we
have s (A,B1) < s (A,B2), consistent with human intuition.

Next consider the ERD measure (4) on Figure 2(iii), and
we have scoreERD (A,B1) = 1 and scoreERD (A,B2) > 1.
Since ERD is an inverse proximity, the conclusion is that
A has greater proximity to B1 than to B2, and is inconsis-
tent with human intuition. Blink Model shows the reverse.

Next consider SimRank [14] on a three-node undirected
complete graph and on a four-node undirected complete
graph. It is straightforward to verify that the SimRank
score, under any parameterization, is higher for a pair of
nodes in the former than in the latter, and in fact the score
always decreases as the size of a complete graph increases.
This is contrary to our Blink Model measure and human in-
tuition. To be fair, SimRank was designed to be a similarity
measure and was not intended to be a proximity measure.
This is also the likely reason that SimRank performance
in [21] was reported to be mediocre.

The last example graph is Figure 3, which demonstrates
the advantage of measure (1) over a class of methods. Con-
tinuing the intuition from Figure 1, on the left there exists
mutual corroboration between the top pair of length-3 paths
to B1 and between the bottom pair of length-3 paths, but
none exists between the two pairs. On the right there exists
mutual corroboration among all four length-3 paths to B2,
and the proximity to B2 is perceived as more robust to a
human. This is analogous to using four strings to reinforce
four poles, and a human is more likely to use a pattern sim-
ilar to the right half of Figure 3 than the left. The Blink
Model recognizes that B2 is more connected to A than B1,
e.g. when w is 0.5, s (A,B1) = 0.795 and s (A,B2) = 0.809.

Consider any algorithm which operates on local storage
per node: it starts with special storage in source node A,
all other nodes starting equal; on each successive iteration,
it updates information stored in each node based on infor-
mation stored in adjacent nodes from the previous iteration.
Such an algorithm can easily for example compute shortest-

path distance from A, the PPR score, the Katz score, and
the EC score. However, such an algorithm, even with an in-
finite amount of storage and an infinite number of iterations,
cannot distinguish B1 and B2 in Figure 3; in fact, the eight
nodes that are distance-2 from A are also indistinguishable.
Algorithms of this type encompass a large range of meth-
ods. In particular, any matrix computation based on the
adjacency matrix or variants of the adjacency matrix, which
includes almost all measures that have a random-walk-based
definition, falls into this category, and no possible linear al-
gebra can determine that B2 is closer than B1. This is a
blessing and a curse: the Blink Model can discern cases cor-
rectly, but is inherently hard to compute.

2.4 Training weights
This section addresses a practical issue of using the Blink

Model in an application: how to set edge and node weights.
There are many ways, and we describe a simple yet practical
method to do so by training a few parameters.

Let two functions fE : E → R>0 and fV : V → R>0 rep-
resent domain knowledge. In applications where we have no
domain knowledge beyond the topology G, we simply have
fE and fV equal to 1 for all. In applications where we do,
we assume that fE and fV are larger for more important or
more reliable edges and nodes, and that their values exhibit
linearity: two parallel edges e1 and e2 can be replaced by a
single edge e3 with fE(e3) = fE(e1) + fE(e2).

Our method sets graph edge and node weights as:

wE(e) = 1− (1− b1)
fE(e) ,∀e ∈ E

wV (v) = 1− (1− b2)
fV (v) ,∀v ∈ V

(11)

where b1, b2 ∈ (0, 1) are two tunable parameters. It is straight-
forward to verify that the linearity assumption on fE is con-
sistent with the arithmetic in Section 1.3. Parameters b1 and
b2 for Blink Model are similar to α for PageRank and β for
Katz, and we search for best values by using training data in
an application. If fE and fV have tunable parameters, those
can be trained in the same process. Since we introduce only
two parameters, the training process is straightforward and
can be brute-force scan and/or greedy search.

