
The Infinity Mirror Test for Analyzing the Robustness of

Graph Generators

Salvador Aguiñaga
University of Notre Dame

384K Nieuwland Science Hall
Notre Dame, Indiana, US

saguinag@nd.edu

Tim Weninger
University of Notre Dame

353 Fitzpatrick Hall
Notre Dame, Indiana, US

tweninge@nd.edu

ABSTRACT
Graph generators learn a model from a source graph in order
to generate a new graph that has many of the same prop-
erties. The learned models each have implicit and explicit
biases built in, and it is important to understand the as-
sumptions that are made when generating a new graph. Of
course, the di↵erences between the new graph and the origi-
nal graph, as compared by any number of graph properties,
are important indicators of the biases inherent in any mod-
elling task. But these critical di↵erences are subtle and not
immediately apparent using standard performance metrics.
Therefore, we introduce the infinity mirror test for the anal-
ysis of graph generator performance and robustness. This
stress test operates by repeatedly, recursively fitting a model
to itself. A perfect graph generator would have no deviation
from the original or ideal graph, however the implicit biases
and assumptions that are cooked into the various models
are exaggerated by the infinity mirror test allowing for new
insights that were not available before. We show, via hun-
dreds of experiments on 6 real world graphs, that several
common graph generators do degenerate in interesting and
informative ways. We believe that the observed degenera-
tive patterns are clues to future development of better graph
models.

CCS Concepts
•Mathematics of computing ! Hypergraphs; Graph

algorithms; •Theory of computation ! Random net-
work models;

Keywords
graph generation, robustness, infinity mirror

1. INTRODUCTION
Teasing out interesting relationships buried within vol-

umes of data is one of the most basic challenges in data sci-
ence research. When this data is viewed as an information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MLG ’16 August 14, 2016, San Francisco, CA, USA

c� 2016 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

network, the standard approach is to treat the network as a
graph with some number of nodes and edges. Increasingly,
researchers and practitioners are interested in understand-
ing how individual pieces of information are organized and
interact in order to discover the fundamental principles that
underlie a physical or social phenomena.

With this motivation, researchers have developed a suite
of graph generation techniques that learn a model of a net-
work in order to extrapolate, generalize or otherwise gain a
deeper understanding of the data set. Early graph gener-
ators like the Erdős-Rényi, Watts-Strogatz, and Barabasi-
Albert models produce random graphs, small world graphs,
and scale free graphs respectively. Although they are used
to generate graphs given some hand-picked parameters, they
do not learn a model from any observed real-world network.

We focus instead on graph model inducers, which take
some observed network G, learn a model ⇥ and produce a
new graph G

0. These types of graph generators include the
Kronecker Model, Chung-Lu Model, Exponential Random
Graph Model (ERGM) and Block Two-Level Erdős-Rényi
Model (BTER), and others.

The performance of a graph generator can be judged based
on how well the new graph matches certain topological char-
acteristics of the original graph. Unfortunately small pertur-
bations caused by the implicit and inherent biases of each
type of model may not be immediately visible using existing
performance metrics.

In the present work, we address this problem by character-
izing the robustness of a graph generator via a new metric
we call the infinity mirror test. The “infinity mirror” gets
its name from the novelty item with a pair of mirrors, set
up so as to create a series of smaller and smaller reflections
that appear to taper to an infinite distance. The motivating
question here is to see if a generated graph G

0 holds su�cient
information to be used as reference. Although a comparison
between G and G

0 may show accurate results, the model’s
biases only become apparent after recursive application of
the model onto itself.

The details of the method are discussed later, but, sim-
ply put, the infinity mirror tests the robustness of a graph
generator because errors (or biases) in the model are prop-
agated forward depending on their centrality and severity.
A robust graph generator, without severe biases or errors,
should remain stable after several recurrences. However, a
non-robust model will quickly degenerate, and the manner in
which the model degenerates reveals the model-biases that
were hidden before.

G

⇥1

.9 .5

.5 .1

2

4

3

5fit gen

G

0
1

.8 .6

.6 .2

2

4

3

5

⇥2

fit gen

G

0
2

⇥3...k

fit gen
. . .

G

0
k

Figure 1: Example infinity mirror test on the Kronecker model. This test recursively learns a model and
generates graphs. Although not apparent in G

0
1, this example shows a particular type of degeneration where

the model loses edges.

