
Detecting Concept Drift in Classification Over Streaming
Graphs

Yibo Yao, Lawrence B. Holder
School of Electrical Engineering and Computer Science

Washington State University, Pullman, WA 99164
{yibo.yao, holder}@wsu.edu

ABSTRACT
Detecting concept drift in data streams has been widely
studied in the data mining community. Conventional drift
detection methods use classifiers’ outputs (e.g., classification
accuracy, error rate) as indicators to signal concept changes.
As a result, their performance greatly depends on the chosen
classifiers. However, there is little work on addressing con-
cept drift in graph-structured data. In this paper, we present
a Graph Entropy-based Method (GEM) to effectively detect
concept drift in graph streams. Contrary to many related
works, we investigate the intrinsic properties of data (i.e.,
subgraph distribution w.r.t. class membership), instead of
monitoring classification outputs. This method can be com-
bined with any graph stream classifier to facilitate classi-
fication on non-stationary graph streams. Our approach is
combined with several graph stream classification algorithms
and tested on synthetic and real-world graph data streams.
The experimental results demonstrate the advantage of our
method in detecting concept drift as well as improving clas-
sification performance.

Keywords
Concept drift; graph classification; graph entropy; streaming
graph

1. INTRODUCTION
In recent years, with the emergence of networked data,

graph mining has received considerable interest in the data
mining community. Many approaches assume that data is
generated from a stationary environment. However, in many
application domains, graph data is gathered as a stream over
time, e.g., network flows, financial transactions, social inter-
action, etc. This fact raises a problem to the traditional
graph learning algorithms due to its non-stationary and dy-
namic nature. The concept to be learned changes as the un-
derlying distribution that generates the data changes. These
changes make the learning model built on the historic data
inconsistent with the new data, and it becomes necessary

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD Workshop on Mining and Learning with Graphs (MLG). August 14,
2016. San Francisco, CA.
c© 2016 ACM. ISBN 123-4567-24-567/08/06.

DOI: 10.475/123 4

to update the model regularly. Detecting concept drift (or
concept change) is one of the core problems in data min-
ing. The increasing volume and velocity of data calls for
more efficient and accurate methods for identifying concept
change in a data stream. In order to handle concept drift
efficiently, a good detection method must detect the change
when it occurs, and decide which data to keep and which
data to discard [2].

Several effective methods for detecting concept drift over
data streams have been proposed during the past years [8].
Most of them assume that the data is received in a stream
of instance-label pairs {(x1, y1), . . . , (xt, yt), . . .}, where xt ∈
Rn is a fixed-size vector and yt belongs to a finite set Y.
However, these traditional approaches become infeasible when
dealing with graph streams, because previously-unobserved
subgraphs may appear at any time and as a result, the sub-
graph space may be expanding over time. We introduce a
novel Graph Entropy-based Method (GEM) to detect con-
cept drift in graph streams. We apply a sliding window
technique on the data stream and compute graph entropy
for the subgraphs in the window w.r.t. their class member-
ship. Different from most popular drift detectors that use
classification outputs (e.g., error rate) as indicators for de-
tecting concept change, our approach investigates the intrin-
sic properties of the data (i.e., subgraph distribution w.r.t.
class membership). Consequently, a series of entropy val-
ues is obtained while sliding the window on the stream by
moving one instance forward at each step. We then em-
ploy the Cumulative Sum (CUSUM) [9] technique on the
entropy sequence to find exactly where a significant shift
occurs between successive entropy values and thus to signal
concept change. Also, the proposed method is independent
of any learning algorithm, so GEM can be incorporated into
a graph classifier to make the learning process sensitive to
concept change and improve the classification performance.

The aim of this work is to present an effective method to
detect concept change for classification on streaming graphs.
Identifying the concept changes allows us to discard out-
dated information and rebuild the learning model with the
most relevant information. The specific contributions are:

• A new way to compute graph entropy based on a set
of graphs in a sliding window.

• The use of CUSUM as a measure to detect significant
deviation between successive entropy values.

• A novel method based on graph entropy to detect con-
cept drift in streaming graphs.