This method is applicable to all proximity measures and is
used for all in Section 4. One caveat is that certain measures
work better with linear weights rather than (11):

wE(e) = b1 · fE(e),∀e ∈ E

wV (v) = b2 · fV (v),∀v ∈ V
(12)

For example, we observe empirically that PPR works better
with (12), which is intuitive given the linearity assumption
on fE, while Modified Katz and ERD prefer (11). Note that
when b1 and b2 are small, (11) asymptotically becomes (12).

3. APPROXIMATION ALGORITHM
We present a deterministic algorithm from [27] that ap-

proximates (1) directly. Without loss of generality (per Sec-
tion 1.3), we describe this algorithm under the conditions
of all node weights being 1 and that G is a simple directed
graph where parallel edges are already merged.

3.1 Overall flow
Aminimal path from node A to node B is defined as a path

from A to B without repeating nodes. For a finite graph G,
there exist a finite number of minimal paths. Consider a

single minimal path i from node A to node B. We define the
followingas the nominal contribution of this path to (1).

spath i = − log

1−
∏

edge e on path i

wE (e)

 (13)

By the additivity property (6), if all minimal paths from A
to B are mutually disjoint, we can compute (1) exactly by
summing (13) over all minimal paths. Of course this is not
true for general graphs where paths from A to B overlap
each other and (1) is less than the sum of spath i values.

However, if we consider only length-1 and length-2 min-
imal paths, they can never share an edge with each other,
and their nominal contributions can be added according to
the additivity property. Further invoking the monotonicity
property (7), we obtain the following inequality.

∑

path i with length 1 or 2

spath i ≤ s (A,B) ≤
∑

path i

spath i (14)

Therefore, the key to approximate (1) is to quantify the
contribution of minimal paths that are longer than 2.

We start the approximation by assuming a condition that
the contribution of each minimal path i is quantifiable as
a value ŝpath i such that s (A,B) =

∑

path i ŝpath i. We use

G′ to denote a subgraph of G and sG′ (A,B) to denote the
measure value (1) in G′.

Condition 1. A value ŝpath i exists for each minimal path
i from node A to node B, such that these ŝpath i values satisfy
the following conditions:

ŝpath i = spath i, if path i has length 1 or 2

0 ≤ ŝpath i ≤ spath i, if path i is longer than 2
(15)

sG′ (A,B) ≥
∑

path i is contained in G′

ŝpath i

sG′ (A,B) ≤
∑

path i overlaps with G′

ŝpath i

(16)

for any subgraph G′.

Our algorithm works best when Condition 1 holds, while
the approximation would be coarser when it does not. We
have not found any graph that breaks Condition 1, and
it remains an unproven conjecture whether it holds for all
graphs. We use Condition 1 in two ways. By selecting
a special set of subgraphs G′, we utilize (16) to approx-
imate ŝpath i values. Then, after obtaining approximate
ŝpath i values, we invoke Condition 1 for a special case of
G′ = G, where the two sums in condition (16) are identi-
cal and therefore (16) becomes two equalities. This justifies
that s (A,B) =

∑

path i ŝpath i which achieves our purpose.
One observation is that Condition 1 does not uniquely

define ŝpath i values as there may exist two sets of ŝpath i

values that both satisfy (15)(16). However, by definition
they both sum up to the same end result (1), and therefore
we only need to find one such set of ŝpath i values. A sec-
ond observation is that the lower bound in (16) is tight for
a variety of subgraphs G′, while the upper bound is tight
only for large subgraphs. We exploit this observation in the
proposed algorithm: we will select/design a certain set of
subgraphs G′ where the lower bound in (16) is tight, and

(i) (ii)

Figure 4: (i) The selected subgraph of Figure 3 for the high-
lighted path, and (ii) its simplified form.

then use the lower bound as an equality to iteratively refine
the approximated ŝpath i values.

The proposed algorithm initializes ŝpath i values to be the
nominal values spath i. A subgraph G′

i, to be elaborated
later, is selected for each path i longer than 2, and sG′

i
(A,B)

is computed/approximated. Then during each iteration, for
each path i longer than 2, ŝpath i value is updated by apply-
ing condition (16) on G′

i: we use the lower bound in (16) as
an equality and convert it to the following update formula.