2. GRAPH GENERATORS
Several graph generators have been developed for the tasks

outlined above. We describe some of them here.

Kronecker Graph Kronecker graphs operate by learning
a 2⇥ 2 initiator matrix K1 of the form

K1 =

k1 k2

k3 k4

�

and then performing a recursive multiplication of that ini-
tiator matrix in order to create a probability matrix P

Kron

from which we can stochastically pick edges to createG0. Be-
cause of the recursive multiplication, the Kronecker product
only creates graphs where the number of nodes is an expo-
nential factor of 2, i.e., 2x [8].

The initiator matrix can be learned quickly, and the final
graph shares many similarities with the original graph mak-
ing the Kronecker graph model a natural fit for many graph
modelling tasks.

Chung-Lu Models The Chung-Lu Graph Model takes,
as input, some empirical (or desired) degree distribution and
generates a new graph of the similar degree distribution
and size [4, 3]. An optimized version called Fast Chung-
Lu (FCL) was developed analogous to how the Kronecker
model samples its final graph. Suppose we are given se-
quences of n-degrees d1, d2, . . . dn where

P
i

d

i

= 2m. We
can create a probability matrix P

FCL

where the edge e
ij

has
a probability d

i

d

j

/m

2 [15].
On average, the Chung-Lu model is shown to preserve the

degree distribution of the input graph. However, on many
graphs, the clustering coe�cients and assortativity metrics
of the output graphs do not match the original graph. Ex-
tensions of the Chung-Lu (CL) model, such as Transitive
CL (TCL) [14], Binning CL (BCL) [11] and Block Two-
Level Erdős-Rényi Model (BTER) [7], have been developed
to further improve performance.

Exponential Random Graph Exponential Random Graph
Models (ERGMs) are a class of probabilistic models used to
directly describe several structural features of a graph [17].
Although ERGMs have been shown to model the degree dis-
tributions and other graph properties of small graphs, they
simply do not scale to graphs of even moderate size. As a
result we cannot include ERGM in the present work.

Existing approaches to graph modelling and generation
perform well in certain instances, but each have their draw-
backs. The Kronecker Model, for example, can only repre-
sent graphs with a power law degree distribution. Both Kro-

necker and the Chung-Lu models ignore local subnetwork
properties, giving rise to more complex models like Transi-
tive Chung-Lu for better clustering coe�cient results [14] or
Chung-Lu with Binning for better assortativity results [11,
12]. Exponential Random Graph Models (ERGMs) take into
consideration the local substructures of a given graph. How-
ever, each substructure in an ERGM must be pre-identified
by hand, and the complexity of the model increases (at least)
quadratically as the size of the graph grows.

3. INFINITY MIRROR TEST
We characterize the robustness of a graph generator by its

ability to repeatedly learn and regenerate the same model. A
perfect, lossless model (e.g., ⇥ = G) would generate G0 as an
isomorphic copy of the original graph. If we were to again
apply the perfect model on the isomorphic G

0, we would
again generate an isomorphic copy of the graph. On the
other hand, a non-robust graph generator may generate a
G

0 that is dissimilar from G; if we were to learn a new model
from G

0 and create a second-level graph, we would expect
this second graph to exacerbate the errors (the biases) that
the first graph made and be even less similar to G. A third,
fourth, fifth, etc. application of the model will cause the
initial errors to accumulate and cause cascading e↵ects in
each successive layer.

Colored by this perspective, the robustness of a graph
generator is defined by its ability to maintain its topologi-
cal properties as it is recursively applied. To that end, this
paper presents the infinity mirror test. In this test, we re-
peatedly learn a model from a graph generated by the an
earlier version of the same model.

Starting with some real world network G, a graph gener-
ator learns a model ⇥1 (where the subscript ·1 represents
the first recurrence) and generates a new graph G

0
1. At this

point, current works typically overlay graph properties like
degree distribution, assortativity, etc. to see how well G

matches G0
1. We go a step further and ask if the new graph

G

0
1 holds su�cient information to be used as reference itself.