The rest of this paper is organized as follows. In Section 2
we give a brief review of related work. Some important def-
initions are described in Section 3. In Section 4, we propose
our graph entropy-based drift detection method. We intro-
duce the experimental setup in Section 5 and empirically
evaluate our approach in Section 6. The conclusion and fu-
ture work are presented in Section 7.

2. RELATED WORK

2.1 Concept Drift Detection
A variety of drift detection schemes have been developed

in the past. Drift Detection Method (DDM) [7], Early Drift
Detection Method (EDDM) [1] and Adaptive Windowing
(ADWIN) [2] are among the most representative and popu-
lar detectors. DDM monitors the probability distribution
of error rate generated by any online classification algo-
rithm. In periods of no change, the error should decrease
since more training examples will reduce the generalization
error. It keeps track of the lowest error rate and its stan-
dard deviation so far. When the error rate over the current
window exceeds the lowest threshold, a concept change is
declared and the classification model needs to be relearned.
EDDM behaves similar to DDM but uses the average dis-
tance between two successive errors and its standard devi-
ation instead. For a stationary data stream, the distance
between two consecutive classification errors will increase as
the prediction accuracy is improving. If the current distance
significantly exceeds the lowest distance, a concept drift is
signaled. EDDM has been shown to outperform DDM on
a gradual concept drifting data stream [1]. ADWIN uses a
variable-size sliding window to deal with distribution change
and concept drift in data streams. It maintains a window
W with the most recent examples, and checks if two sub-
windows of W have significantly different averages. If so,
a drift is signaled and the subwindow with older instances
is discarded. Additionally, the authors provide a theoretical
analysis about the bounds of false positive and false negative
rates.

Vorburger and Bernstein [13] present an entropy-based
measure to monitor concept drift in a reliable and noise-
tolerant manner. They utilize the entropy to quantify the
distribution inequality between two sliding windows con-
taining older examples and recent examples respectively. If
the distributions are equal, the entropy measure results in a
value of 1, and if they are absolutely different it results in
a value of 0. A similar approach in [5] adopts relative en-
tropy (known as Kullback-Leibler distance) to measure the
difference of distributions between two sliding windows on
multi-dimensional data streams.

2.2 Graph Entropy
Noble and Cook [10] developed a method to compute sub-

structure entropy based on the occurrences of n-vertex sub-
structures in a given graph. Given an n-vertex substructure,
they compute conditional substructure entropy, based on all
possible extensions to that substructure. This entropy mea-
sure has been used to quantify the regularity of graphs with
applications to anomaly detection. Graph entropy has been
used in [12] to find prominent nodes in graphs and to char-
acterize information flow in an organization. Dehmer and
Emmert-Streib [6] present a new definition of graph entropy
to measure the structural complexity based on local vertex

functionals obtained by calculating j-spheres via Dijkstra’s
algorithm.

Our method quantifies the information content of sub-
graphs in a sliding window by calculating a graph entropy
measure. It is quite different from DDM, EDDM and AD-
WIN. But it is similar to the work in [13] which also uses an
entropy measure. The authors deal with traditional learn-
ing cases in which a fixed-length feature vector is considered
to characterize an example in the data stream. However, it
becomes infeasible to be applied on graph streams since the
subgraph feature space keeps expanding when new graphs
continuously stream in.

3. BACKGROUND

3.1 Notation and Definition

Definition 1. A labeled graph is denoted by a 4-tuple,
i.e., G = (V,E,L, l), where

1) V = {v1, . . . , v|V |} is a set of nodes,

2) E ⊆ V × V is a set of edges,

3) L is a set of labels,

4) l : V ∪ E → L is a function assigning labels to nodes
and the edges.

Definition 2. Let G = (V,E,L, l) and G′ = (V ′, E′,L′, l′)
denote two labeled graphs. G is said to be a subgraph of
G′, i.e., G ⊆ G′, if and only if

1) V ⊆ V ′,

2) ∀v ∈ V, l(v) = l′(v),

3) E ⊆ E′,

4) ∀(u, v) ∈ E, l(u, v) = l′(u, v).