ŝk+1
path i =

ŝkpath i ·
(

sG′

i
(A,B)−

∑

path j∈Υi
spath j

)

∑

path j∈Ξi
ŝkpath j

(17)

where k is the iteration index, Ξi is the set of minimal paths
from A to B that are contained in G′

i and that have length
more than 2, and Υi is the set of minimal paths from A to
B that are contained in G′

i and that have length of 1 or 2.
After the iterations converge, we obtain an approximated
(1) by summing the final ŝpath i values.

One way to interpret this algorithm is that it is an iter-
ative solver that solves a linear system where there is one
equation for each G′

i and the unknowns are ŝpath i. This in-
terpretation holds for the variation in Section 3.2, however
it does not hold in Section 3.3, in which we will present an
alternative interpretation.

In the next two sections, we present variations of the pro-
posed algorithm. They differ in how they select/construct
subgraph G′

i for a given path i.

3.2 High-accuracy variation
In this variation of the proposed algorithm, we select sub-

graph G′

i as the minimal subgraph that contains all minimal
paths from A to B which overlap with path i by at least one
edge. One example is illustrated in Figure 4(i), which shows
the subgraph of Figure 3 for the highlighted path from A to
B2, and it is used in (17) to update ŝ of the highlighted path
during each iteration. Note that G′

i only needs to be iden-
tified once and sG′

i
(A,B) only needs to be evaluated once,

and the same value is reused in (17) across iterations.
A main computation in this variation is the evaluation of

sG′

i
(A,B). Since G′

i is much smaller than the whole graph
G in typical applications, many techniques from the network
reliability field can be applied to approximately evaluate (2)
in G′

i and hence sG′

i
(A,B). For example, it is known that (2)

is invariant under certain topological transformations [3,28].
Applying such transformations, the graph in Figure 4(i) can
be simplified to Figure 4(ii) without loss of accuracy. Then a
Monte Carlo method can be applied on the simplified graph
and approximate sG′

i
(A,B).

3.3 Medium-accuracy variation
Instead of identifying and solving each G′

i as an actual

(i)

(ii)

Figure 5: (i)Example of a middle section of a path. (ii)The
same middle section after adding hypothetical edges.

subgraph, in this variation we construct G′

i as a hypothetical
subgraph for each path i during each iteration.

We start the construction by considering the amount of
sharing on each edge. In the kth iteration, for edge e, define
uk
e as the sum of ŝkpath j values over all paths j that contain

e and are longer than 2. Intuitively, uk
e quantifies usage of

edge e by A-to-B minimal paths, based on current knowledge
at the kth iteration.

Figure 5(i) illustrates a middle section of an example path
i. We use uk

XY to denote uk
e when e is an edge from node X

to node Y, and wXY to denote its edge weight. Without loss
of generality, we assume that uk

FG > uk
CD > uk

EF > uk
DE.

We construct the hypothetical subgraph G′

i starting from
path i itself and by adding hypothetical edges. Since uk

EF >
uk
DE, there must exist one or more A-to-B path(s) that passes

the edge from E to F but that does not pass the edge from
D to E. A hypothetical new edge from D to E is added
to approximate the effect of such path(s); furthermore, we
know that the sum of ŝk of these paths is equal to uk

EF−uk
DE,

and we use this fact to assign the following weight.

w′

DE = 1− (1− wDE)(
uk

EF
−uk

DE)/u
k

DE (18)

In plain words, we assume that this hypothetical edge is
(

uk
EF − uk

DE

)

/uk
DE times as strong as original D-to-E edge.