So, from G

0
1 we learn a new model ⇥2 in order to generate

a second-level graph G

0
2. We repeat this recursive “learn a

model from the model”-process k times, and compare G

0
k

with the original graph.
Figure 1 shows an example of the infinity mirror test for

the Kronecker model. In this example some real world graph
G is provided by the user. From G a model ⇥1 is fit, which
is used to generate a new graph G

0
1. Of course, G0

1 is only an
approximation of G and is therefore slightly di↵erent. In the
second recurrence a new model ⇥2 is fit from G

0
1 and used

100 101 102

100

101

k

fr
eq
u
en
cy

C.elegans

100 101

100

101

102

103

k

fr
eq
u
en
cy

Power

100 101 102

100

101

102

103

k

fr
eq
u
en
cy

Arxiv

100 101 102 103

100

101

102

103

104

k

fr
eq
u
en
cy

Routers

100 101 102 103

100

101

102

103

104

k

fr
eq
u
en
cy

Enron

100 101 102

100

102

104

k

fr
eq
u
en
cy

DBLP

Chung Lu

10

0
10

1
10

2

10

0

10

1

k

fr
eq
u
en
cy

C.elegans

10

0
10

1

10

0

10

1

10

2

10

3

k

fr
eq
u
en
cy

Power

10

0
10

1
10

2

10

0

10

1

10

2

10

3

k

fr
eq
u
en
cy

Arxiv

10

0
10

1
10

2
10

3

10

0

10

1

10

2

10

3

k

fr
eq
u
en
cy

Routers

10

0
10

1
10

2
10

3

10

0

10

1

10

2

10

3

10

4

k

fr
eq
u
en
cy

Enron

10

0
10

1
10

2
10

3

10

0

10

1

10

2

10

3

10

4

10

5

k

fr
eq
u
en
cy

DBLP

BTER

10

0
10

1
10

2

10

0

10

1

k

fr
eq
u
en
cy

C.elegans

10

0
10

1

10

0

10

1

10

2

10

3

k

fr
eq
u
en
cy

Power

10

0
10

1
10

2

10

0

10

1

10

2

10

3

k

fr
eq
u
en
cy

ArXiv

10

0
10

1
10

2
10

3

10

0

10

1

10

2

10

3

k

fr
eq
u
en
cy

Routers

10

0
10

1
10

2
10

3

10

0

10

1

10

2

10

3

10

4

k

fr
eq
u
en
cy

Enron

10

0
10

1
10

2

10

0

10

1

10

2

10

3

10

4

10

5

k

fr
eq
u
en
cy

DBLP

Kronecker

G G0
2 G0

5 G0
8 G0

10

Figure 2: Degree distribution. G shown in blue. G

0
2, G

0
5, G

0
8 and G

0
10 are shown in lighter and lighter shades

of red. Degeneration is observed when recurrences increasingly deviate from G.

Table 1: Real networks
Dataset Name Nodes Edges

C. elegans neural (male) 269 2,965
Power grid 4,941 6,594

ArXiv GR-QC 5,242 14,496
Internet Routers 6,474 13,895

Enron Emails 36,692 183,831
DBLP 317,080 1,049,866

to generate a new graph G

0
2. This continues recursively k

times.
With the infinity mirror test, our hypothetical, perfect

model is perfectly robust and immune to error. A hypothet-
ical “bad” model would quickly degenerate into an unrec-
ognizable graph after only a few recurrences. Despite their
accurate performance, existing models are far from perfect.
We expect to see that all models degenerate as the number
of recurrences grow. The question is: how quickly do the
models degenerate and how bad do the graphs become?

4. EXPERIMENTS
In order to get a holistic and varied view of the robustness

of various graph generators, we consider real-world networks
that exhibit properties that are both common to many net-
works across di↵erent fields, but also have certain distinctive
properties.

The six real world networks considered in this paper are
described in Table. 1. The networks vary in their number
of vertices and edges as indicated, but also vary in cluster-
ing coe�cient, degree distribution and many other graph
properties. Specifically, C. elegans is the neural network of
the roundworm of the named species [5]; the Power grid

graph is the connectivity of the power grid in the Western
United States [19]; the Enron graph is the email correspon-
dence graph of the now defunct Enron corporation [6]; the
ArXiv GR-QC graph is the co-authorship graph extracted
from the General Relativity and Quantum Cosmology sec-
tion of ArXiv; the Internet router graph is created from traf-
fic flows through Internet peers; and, finally, DBLP is the co-
authorship graph from the DBLP dataset. All datasets were
downloaded from the SNAP and KONECT dataset reposi-
tories.