Definition 3. A graph stream, denoted as G, is a se-
quence containing an infinite number of graphs, i.e.,

G = {G1, G2, · · · , Gi, · · · }

Each graph is received in a streaming fashion and has an
associated class membership yi ∈ {±1}.

Graph Stream Classification: Given a graph stream G,
the goal of graph stream classification is to learn a discrimi-
native model from the graphs seen so far, i.e., {G1, · · · , Gi},
and use the model to predict the class label of the next in-
coming graph Gi+1.

3.2 Concept Drift in Graph Classification
Subgraphs are important components of a network and

they are frequently used as features to build learning models
to classify graphs [4]. Let F(G) denote a set of discrimina-
tive subgraphs for a graph G. According to the Bayesian De-
cision Theory, a classification can be described by the prior
distribution of the classes P (y) and the likelihood function
P (F(G)|y). The classification decision is then made by the
posterior probability:

P (y|G) = P (y|F(G)) =
P (y)P (F(G)|y)

P (F(G))
(1)

Formally, concept drift between two time stamps t1 and
t2 can be defined as [8]:

∃t1 6= t2, s.t., P (Gt1 , y) 6= P (Gt2 , y)

where P (Gt1 , y) denotes the joint distribution between G
and y at time t1. There are two types of drifts which have
been distinguished in the literature. Real concept drift is de-
fined as a change in the target concept (i.e., P (y|G)), while
virtual concept drift is defined as a change in data distri-
bution (i.e., P (G)) without affecting P (y|G) [8]. In this
paper, we mainly focus on real concept drift and refer to
it as concept drift. From formula (1), we may state that a
concept drift in graph classification is regarded as a change
in P (y|G).

4. FRAMEWORK
In this section, we introduce our graph entropy-based drift

detection method. The most relevant work is the entropy
measure proposed in [13]. However, the authors only deal
with traditional data points with fixed-length feature vec-
tors. A graph stream is quite different since the space of
subgraphs thought of as features keeps expanding when new
instances are streaming in. It is not feasible to predefine
a fixed-length feature vector consisting of these occurring
subgraphs. On the other hand, discovering F(G), the set of
discriminative subgraphs (e.g., frequent subgraphs, highly-
compressing subgraphs), is a time-consuming task, although
many efficient graph mining techniques have been developed
to do that.

We choose to utilize entropy to characterize the subgraphs’
distribution in a comprehensive and unified way. The en-
tropy measure is computed based on all subgraphs in a slid-
ing window over the data stream. We make similar assump-
tions as [13]:

• If the distribution of subgraphs w.r.t. class labels is not
changing, the entropy values will remain stable and no
concept drift occurs.

• If the distribution of subgraphs w.r.t. class labels is
changing, a significant shift in the entropy values will
be observed and concept drift occurs.

4.1 Graph Entropy
Entropy, as a measure of information content in a set,

has been widely used in various domains. But there is no
commonly used definition to compute graph entropy. We
employ a sliding window on a graph stream to compute the
conditional entropy of subgraphs inside the window w.r.t.
their class membership. Our entropy definition is based on
the distribution of subgraphs inside a fixed-size window W .
Since the data is received in an infinite streaming fashion,
we are not able to derive the exact probability distribution.
Instead, we estimate each subgraph’s probability by calcu-
lating the proportion of its instances inside a large enough
window. Let W denote a window containing several graphs,
W = {G1, · · · , G|W |}, and S = {s1, · · · , sn} denote a set of
subgraphs discovered from the graphs of W , the probability
of each subgraph si can be estimated using:

P (si) =
ri∑n
j=1 rj

where ri is the number of occurrences of si in W . In a super-
vised learning scenario, each graph Gi has a class member-
ship yi ∈ {±1}. Although we only consider 2-class learning
problems, all definitions can be extended to multiple-class
cases. In order to incorporate the class information into the
computation of graph entropy, we need to obtain the con-
ditional probability distribution of si. Since each si in the
window has two associated values, namely ri+ and ri−, de-
noting its number of occurrences respectively in positive and
negative examples, the conditional probability of si can then
be estimated using:

P (si|+) =
ri+∑n
j=1 rj+

, P (si|−) =
ri−∑n
j=1 rj−

Thus, the entropy of the subgraphs w.r.t. their class labels
in W can now be defined as:

e(W) = −
∑

y∈{±1}

P (y)

n∑
i=1

P (si|y)log2P (si|y) (2)

where P (y = +1) is the fraction of positive graphs in W ,
and P (y = −1) is the fraction of negative graphs in W .
Given graph stream G = {G1, · · · , Gi, · · · } a sequence of
entropy values E = {e1, · · · , ei, · · · } is generated by moving
the sliding window W one step forward over the stream.
Here, ei is the resulting entropy for the ith window which is
based on the subset {Gi, · · · , Gi+|W |−1} of graphs from G.

4.2 Concept Drift Detector
The series of entropy values obtained over a graph stream

indicates the subgraphs’ distribution w.r.t. the class labels
in each window. In a supervised learning setting, the amount
of uncertainty indicates the amount of new information in-
troduced when the learning process proceeds. As a result,
a large magnitude of deviation between entropy values im-
plies a concept drift. In other words, if the concept is stable
over time, the amount of uncertainty in the window remains
at a relatively low level and no significant shift occurs over
the entropy series. If concept drift occurs, the magnitude
of uncertainty starts to increase and results in a significant
increase in the entropy. To this end, we adopt Cumulative
Sum (CUSUM) on the entropy series to effectively detect
shifts of these entropy values.

CUSUM was first introduced by Page [11] and has been
used as a quality control technique for detecting change over
a sequence of data. A basic assumption for using CUSUM
is that the data complies with a normal distribution. Let
D = {D1, · · · , Di, · · · } denote the consecutive difference of
the entropy values, that is, Di = |ei − ei−1|. We assume
that D is drawn from a normal distribution with mean µ and
standard deviation σ. Particularly, µ is the target value that
needs to be controlled in the process. If there is no concept
drift, the entropy values remain stable and thus µ ideally
equals 0. We use a quantity Ci to record the cumulative
sum of the distance between each Di and µ:

Ci = max[0, Di − (µ+Ki) + Ci−1] (3)

in which the starting value is C0 = 0. Ki is usually called a
slack value which allows a small deviation from the target µ.
It is usually recommended to set Ki = kσi, where σi is the
standard deviation which can be estimated from the sub-
set {D1, · · · , Di}. When concept drift occurs, the increased
uncertainty will result in a jump in the value of Ci. If Ci

shifts upward to exceed a certain threshold H = hσi (H
is called the maximum allowed deviation), a change in the
distribution needs to be signaled. Using k = 0.5 and h = 5
generally enables CUSUM to tolerate a shift of about 1σi

from the target mean [9]. The point at which Ci > H in-
dicates that the process starts to be unstable at that point,
but it does not necessarily mean that concept drift occurs
at the same point. Therefore, another quantity Ni has been
introduced to indicate the possible position where concept
drift really happens.

Ni =

{
Ni−1 + 1 if Ci 6= 0
0 if Ci = 0

Ni is used to record the number of consecutive periods that
Ci has been nonzero. If Ci > H and thus a change is
signaled, the concept drift likely occurs at position i − Ni

[9]. Then the classification model needs to be reconstructed
based on the examples between i − Ni (known as warning
point) and i (known as drift point). Algorithm 1 lists the
detailed procedures of the proposed drift detection method.