Similarly, since uk
CD > uk

EF, there must exist one or more
A-to-B path(s) that passes the edge from C to D, but that
does not pass the edge from E to F, the edge from D to E, or
paths represented by the hypothetical edge from D to E. A
hypothetical new edge from D to F is added to approximate
the effect of such path(s). Again, we know that the sum of
ŝk of these paths is equal to uk

CD − uk
EF, and by the same

argument for (18), we assign the following edge weight.

w′

DF = 1−
(

1− wEF ·
(

1− (1− wDE)
uk

EF
/uk

DE

))

u
k
CD

−u
k
EF

uk
EF

(19)
The same rationale applies to adding the hypothetical edge
from C to F, and so on.

The above construction process for G′

i processes edges on
path i one by one in the order of increasing uk

e values and
adds hypothetical edges. The last step of construction is to
add to G′

i the length-2 A-to-B paths that overlap with path
i, since they are not visible in uk

e values. The completed
hypothetical subgraph G′

i is then used in (17) to compute
ŝk+1
path i for the next iteration, and the overall algorithm pro-

ceeds. Note that the denominator
∑

path j∈Ξi
ŝkpath j in (17)

is simply the largest uk
e along path i.

One distinction between this variation and Section 3.2 is
that the exact evaluation of sG′

i
(A,B) has linear complex-

ity with respect to path length. The hypothetical edges
form series-parallel structures that are friendly to topologi-
cal transformations [28]. Using Figure 5(ii) as an example,
the hypothetical D-to-E edge and the original D-to-E edge
can be merged into a single edge; then it and the E-to-F
edge can be merged into a single D-to-F edge; then it and
the hypothetical D-to-F edge can be merged, and so on.

Another distinction between this and Section 3.2 is that
G′

i is no longer the same across iterations. As a result,
the linear-system interpretation mentioned in Section 3.1 no
longer holds. Instead, the following interpretation is more
intuitive. Let uk

max denote the largest uk
e along path i. The

calculation by (17) applies a dilution factor ŝkpath i/u
k
max on

the strength ofG′

i excluding length-2 paths. The more path i
overlaps with other paths, the larger uk

max is and the smaller
the dilution factor is, and G′

i is a hypothetical subgraph that
mimics a path where every edge has usage uk

max. By this in-
terpretation, other variations exist that construct G′

i more
crudely and hence have lower complexity and lower accuracy.

3.4 Accuracy assessment
Let us verify accuracy on Figure 3 for which we can com-

pute exact scores. Table 2 shows three cases where all edge
weights are 0.1, 0.5 and 0.9 respectively. The medium-
accuracy variation of Section 3.3 is unable to distinguish
B1 and B2 and therefore has 100% relative error in Error∆
columns. Each Monte Carlo measurement is repeated with
100 different random number generation seeds, and the re-
ported relative error is the average over the 100 runs. Not
surprisingly, Monte Carlo favors 0.5 edge weight and has
larger errors for higher or lower weights, while our algorithm
is stable across the range. Table 2 suggests that the high-
accuracy variation of Section 3.2 has comparable accuracy
to 10K Monte Carlo samples for individual-score estimation,
and is more accurate in differentiating B1 and B2 than one
million samples for two of the three cases. It also suggests
that a Monte Carlo method needs at least tens of thousands
samples to reliably differentiate nodes.

4. EXPERIMENTAL RESULTS
This section compares the predictive power of our method

against competitors on two temporal link prediction tasks.
Data and benchmarking code are released at [26]. All blink-
model runs use the variation of Section 3.3; single-thread
run time is 2.9–5.0 seconds per starting node in coauthorship
graphs and 5.3 seconds in the Wikipedia graph, on a Linux
server with Intel E7-8837 processors at 2.67GHz.

We use the method of Section 2.4 with two scenarios:
graph #1 is with no domain knowledge, fE and fV being
1 for all, and hence with uniform edge and node weights b1
and b2; graph #2 is with domain knowledge expressed in
fE and fV . In Section 4.1, we follow the practice of [21]
and scan parameters for each predictor without separating
training and test sets. In Section 4.2, we separate data into
a training set and a test set, and the training set is used to
scan for the best parameterization, while the test set is used
for evaluation. Best parameter values for each predictor are
listed in Tables 3 and 4; no-effect parameters are omitted,
e.g., PPR scores are invariant with respect to b1 and b2.