On each of the six real world graphs, we recursively ap-
plied the Kronecker, Block Two-Level Erdos-Renyi (BTER),
Exponential Random Graph (ERGM) and Chung-Lu (CL)
models to a depth of k=10.

Figures 2, 3, 4, and 5 show the results of the Chung-Lu,
BTER and Kronecker graphs respectively.

Di↵erent graph generators will model and produce graphs
according to their own internal biases. Judging the perfor-
mance of the generated graphs typically involves comparing
various properties of the new graph with the original graph.
In Figs. 2–5 we show the plots of the degree distribution,
eigenvector centrality, hop plots and graphlet correction dis-
tance. Each subplot shows the original graph in blue and
the generated graphs G0

2, G
0
5, G

0
8, G

0
10 in increasingly lighter

shades of red.
In the remainder of this section we will examine the results

one metric at a time, i.e., figure-by-figure.

Degree Distribution. The degree distribution of a graph
is the ordered distribution of the number of edges connecting
to a particular vertex. Barabási and Albert initially discov-
ered that the degree distribution of many real world graphs
follows a heavy-tailed power law distribution such that the
number of nodes N

d

/ d

�� where � > 0 and �, called the

0 100 200
10�20

10�13

10�6

101

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

C.elegans

0 1,000 2,000 3,000 4,000
10�21

10�14

10�7

100

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Power

0 1,000 2,000 3,000 4,000 5,000
10�23

10�15

10�7

101

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Arxiv

0 2,000 4,000 6,000
10�23

10�15

10�7

101

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Routers

0 1 2 3

·104

10�22

10�15

10�8

10�1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Enron

0 1 2 3

·105

10�24

10�16

10�8

100

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

DBLP

Chung Lu

0 100 200

10

�19

10

�13

10

�7

10

�1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

C.elegans

0 1,000 2,000 3,000 4,000
10

�20

10

�13

10

�6

10

1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Power

0 1,000 2,000 3,000 4,000 5,000
10

�22

10

�15

10

�8

10

�1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Arxiv

0 2,000 4,000 6,000
10

�21

10

�14

10

�7

10

0

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Routers

0 1 2 3

·104

10

�23

10

�15

10

�7

10

1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Enron

0 1 2 3

·105

10

�23

10

�15

10

�7

10

1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

DBLP

BTER

0 1,000 2,000 3,000 4,000 5,000
10

�22

10

�15

10

�8

10

�1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Arxiv

0 1,000 2,000 3,000
10

�23

10

�15

10

�7

10

1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Power

0 1,000 2,000 3,000 4,000 5,000
10

�22

10

�15

10

�8

10

�1

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Arxiv

0 2,000 4,000 6,000
10

�21

10

�14

10

�7

10

0

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Power

0 1 2 3

·104

10

�21

10

�14

10

�7

10

0

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

Enron

0 1 2 3

·105

10

�15

10

�10

10

�5

10

0

Node

E
ig
en
ve
ct
or

C
en
tr
al
it
y

DBLP

Kronecker

G G0
2 G0

5 G0
8 G0

10

Figure 3: Eigenvector centrality. G shown in blue. Results for recurrences G

0
2, G

0
5, G

0
8 and G

0
10 in lighter

and lighter shades of red showing eigenvector centrality for each network node. Degeneration is shown by
increasing deviation from G’s eigenvector centrality signature.

power law exponent, is typically between 2 and 3 [2].
Figure 2 shows the degree distribution of Chung Lu, BTER

and Kronecker row-by-row for each of the six data sets. The
Kronecker generator was unable to model the C. elegans
graph because C. elegans does not have a power-law degree
distribution, thus those results are absent. These plots are
drawn with the original graph G in blue first, then G

0
2, G

0
5,

G

0
8 and G

0
10 are overlaid on top in that order; as a result,

light-red plots often elide dark-red or blue plots indicating
accurate results and non-degeneration. In general, we find
that the degree distributions hold mostly steady throughout
all 10 recurrences. One exception is present in the Power
grid dataset for all three graph generators where the later
graphs lose density in the head of their degree distribution.
But overall the results are surprising stable.