Algorithm 1. Graph Entropy-based Method (GEM)
Input:
G = {G1, · · · , Gi, · · · }: a graph stream
|W |: sliding window size

Output:
DRFT: a list containing detected drift points
WARN: a list containing detected warning points

1: initialize E = {0},D = {0}, C = {0},N = {0}
2: set i = 1, start = 1, h = 5, µ = 0
3: while not at end of stream
4: W = {Gi, · · · , Gi+|W |−1}
5: calculate ei = e(W) using equation (2)
6: E = E ∪ {ei}
7: Di = |ei − ei−1|
8: D = D ∪ {Di}
9: σi = standard deviation of {Dstart, · · · ,Di}

10: calculate Ci using equation (3)
11: if Ci > 0
12: Ni = Ni−1 + 1
13: else
14: Ni = 0
15: end if
16: if Ci ≥ hσi %% a drift is signaled
17: drift = i+ |W |
18: warn = drift−Ni

19: append drift to DRFT, warn to WARN
20: Ci = 0, Ni = 0, start = i
21: end if
22: C = C ∪ {Ci}
23: N = N ∪ {Ni}
24: i = i+ 1
25: end while

4.3 Analysis
The entropy computation of our method is based on the

discovered subgraphs from the graph instances in a window.
However, discovering all subgraphs from a graph is imprac-
tical. We can specify a certain type of subgraph for com-
puting the entropy instead of finding all subgraphs from a
graph. Some recommended subgraph types are: node, edge,

clique, and n-length shortest path. In our experiments, we
choose to investigate the probability distribution of edges
in a graph instead of discovering the whole set F(G), since
edges are basic components of a graph and play significant
roles in connecting entities. Each edge is characterized by
the two endpoints’ labels and its edge label. If the edge is
directed, the direction needs to be considered in the char-
acterization. Compared with using F(G), using edges sig-
nificantly reduces the computational cost of entropy calcu-
lations. Let W denote a window containing |W | graphs,
W = {Gi, · · · , Gi+|W |−1}, then the computational complex-

ity of each window is O(
∑t=i+|W |−1

t=i |Et|), where |Et| is the
number of edges in Gt.

5. EXPERIMENTAL SETTING
There is little study on designing strategies to find concept

drift in graph data, especially for graph streams. Therefore,
no benchmark datasets in the literature are available to eval-
uate different drift detection methods on graph streams. We
generate several synthetic graph datasets and impose differ-
ent types of concept drift on them. We also choose one
real-world graph dataset which has been used extensively
in the literature for testing graph stream classification tech-
niques. Concept drifts may manifest in different forms [8],
but we have only considered two different patterns in our
experiments: abrupt and gradual.

5.1 Synthetic Data
SUBGEN1 is an artificial graph data generator. The in-

put for SUBGEN is a user-defined subgraph pattern, and
the output is a connected graph generated by starting with
the input patterns and then randomly adding nodes and
edges. We design four simple substructures as instances for
generating synthetic data consisting of undirected, labeled
graphs. The numbers of nodes and edges in each graph have
been set to 20 and 100 respectively. In Figure 1, the two

v1

v2

v3

v4v5

e1 e1

e1

e1

e1
e2

(a) positive instance

v2

v1

v3

v5v4

e1 e1

e1e1

e2

(b) negative instance

Figure 1: Instances used to generate S1.

instances have been used to generate the first dataset S1. It
contains 2000 graphs, in which half of them are generated
by embedding instances of (a) and another half generated
by embedding instances of (b). The graphs produced using
instances (a) are labeled as positive while the graphs pro-
duced using instance (b) are labeled as negative. Another
synthetic dataset S2 is generated by embedding the two in-
stances from Figure 2 in a similar way.

We then artificially generate two datasets with different
types of concept drift incorporated:

1http://ailab.wsu.edu/subdue/

v1

v2

v3

v4v5

e1 e1

e1

e1

e1
e2

e2

(a) positive instance

v1

v2

v3

v4v5

e1 e1

e1e2

(b) negative instance

Figure 2: Instances used to generate S2.

• SYN1. We introduce an abrupt concept drift into S1
by reversing the class membership of the second half
examples. Ideally, the concept drift will occur at the
middle position (i.e., the 1001st example).

• SYN2. S1 and S2 are concatenated together. The
ideal drift position will be the concatenation point (i.e.,
the 2001st example).