4.1 Link prediction in arXiv
This section replicates the experiments in [21]. For differ-

ent areas in arXiv, given the coauthors of papers published

Table 2: Accuracy of methods on Figure 3. ErrorB2
is relative error in s (A,B2). Error∆ is relative error in s (A,B2)−s (A,B1).

Edge weight 0.1 0.5 0.9
ErrorB2

Error∆ ErrorB2
Error∆ ErrorB2

Error∆
Our algorithm, high accuracy 0.07% 19.2% 2.40% 12.4% 2.40% 6.73%
Our algorithm, medium accuracy 8.86% 100% 17.2% 100% 12.0% 100%
Monte Carlo, 1K samples 37.7% 4.21E2 3.38% 282% 43.1% 228%
Monte Carlo, 10K samples 12.9% 1.56E2 1.07% 106% 3.82% 272%
Monte Carlo, 100K samples 3.55% 4751% 0.35% 29.2% 1.05% 70.2%
Monte Carlo, 1M samples 1.13% 1852% 0.11% 8.69% 0.33% 23.7%

(i) astro-ph (ii) hep-ph

(iii) hep-th

Figure 6: ROC curves on coauthorship networks.

in 1994-1996, the task is to predict new pairwise coauthor-
ship relations formed in 1997-1999. Please refer to [26] for
graph/task statistics and detailed description.

In Table 3, the oracle of [21] is the highest score for each
benchmark, by all predictors including meta-approaches; note
that no single predictor has such performance, and PPR and
Katz on uniformly weighted graphs are dominated by the
oracle. Allowing the best b1 and b2 per graph leads to the
oracle of Blink, and for a single parameterization we get the
next row. Such performance with graph #1 already puts
Blink above all predictors reported in [21].

In graph #2, each paper is modeled as a node, and it
connects to and from each of its authors with two directed
simple edges. We provide domain knowledge through the
following fE and fV . For an edge e = (X,Y), fE(e) =
1/max(1, logγ dX), where dX is the out degree of X. For a
paper node, we set fV to infinity and hence weight to 1.
For an author node, fV (author) = 1/max(1, logγ mauthor),
where mauthor is the number of coauthors of this author in
the training period. γ is a tunable parameter and is scanned
with other parameters and reported in Table 3. A single
parameterization of Blink Model outperforms oracle of [21]
by 14–35%. Please refer to [26] for detailed discussions.

Receiver-operating-characteristic (ROC) curves are plot-
ted in Figure 6, where Blink dominates. Note that ERD #2
performs well on hep-ph for early guesses at around 5% true
positive rate, but it degrades quickly after that and becomes
the worst of the four by the 20% rate.

4.2 Link prediction in Wikipedia
In this experiment, the known graph is the inter-wikipage-

citation graph based on Wikipedia dumps in April/May
2014, and the task is to predict new citation links added
from then to March 2015. Among 93,845 pages, i.e. nodes,
that have undergone meaningful edits, we randomly sam-
ple a 1000-node training set and a 1000-node test set. We
further form a trimmed test set by removing links that are
too easy or too difficult. Please refer to [26] for graph/task
statistics and detailed data collection description.

In Table 4, mean average precision (MAP) is the accuracy
score. In graph #2, we provide domain knowledge through
the following fE and fV . For an edge from node X to node
Y and that represents the ith citation link on page X:

fE(edge) =
δY,X

max
(

1, logγ i
)

·max
(

1, logγ dY,in

) (20)

where δY,X is 2 if edge exists from Y to X, and 1 other-
wise. γ is again a tunable parameter. The above scheme
gives higher weight to a citation link if it is located at an
earlier location on a page, or if it points to a less-cited
page, or if a returning citation exists. Our fV function
is a direct adaptation of Adamic/Adar’s (5): fV (node) =
1/(log dnode,in + log dnode,out). Blink Model with graph #2
is the best performer in Table 4. Please refer to [26] for
detailed discussions.