Eigenvector Centrality. The principal eigenvector is
often associated with the centrality or “value” of each ver-
tex in the network, where high values indicate an impor-
tant or central vertex and lower values indicate the opposite.
A skewed distribution points to a relatively few “celebrity”
vertices and many common nodes. The principal eigenvec-
tor value for each vertex is also closely associated with the
PageRank and degree value for each node.

Figure 3 shows an ordering of nodes based on their eigen-
vector centrality. Again, the results of Kronecker on C. ele-
gans is absent. With the eigenvector centrality metric we see
a clear case of model degeneration in several data sets, but
stability in others. The arXiv graph degenerated in Chung-
Lu and BTER, but was stable in Kronecker. On the other
hand, the Power grid and Routers graph had only a slight
degeneration with Chung Lu and BTER models, but severe
problems with the Kronecker model.

Hop Plot. The hop plot of a graph shows the number

of vertex-pairs that are reachable within x hops. The hop
plot, therefore, is another way to view how quickly a vertex’s
neighborhood grows as the number of hops increases. As in
related work [9] we generate a hop plot by picking 50 random
nodes and perform a breadth first traversal over each graph.

Figure 3 shows the hop plots of each graph, model and
recurrence level. Again we find mixed results. Model degen-
eration is clear in the arXiv results for Chung Lu and BTER:
we see a consistent flattening of the hop plot line recurrence-
level increases. Yet the arXiv results are consistent with the
Kronecker model.

The hop plot results are quite surprising in many cases.
All of the models severely underestimate the shape of the
power grid and routers graphs even in the first generation
(not shown).

Of the many topological characteristics that could be com-
pared, researchers and practitioners typically look at a net-
work’s global properties as in Figs 2–3. Although these met-
rics can be valuable, they do not completely test the perfor-
mance of a graph generator.

In our view, a large network is essentially the combina-
tion of many small sub-networks. Recent work has found
that the global properties are merely products of a graph’s
local properties, in particular, graphlet distributions [16]. As
a result, graphlet counting [10, 18, 1] and related compari-
son metrics [20] comprise the local-side of graph generator
performance.

Thus a complete comparison of graph generator perfor-
mance ought to include both local and global metrics. In
other words, not only should a generated graph have the
same degree distribution, hop plot, etc. as the original
graph, but the new graph should also have the same number
of triangles, squares, 4-cliques, etc. as the original graph.