• SYNMIX. We merge the ending part of S1 and the
beginning part of S2 with mixing percentage 10%, 30%
and 50%. For instance, 10% from the 1701 − 1800
graphs in S1 are switched with 10% from the 201−300
graphs in S2; 30% from the 1801− 1900 graphs in S1
are switched with 30% from the 101−200 graphs in S2;
50% from the 1901 − 2000 graphs in S1 are switched
with 50% from the 1−100 graphs in S2. Then S1 and
S2 are concatenated together to create a data stream
with gradual concept drifts.

5.2 Real-World Data
In addition to the artificial data mentioned above, we also

conduct experiments on one real-world data source. The In-
ternet Movie Database (IMDb, www.imdb.com) is an online
source containing movies and the associated information,
such as actors, directors, etc. We collect a sample of IMDb
data consisting of 7,855 movies released in the United States
from 1990 to 2012, and construct a graph for each movie.
In a graph, each node denotes a movie’s ID, an actor’s ID
or a director’s ID, and every edge denotes the acted-by rela-
tionship between the movie and an actor or the directed-by
relationship between the movie and a director. Additionally,
we include the older movies acted by the same actors or di-
rected by the same directors into the graph to form more
connections. An example of IMDb graph data is shown in
Figure 3.

A graph stream is then created by feeding the movie graph
objects chronologically according to their release dates in the
United States. Three classification tasks are involved in our
experiments with artificially imposed concept changes:

• Box-Office. We define a movie as successful if its open-
ing weekend revenue is no less than $2 million. Our
task is to predict whether a newly released movie will
be successful or not. In the first half of the movie
stream, a successful movie is considered as a positive
example while an unsuccessful movie as a negative ex-
ample. But in the second half of the movie stream, we
reverse the class membership of each movie.

M1

M3

M4

D1

M2 A1

A2M5

A3

acted-by

acted-by

directed-by

acted-by

acted-by

acted-by

acted-by

acted-by

acted-by

acted-by

Figure 3: Graph representation for a movie (M1) in IMDb.
M1 is acted by actors A1, A2 and A3, and directed by di-
rector D1. M2 and M5 are movies directed by the same
director but released earlier than M1. Similarly, M3 and
M4 are older movies acted by the same actors.

• Genre. Comedy and Thriller\Crime are two top genres
in the IMDb dataset. There are 2,934 Comedy movies
and 2,224 Thriller\Crime movies (movies with both
labels are removed). In the first half of the stream,
our task is to classify a newly released movie into two
categories: Thriller\Crime or non-Thriller\Crime; in
the second half of the stream, our task is to classify
a newly released movie into another two categories:
Comedy or non-Comedy.

• REALMIX. We extract the first half of Box-Office data
and the second half of Genre data together, and then
mix them in a similar way as SYNMIX to form gradual
concept drifts.

5.3 Classification Algorithms
In order to evaluate the proposed drift detector, we com-

pare it with two drift detection methods, namely DDM [7]
and EDDM [1]. It is not the aim of the present work to com-
pare the performance of different classification algorithms.
Our goal is to demonstrate the advantage of our entropy-
based approach in error reduction when it is incorporated
into any online graph stream classifier. We choose two classi-
fiers: INCremental SVM learner (INCSVM) [14] which uses
an incremental SVM method to classify nodes or subgraphs
in a dynamic network, and DIscriminative Clique Hashing
(DICH) [3] technique which decomposes a compressed graph
into a number of cliques and extracts clique-patterns over
the stream as features. We incorporate the drift detectors
into these two algorithms’ learning progress. We vary the
window size in our experiments, i.e., |W | = {300, 400, 500}.

5.4 Evaluation Metrics
The overall classification error rate has been used to evalu-

ate the classifier’s prediction performance with the different
concept drift detection methods. It is defined as the total
number of incorrectly classified examples divided by the to-
tal number of examples in a stream. For abrupt concept
drift, we can identify clearly where the drift occurs. There-
fore, the detected drift positions will be another important
evaluation criterion. We use delay to denote the distance
between detected positions and correct positions. It repre-
sents how quick a system can react to a concept change.
The lower a delay is, the quicker the detector reacts. On the
other hand, for gradual concept change, it is hard to iden-

tify the exact drift position. In this case, the best evaluation
metric will be the classification error rate.