5. CONCLUSIONS
This manuscript proposes the Blink Model graph prox-

imity measure. We demonstrate that it matches human in-
tuition better than others, develop an approximation algo-
rithm, and empirically verify its predictive accuracy.

6. REFERENCES
[1] L. A. Adamic and E. Adar. Friends and neighbors on

the web. Social Networks, 25(3):211–230, 2003.

[2] C. C. Aggarwal et al. Horting hatches an egg: A new
graph-theoretic approach to collaborative filtering. In
KDD, pages 201–212, 1999.

[3] M. O. Ball et al. Network reliability. Technical Report,
University of Maryland, 1992.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[5] V. D. Blondel et al. A measure of similarity between
graph vertices: Applications to synonym extraction
and web searching. SIAM Review, 46(4):647–666, 2004.

[6] B. Bollobas and O. Riordan. Percolation. Cambridge
University Press, 2006.

[7] T. B. Brecht and C. J. Colbourn. Lower bounds on
two-terminal network reliability. Discrete Applied
Mathematics, 21(3):185–198, 1988.

Table 3: Comparison of predictor accuracies on coauthorship networks. A denotes the true positive rate when the number of
predictions is equal to the number of positives. R denotes the ratio of A over that of oracle of [21].

astro-ph hep-ph hep-th
parameters A R A R A R

Oracle of [21] varying 8.55% 7.2036% 7.9407%
Oracle of Blink, graph #1 varying 9.075% 1.061 8.3816% 1.164 8.8592% 1.116
Blink, graph #1 b1 = 0.5, b2 = 0.4 7.7461% 0.906 7.8025% 1.083 8.0306% 1.011
Blink, graph #2 b1 = 0.8, b2 = 0.6, γ = 5 10.264% 1.200 9.6922% 1.345 9.0504% 1.140

PPR, graph #2 α = 0.50 8.5330% 0.998 6.7358% 0.935 7.9031% 0.995
Modified Katz, graph #2 b1 = 0.5, b2 = 0.1, β = 0.1, γ = 5 8.4106% 0.984 8.2292% 1.142 7.8394% 0.987
ERD, 10K samples, graph #1 b1 = 0.9, b2 = 0.9 8.4281% 0.986 8.1682% 1.134 7.1383% 0.899
ERD, 10K samples, graph #2 b1 = 0.9, b2 = 0.9, γ = 4 9.5471% 1.117 8.7473% 1.214 7.1383% 0.899

Table 4: Comparison of predictor accuracies on additions of inter-wikipage citations in Wikipedia. Each predictor uses its
best parameters selected based on the training set. R denotes the ratio of MAP of a predictor over MAP of Adamic/Adar.

training test trimmed test
parameters MAP R MAP R MAP R

Adamic/Adar 0.0291 0.0281 0.0163
Blink, graph #1 b1 = 0.5, b2 = 0.1 0.0295 1.014 0.0263 0.937 0.0166 1.019
Blink, graph #2 b1 = 0.8, b2 = 0.8, γ = 10 0.0362 1.244 0.0362 1.289 0.0233 1.428

PPR, graph #1 α = 0.5 0.0299 1.029 0.0291 1.038 0.0186 1.140
PPR, graph #2 α = 0.2, γ = 500 0.0321 1.104 0.0309 1.100 0.0206 1.263
Modified Katz, graph #1 β = 5E-6 0.0269 0.925 0.0241 0.860 0.0151 0.924
Modified Katz, graph #2 b1 = 0.8, b2 = 0.8, β = 0.1, γ = 10 0.0341 1.173 0.0328 1.170 0.0198 1.213
ERD, 100 samples, graph #1 b1 = 0.4, b2 = 0.9 0.0266 0.914 0.0233 0.830 0.0162 0.996
ERD, 100 samples, graph #2 b1 = 0.9, b2 = 0.9, γ = 10 0.0238 0.817 0.0218 0.778 0.0154 0.944

[8] P. Chebotarev and E. Shamis. Matrix-forest theorem
and measuring relations in small social groups. Autom.
and Remote Control, 58(9):1505–1514, 1997.