0 2 4

0

50

100

150

Hops

R
ea
ch
ab

le
P
ai
rs

C.elegans

0 10 20 30 40

0

200

400

600

800

Hops

R
ea
ch
ab

le
P
ai
rs

Power

0 5 10

0

500

1,000

1,500

Hops

R
ea
ch
ab

le
P
ai
rs

Arxiv

0 2 4 6 8

0

1,000

2,000

Hops

R
ea
ch
ab

le
P
ai
rs

Routers

0 2 4 6 8 10

0

0.5

1

1.5

·104

Hops

R
ea
ch
ab

le
P
ai
rs

Enron

0 5 10 15

0

0.5

1

·105

Hops

R
ea
ch
ab

le
P
ai
rs

DBLP

Chung Lu

0 2 4 6

0

50

100

150

Hops

R
ea
ch
ab

le
P
ai
rs

C.elegans

0 10 20 30 40

0

500

1,000

Hops

R
ea
ch
ab

le
P
ai
rs

Power

0 5 10

0

500

Hops

R
ea
ch
ab

le
P
ai
rs

ArXiv

0 5 10

0

1,000

2,000

Hops

R
ea
ch
ab

le
P
ai
rs

Routers

0 2 4 6 8 10 12

0

0.5

1

1.5

·104

Hops

R
ea
ch
ab

le
P
ai
rs

Enron

0 5 10 15

0

0.5

1

·105

Hops

R
ea
ch
ab

le
P
ai
rs

DBLP

BTER

0 2 4

0

50

100

150

Hops

R
ea
ch
ab

le
P
ai
rs

C.elegans

0 10 20 30 40 50

0

200

400

Hops

R
ea
ch
ab

le
P
ai
rs

Power

0 5 10 15

0

500

1,000

Hops

R
ea
ch
ab

le
P
ai
rs

Arxiv

0 10 20 30 40 50

0

1,000

2,000

Hops

R
ea
ch
ab

le
P
ai
rs

Routers

0 2 4 6 8 10 12

0

0.5

1

·104

Hops

R
ea
ch
ab

le
P
ai
rs

Enron

0 5 10 15

0

0.5

1

·105

Hops

R
ea
ch
ab

le
P
ai
rs

DBLP

Kronecker

G G0
2 G0

5 G0
8 G0

10

Figure 4: Hop plot. G shown in blue. Results for recurrences G

0
2, G

0
5, G

0
8 and G

0
10 in lighter and lighter shades

of red. Degeneration is observed when recurrences increasingly deviate from G.

2 4 6 8 10

2

4

Recurrence

G
C
D

C.elegans

2 4 6 8 10

2

4

Recurrence

G
C
D

Power

2 4 6 8 10

1

2

3

4

Recurrence

G
C
D

Arxiv

2 4 6 8 10

2

4

Recurrence

G
C
D

Routers

2 4 6 8 10

2

4

Recurrence

G
C
D

Enron

2 4 6 8 10

2

4

Recurrence

G
C
D

DBLP

Chung-Lu BTER Kronecker

Figure 5: Graphlet Correlation Distance. All recurrences are shown for Chung Lu, BTER and Kronecker
graph generators. Lower is better. Degeneration is indicated by a rise in the GCD values as the recurrences
increase.

There is mounting evidence which argues that the graphlet
distribution is the most complete way to measure the sim-
ilarity between two graphs [16, 18]. The graphlet distri-
bution succinctly describes the distribution of small, local
substructures that compose the overall graph and there-
fore more completely represents the details of what a graph
“looks like.” Furthermore, it is possible for two very dissim-
ilar graphs to have the same degree distributions, hop plots,
etc., but it is di�cult for two dissimilar graphs to fool a
comparison with the graphlet distribution.

Graphlet Correlation Distance
Recent work from systems biology has identified a new

metric called the Graphlet Correlation Distance (GCD). Sim-
ply put, the GCD computes the distance between two graphlet
correlation matrices – one matrix for each graph [20]. Be-
cause GCD is a distance metric, lower values are better. The
GCD can range from [0,+1], where the GCD is 0 if the two
graphs are isomorphic.

Figure 5 shows the GCD of each recurrence level. Because

GCD is a distance, there is no blue line to compare against;
instead, we can view degeneracy as an increase in the GCD
as the recurrences increase. Again, results from the Kro-
necker model are absent for C. elegans. As expected, we see
that almost all of the models show degeneration on almost
all graphs.

Kronecker’s GCD results show that in some cases the
GCD is slightly reduced, but in general its graphs deviate
dramatically from the original. Chung-Lu and BTER show
signs of better network alignment when learning a model
from C. elegans. This result highlights biased assumptions
in the Chung Lu and BTER models that seem to favor net-
works of this kind while struggling to handle networks with
power-law degree distributions.

Clustering Coe�cients. A node’s clustering coe�cient
is a measure of how well connected a vertex’s neighbors are.
Specifically, a nodes’s clustering coe�cient, i.e., the local
clustering coe�cient, is the number of edges that exist in
a node’s ego-network divided by the total number of nodes

101 102 103

10�2

10�1

k

C
lu
st
er
in
g
C
o
e�

ci
en
t

Chung Lu

101 102 103

10�2

10�1

k

C
lu
st
er
in
g
C
o
e�

ci
en
t

BTER

100 101 102 103

10�3

10�2

10�1

100

k

C
lu
st
er
in
g
C
o
e�

ci
en
t

Kronecker

101 102 103

10�2

10�1

k

C
lu
st
er
in
g
C
o
e�

ci
en
t

Transitive Chung Lu

101 102 103

10�2

10�1

k

C
lu
st
er
in
g
C
o
e�

ci
en
t

Chung Lu Binning

101 102 103

10�2

10�1

k

C
lu
st
er
in
g
C
o
e�

ci
en
t

Transitive Chung Lu Binning

G

G

0
2 G

0
5 G

0
8 G

0
10

Figure 6: Clustering Coe�cient. G is in blue. Re-
sults for recurrences G

0
2, G

0
5, G

0
8 and G

0
10 in lighter

and lighter shades of red. Degeneration is observed
when recurrences increasingly deviate from G.

possible in the ego-network. The global clustering coe�cient
is simply the average of all the local clustering coe�cients.