6. EXPERIMENTAL RESULTS

6.1 Abrupt Drift

6.1.1 Evaluation on Synthetic Data
Table 1 presents the values of delay for the two synthetic

datasets using different window sizes. We can find that all
the drift detectors succeed in detecting the concept change
with various delays. But the delays generated by GEM are
much lower than those generated by DDM and EDDM.

Table 1: Values of Delay on SYN1 and SYN2

SYN1 SYN2
Methods INCSVM DICH INCSVM DICH
DDM 28 395 122 423
EDDM 50 113 395 483
GEM(300) 5 5 5 5
GEM(400) 4 4 9 9
GEM(500) 3 3 16 16

Figure 4 shows the overall classification error rates for the
two classification algorithms with the three concept drift de-
tectors incorporated. We observe that both algorithms are
able to achieve better classification results (i.e., lower er-
ror rate) when combined with the proposed GEM approach.
Note that the lowest delay in detecting a concept drift does
not guarantee the lowest error rate. Because when a con-
cept drift is signaled, the learning model is rebuilt upon the
training graphs between a warn point and a drift point.

6.1.2 Evaluation on Real-World Data
Similar to what was done for evaluating the drift detec-

tors on the synthetic datasets, we conduct experiments on
the real-world data. The experimental results are shown in
Table 2 and Figure 5, respectively.

Table 2: Values of Delay on IMDb: Box-Office and Genre

Box-Office Genre
Methods INCSVM DICH INCSVM DICH
DDM 164 445 279 784
EDDM 670 812 864 1001
GEM(300) N/A N/A N/A N/A
GEM(400) N/A N/A N/A N/A
GEM(500) 100 100 100 100

In Table 2, we find that GEM failed to signal any drift po-
sitions when the window sizes are 300 and 400, but succeeded
in generating the minimum delays for the two prediction
tasks if the window size is set to 500. Therefore, a proper
window size is needed in order to effectively detect the drifts
and obtain the minimum delays. Since GEM was not able to
detect any drift when |W | = 300 or |W | = 400, the classifica-
tion error rates of GEM(300) and GEM(400) are actually the
error rates using the corresponding classifier without incor-
porating any drift detector (see Figure 5). However, when
a proper window size is chosen (i.e., |W | = 500), the two

INCSVM DICH
0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

E
rr

o
r

R
a
te

Overall Classification Error Rate on SYN1

DDM
EDDM
GEM(300)
GEM(400)
GEM(500)

(a) SYN1

INCSVM DICH

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

R
a
te

Overall Classification Error Rate on SYN2

DDM
EDDM
GEM(300)
GEM(400)
GEM(500)

(b) SYN2

Figure 4: Overall classification error rate on the synthetic
datasets for different concept drift detectors combined with
different classification algorithms.

classification algorithms with GEM can achieve their lowest
error rates, respectively.

6.2 Gradual Drift
We investigate the performance in detecting concept drifts

from a gradual changing environment. Because of the nature
of the two mixed datasets, we know that concept drifts will
occur somewhere around the concatenation position, but we
have no idea where exactly those drifts are located. There-
fore, we do not calculate the values of delay for each algo-
rithm. The only metric for this situation is the classification
error rate. We record the error rates obtained from each
algorithm in Table 3. The results for GEM were obtained
by setting |W | = 500.

Table 3: Overall classification error rate

SYNMIX REALMIX
Methods INCSVM DICH INCSVM DICH
DDM 0.190 0.480 0.372 0.360
EDDM 0.202 0.488 0.344 0.322
GEM(500) 0.182 0.472 0.328 0.330

INCSVM DICH
0.30

0.35

0.40

0.45

0.50

0.55
E
rr

o
r

R
a
te

Overall Classification Error Rate on IMDB (Box-Office)

DDM

EDDM

GEM(300)

GEM(400)

GEM(500)

(a) Box-Office

INCSVM DICH
0.270

0.275

0.280

0.285

0.290

0.295

0.300

0.305

0.310

E
rr

o
r

R
a
te

Overall Classification Error Rate on IMDB (Genre)

DDM

EDDM

GEM(300)

GEM(400)

GEM(500)

(b) Genre

Figure 5: Overall classification error rate on IMDb (Box-
Office and Genre) for different concept drift detectors com-
bined with different classification algorithms.