[9] C. Faloutsos et al. Fast discovery of connection
subgraphs. In KDD, pages 118–127, 2004.

[10] G. Fishman. Comparison of four monte carlo methods
for estimating the probability of s-t connectedness.
IEEE Trans. Reliability, 35(2):145–155, 1986.

[11] F. Fouss et al. Random-walk computation of
similarities between nodes of a graph with application
to collaborative recommendation. IEEE Trans. Knowl.
and Data Eng., 19(3):355–369, 2007.

[12] E. N. Gilbert. Random graphs. The Annals of
Mathematical Statistics, 30(4):1141–1144, 1959.

[13] P. Jaccard. The distribution of the flora in the alpine
zone. New Phytologist, 11(2):37–50, 1912.

[14] G. Jeh and J. Widom. Simrank: a measure of
structural-context similarity. In KDD, pages 538–543,
2002.

[15] R. Jin et al. Distance-constraint reachability
computation in uncertain graphs. VLDB,
4(9):551–562, 2011.

[16] D. R. Karger. A randomized fully polynomial time
approximation scheme for the all-terminal network
reliability problem. SIAM Review, 43(3):499–522,
2001.

[17] L. Katz. A new status index derived from sociometric
analysis. Psychometrika, 18(1):39–43, 1953.

[18] D. Kempe et al. Maximizing the spread of influence in
a social network. In KDD, pages 137–146, 2003.

[19] Y. Koren et al. Measuring and extracting proximity in
networks. In KDD, pages 245–255, 2006.

[20] E. Leicht et al. Vertex similarity in networks. Physical
Review E, 73(2):026120, 2006.

[21] D. Liben-Nowell and J. Kleinberg. The link-prediction
problem for social networks. Journal of the American
Society for Information Science and Technology,
58(7):1019–1031, 2007.

[22] L. Liu et al. Reliable clustering on uncertain graphs.
In ICDM, pages 459–468, 2012.

[23] M. Nickel et al. A review of relational machine
learning for knowledge graphs: From multi-relational
link prediction to automated knowledge graph
construction. Center for Brains, Minds and Machines
Memo No. 028, 2015.

[24] L. Page et al. The pagerank citation ranking: bringing
order to the web. Technical Report, Stanford
University, 1999.

[25] M. Potamias et al. K-nearest neighbors in uncertain
graphs. VLDB, 3(1):997–1008, 2010.

[26] H. Qian. Link prediction benchmarks, 2016. [Available
at http://researcher.watson.ibm.com/group/6672].

[27] H. Qian and H. Wan. Ranking related objects using
blink model based relation strength determinations.
U.S. Patent Application 14/791789, 2015.

[28] A. Satyanarayana and R. K. Wood. A linear-time
algorithm for computing k-terminal reliability in
series-parallel networks. SIAM Journal on Computing,
14(4):818–832, 1985.

[29] H. Tong et al. Fast direction-aware proximity for
graph mining. In KDD, pages 747–756, 2007.

[30] L. G. Valiant. The complexity of enumeration and
reliability problems. SIAM Journal on Computing,
8(3):410–421, 1979.

[31] L. Yen et al. A family of dissimilarity measures
between nodes generalizing both the shortest-path and
the commute-time distances. In KDD, pages 785–793,
2008.

http://researcher.watson.ibm.com/group/6672

	Introduction
	Problem statement
	Definitions
	Basic arithmetic

	The Measure
	Properties
	Generalizations
	Graph studies
	Training weights

	Approximation Algorithm
	Overall flow
	High-accuracy variation
	Medium-accuracy variation
	Accuracy assessment

	Experimental Results
	Link prediction in arXiv
	Link prediction in Wikipedia

	Conclusions
	References