The Chung Lu generator has been shown to model the
degree distribution of some input graph, and our results
bare this out. Eigenvector centrality, hop plot and graphlet
correlation distances are also reasonably well modelled by
the Chung Lu generator. However, Pfei↵er et al. recently
showed that the standard Chung Lu generator does not well
model a graph’s local clustering coe�cients; so they intro-
duced the Transitive Chung Lu generator as an adaptation
to the standard model [14].

Assortativity. The assortativity of a network is its ten-
dency to have edges between nodes with similar degree. For
example, if high degree nodes primarily link to other high
degree nodes, and low degree nodes primarily link to low
degree nodes, then the network’s overall assortativity score
will be high, and vice versa. The local assortativity for each
node is the amount, positive or negative, that the node con-
tributes to the overall global assortativity [13].

Like in the case with the clustering coe�cient, the stan-
dard Chung Lu model was found to not accurately model the
assortativity of real world graphs. Mussmann et al. devel-
oped a Chung Lu with Binning adaptation that was shown
to generate graphs with appropriate assortativity [11]. Even
better is that the transitive and binning models can be com-
bined to create a Transitive Chung Lu with Binning genera-
tor that models the degree distribution, clustering coe�cient
and assortativity of some input graph.

But the question remains, are these new generators ro-

100 101 102 103

100

101

102

103

k

A
ss
or
ta
ti
v
it
y

Chung-Lu

100 101 102 103
100

101

102

103

k

A
ss
or
ta
ti
v
it
y

BTER

100 101 102 103
10�4

10�2

100

102

k

A
ss
or
ta
ti
v
it
y

Kronecker

100 101 102 103

100

101

102

103

k

A
ss
or
ta
ti
v
it
y

Transitive Chung-Lu

100 101 102 103

100

101

102

103

k

A
ss
or
ta
ti
v
it
y

Chung-Lu Binning

100 101 102 103

100

101

102

103

k

A
ss
or
ta
ti
v
it
y

Transitive Chung-Lu Binning

G

G

0
2 G

0
5 G

0
8 G

0
10

Figure 7: Assortativity. G is in blue. Results for
recurrences G

0
2, G

0
5, G

0
8 and G

0
10 in lighter and lighter

shades of red. Degeneration is observed when re-
currences increasingly deviate from G.

bust?
We applied the infinity mirror test to the 6 graph genera-

tors, 3 original and 3 Chung Lu adaptations on the Routers
dataset. All tests were performed on all graphs for all gener-
ators, but cannot all be shown because of space limitations.
Figure 6 shows the clustering coe�cient results. We find
that transitive Chung Lu does nominally better than stan-
dard Chung Lu, but in all cases, the 5th, 8th and 10th re-
currences seem to drift away (up and to the right) from orig-
inal graph’s plots demonstrating slight model degeneration
as expressed through clustering coe�cient. The Kronecker
generator did rather poorly in this test. The Kronecker gen-
erator didn’t seem to have a degeneration pattern, but was
simply inconsistent.

The assortativity results are shown in Figure 7. We do not
see any noticeable improvement in assortativity between the
standard Chung Lu and the Chung Lu with Binning gener-
ators. We again find that the 5th, 8th and 10th recurrences
seem to drift away (downward) from the original graph’s as-
sortativity plots demonstrating slight model degeneration as
expressed through assortativity. The Kronecker graph also
performed poorly on this test, although it is unclear what
the nature of the degeneration is.

5. DISCUSSION AND CONCLUSIONS
In the present work we introduced the infinity mirror test

for graph generator robustness. This test operates by recur-
sively generating a graph and fitting a model to the newly

generated graph. A perfect graph generator would have no
deviation from the original or ideal graph, however the im-
plicit biases and assumptions that are cooked into the var-
ious models are exaggerated by the infinity mirror test al-
lowing for new insights that were not available before.