Overall, these experimental results validate that the pro-
posed drift detection method can achieve improved classi-
fication performance with proper choice of its parameters.
Unlike DDM and EDDM, GEM characterizes the intrinsic
properties of the graph data and detects concept change
by investigating the statistical information of the subgraphs
instead of relying on the classification algorithms’ outputs.
The results also demonstrate that GEM enables the stream
classifiers to react more quickly compared to other drift de-
tectors when a concept change occurs, and thus reduces clas-
sification errors.

7. CONCLUSION
We present a novel framework for studying the problem

of detecting concept drift on graph streams. Our detec-
tion method is based on graph entropy measured inside a
sliding window. We compute a series of entropy values by
moving the window on a data stream. CUSUM is utilized in
our method to signal concept change by detecting significant
shift between successive entropy values. The experimental
results obtained from several datasets show that the pro-
posed approach outperforms the competing methods, which
fully demonstrate the effectiveness of our method in detect-

ing concept drift and reducing classification errors.
Our future work will include exploring the pros and cons

of the proposed method by conducting comparisons with
more state-of-the-art drift detectors. We will also explore
an intelligent way to set the size of the sliding window adap-
tively in order to reduce memory usage. Furthermore, we
will develop an elegant way to estimate the probabilities of
subgraphs used in the entropy computation.

8. ACKNOWLEDGMENTS
This material is based up on work supported by the Na-

tional Science Foundation under Grant No. 1318913.

9. REFERENCES
[1] M. Baena-Garćıa, J. del Campo-Ávila, R. Fidalgo,

A. Bifet, R. Gavaldà, and R. Morales-Bueno. Early
drift detection method. In ECML PKDD Workshop
on Knowledge Discovery from Data Streams, 2006.

[2] A. Bifet and R. Gavalda. Learning from time-changing
data with adaptive windowing. In SIAM International
Conference on Data Mining, 2007.

[3] L. Chi, B. Li, and X. Zhu. Fast graph stream
classification using discriminative clique hashing. In
Advances in Knowledge Discovery and Data Mining,
pages 225–236. Springer, 2013.

[4] D. J. Cook and L. B. Holder. Mining graph data. John
Wiley & Sons, 2006.

[5] T. Dasu, S. Krishnan, S. Venkatasubramanian, and
K. Yi. An information-theoretic approach to detecting
changes in multi-dimensional data streams. In
Symposium on the Interface of Statistics, Computing
Science, and Applications, 2006.

[6] M. Dehmer and F. Emmert-Streib. Structural
information content of networks: Graph entropy based
on local vertex functionals. Computational Biology and
Chemistry, 32(2):131–138, 2008.

[7] J. Gama, P. Medas, G. Castillo, and P. Rodrigues.
Learning with drift detection. In Advances in Artificial
Intelligence–SBIA, pages 286–295. Springer, 2004.

[8] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation.
ACM Computing Surveys (CSUR), 46(4), 2014.

[9] D. C. Montgomery. Introduction to statistical quality
control. John Wiley & Sons, 2007.

[10] C. C. Noble and D. J. Cook. Graph-based anomaly
detection. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pages 631–636, 2003.

[11] E. S. Page. Continuous inspection schemes.
Biometrika, pages 100–115, 1954.

[12] J. Shetty and J. Adibi. Discovering important nodes
through graph entropy: The case of Enron email
database. In Proceedings of the 3rd International
Workshop on Link discovery, pages 74–81. ACM, 2005.

[13] P. Vorburger and A. Bernstein. Entropy-based concept
shift detection. In IEEE International Conference on
Data Mining, pages 1113–1118, 2006.

[14] Y. Yao and L. Holder. Scalable SVM-based
classification in dynamic graphs. In IEEE
International Conference on Data Mining, pages
650–659, 2014.