Although the infinity mirror test shows that certain graph
models show degeneration of certain properties in certain cir-
cumstances, it is more important to gain insight from how a
model is degenerating in order to understand their failures
and make improvements. For example, the BTER results in
Figs 2-4 shows via the degree, eigenvector and hop plots that
the BTER-generated graphs tend to become more spread
out, with fewer and fewer cross-graph links, which, in retro-
spect, seems reasonable because of the siloed way in which
BTER computes its model. Conversely, Chung Lu tends
to generate graphs with an increasingly well connected core
(indicated by the left-skewed hop plots and overestimated
eigenvector centrality), but that also have an increasingly
large portion of the generated graph that is sparsely con-
nected (indicated by the odd shaped tail in the right-hand
side of the eigenvector centrality plots).

A better understanding of how the model degenerates will
shed light on the inherent limitations. We hope that re-
searchers and practitioners can consider using this method
in order to understand the biases in their models and there-
fore create more robust graph generators in the future.

6. REFERENCES
[1] N. K. Ahmed, J. Neville, R. A. Rossi, and N. G.

Du�eld. E�cient graphlet counting for large networks.
In ICDM, Atlantic City, NJ, USA, pages 1–10, 2015.

[2] A.-L. Barabási and R. Albert. Emergence of scaling in
random networks. Science, 286(5439):509–512, 1999.

[3] F. Chung and L. Lu. The average distances in random
graphs with given expected degrees. PNAS,
99(25):15879–15882, 2002.

[4] F. Chung and L. Lu. Connected components in
random graphs with given expected degree sequences.
Annals of Combinatorics, 6(2):125–145, 2002.

[5] T. A. Jarrell, Y. Wang, A. E. Bloniarz, C. A. Brittin,
M. Xu, J. N. Thomson, D. G. Albertson, D. H. Hall,
and S. W. Emmons. The connectome of a
decision-making neural network. Science,
337(6093):437–444, 2012.

[6] B. Klimt and Y. Yang. Introducing the enron corpus.
In CEAS, 2004.

[7] T. G. Kolda, A. Pinar, T. Plantenga, and
C. Seshadhri. A scalable generative graph model with
community structure. SIAM Journal on Scientific

Computing, 36(5):C424–C452, 2014.
[8] J. Leskovec, D. Chakrabarti, J. Kleinberg,

C. Faloutsos, and Z. Ghahramani. Kronecker graphs:
An approach to modeling networks. Journal of
Machine Learning Research, 11:985–1042, feb 2010.

[9] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs
over time: densification laws, shrinking diameters and
possible explanations. In SIGKDD, pages 177–187.
ACM, 2005.

[10] D. Marcus and Y. Shavitt. E�cient counting of
network motifs. In ICDCS Workshops, pages 92–98,
June 2010.

[11] S. Mussmann, J. Moore, J. J. Pfei↵er, and J. Neville,

III. Assortativity in chung lu random graph models. In
SNAKDD, New York pages 1–8. ACM, 2014

[12] S. Mussmann, J. Moore, J. J. Pfei↵er, III, and
J. Neville. Incorporating assortativity and degree
dependence into scalable network models. In AAAI,
pages 238–246. AAAI Press, 2015.

[13] M. E. Newman. Mixing patterns in networks. Physical
Review E, 67(2):026126, 2003.

[14] J. J. Pfei↵er, T. La Fond, S. Moreno, and J. Neville.
Fast generation of large scale social networks while
incorporating transitive closures. In SocialCom

PASSAT), pages 154–165. IEEE, 2012.
[15] A. Pinar, C. Seshadhri, and T. G. Kolda. The

similarity between stochastic kronecker and chung-lu
graph models. SDM, 2011.

[16] N. Pržulj. Biological network comparison using
graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

[17] G. Robins, P. Pattison, Y. Kalish, and D. Lusher. An

introduction to exponential random graph (p*)
models for social networks. Social Networks,
29(2):173–191, 2007.

[18] J. Ugander, L. Backstrom, and J. Kleinberg. Subgraph
frequencies: Mapping the empirical and extremal
geography of large graph collections. In WWW, pages
1307–1318, 2013.

[19] D. J. Watts and S. H. Strogatz. Collective dynamics of
‘small-world’ networks. Nature, 393(6684):440–442,
Jun 1998.

[20] Ö. N. Yaveroğlu, T. Milenković, and N. Pržulj. Proper
evaluation of alignment-free network comparison
methods. Bioinformatics, 31(16):2697–2704, 2015.

