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ABSTRACT
We address a semi-supervised learning problem of identify-
ing all latent members of a local community from very few
labeled seed members in large networks. By a simple and ef-
ficient sampling method, we conduct a comparatively small
subgraph encompassing most of the latent members such
that the follow-up membership identification could focus on
an accurate local region instead of the whole network. Then
we look for a sparse vector, a relaxed indicator vector rep-
resenting the subordinative probability of the corresponding
nodes, that lies in a local spectral subspace defined by an
order-d Krylov subspace. The subspace serves as a local
proxy for the invariant subspace spanned by leading eigen-
vectors of the Laplacian matrices. Based on Rayleigh quo-
tients, we relate the local membership identification task as
a local RatioCut or local normalized cut optimization prob-
lem, and provide some theoretical justifications.

We thoroughly explore different probability diffusion meth-
ods for the subspace definition and evaluate our method on
four groups with a total of 28 representative LFR benchmark
datasets, and eight publicly available real-world networks
with labeled ground truth communities across multiple do-
mains. Experimental results exhibit the effectiveness and
robustness of the proposed algorithm, and the local spectral
communities perform better than those from the celebrated
Heat Kernel diffusion [10] and the PageRank diffusion [1].

CCS Concepts
•Mathematics of computing → Graph algorithms;
•Information systems→Clustering; •Human-centered
computing→ Social networks; •Computing method-
ologies → Spectral methods;
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1. INTRODUCTION
Communities are regarded as densely linked components

with sparser external connections [21]. There are many sit-
uations in which we are interested to find the social groups
or communities for a small set of observed members. Intu-
itively, the latent members are very close to the exemplary
members as evaluated by the shortest paths, especially when
the community is small with dozens or a hundred of member-
s, which is the common scale in real-world networks [14]. In
other words, they are in the local region around the seeding
nodes.

Many seed set expansion methods are proposed for find-
ing the “local community” in the local region around the
seeds [2, 11, 10]. A main stream for the seed set expan-
sion is to do probability diffusion from the seeds. PageR-
ank [1, 11], Heat Kernel [10, 5] and local spectral [3, 7, 15]
are three main techniques for the probability diffusion. A-
mong which, the local spectral method is a newly proposed
technique that exhibits high performance for the local com-
munity detection task. Classical spectral clustering methods
extract disjoint communities from the leading eigenvectors
of the graph Laplacian matrix. Motivated by the classical
spectral method, local spectral algorithms [7, 15] seek a s-
parse indicator vector containing the seeds and lies in the
local spectral subspace. By starting from different seeds
they detect overlapping communities. Though very success-
ful experimentally, there is still very little understanding of
the principles, and unlike PageRank methods that have at-
tracted much attention in the literature, the local spectral
methods are not yet fully explored.

We make progress on the LOSP (Local Spectral) algo-
rithm [7], and propose a LOSP++ algorithm. LOSP++ im-
proves the local sampling method of LOSP, defines a simpli-
fied local spectral subspace basing on the Krylov subspace,
and finds the best probability diffusion way by exploring
several random walk diffusion methods with different diffu-
sion degrees. LOSP++ exhibits high accuracy even after
removing the pre-processing of strengthening the seeds and
the post-processing of reseeding iteration adapted by LOSP.
Our main contributions include:

• We focus on the core of the local spectral methods,
systematically define and thoroughly investigate vari-
ants of the spectral diffusion methods and simplify the
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subspace generation. For the four spectral diffusion
methods, we show that light lazy random walk and
lazy random walk are very stable for different param-
eters, and outperform the standard and personalized
PageRank diffusions.
• Based on the Rayleigh quotients related to the Lapla-

cian matrices, we provide a theoretical analysis for the
soundness of the local spectral method.
• LOSP++ shows the robustness on parameter selection

for subspace dimension and random walks steps.

In the end, we provide a diverse set of computational ev-
idence on 28 synthetic benchmark graphs and eight real
world social and Biological networks that LOSP++ yield-
s much higher accuracy as compared with the well-known
personalized PageRank diffusion algorithm pprpush [1] and
the venerable Heat Kernel algorithm hk-relax [10].

2. RELATED WORK
A considerable amount of literature has been published on

finding local communities in large networks [2, 11, 10, 16]. It
is natural to apply the seed set expansion method initially
designed for the global community structure detection to
uncover the local community structure from a few observed
seed members.

Local seed set expansion. The random walk technique
has been extensively adopted as a subroutine for locally ex-
panding the seed set [2]. PageRank [1, 22, 11], Heat Ker-
nel [10, 4, 5] and local spectral [3, 16, 15, 7] are three main
techniques for probability diffusion.

Spielman and Teng[18] use degree-normalized, personal-
ized PageRank (DN PageRank) with respect to the start
seed and do truncation on small values, leading to the PageR-
ank Nibble method[1]. And the DN PageRank is adopted by
several PageRank-based clustering algorithms [2, 22], which
are competitive with a sophisticated and popular algorithm
METIS [9]. Kloumann and Kleinberg [11] evaluate different
variations of PageRank, and find that the standard PageR-
ank yields better performance than the DN PageRank.

The Heat Kernel provides another local graph diffusion [4,
5, 10], and involves the Taylor series expansion of the matrix
exponential of the random walk transition matrix. Chung
et al. analyze the property of this diffusion theoretically [4],
and propose a randomized Monte Carlo method to estimate
the diffusion [5]. Kloster et al. propose a deterministic
method that uses coordinate relaxation on an implicit linear
system that estimates the Heat Kernel diffusion, and show
that Heat Kernel outperforms the personalized PageRank
by finding smaller sets with substantially higher F1 mea-
sures [10].

Spectral methods have been popularly used to extract dis-
joint communities from a few leading eigenvectors of the
graph Laplacian related matrix [19, 8]. Recently, there has
been a growing interest in adapting the spectral method to
mine the local structure around the seed set [3, 16]. Machael
et al. [16] introduce a locally-biased analogue of the second
eigenvector for extracting local properties of data graphs
near an input seed set, and apply their method for a semi-
supervised image segmentation and a local community ex-
traction by finding a sparse-cut around the seed set on a
small social network.

He et al. [7] and Li et al. [15] extract the local communi-
ty by seeking a sparse vector from the local approximate
spectral subspaces using `1 norm optimization, and pro-

pose LOSP and LEMON respectively. They apply a power
method for the subspace iteration using standard random
walk on a modified graph with a self loop on each node,
which we call the light lazy random walk. To get relatively
small subgraph containing nodes around the seeds of inter-
est, LOSP samples via BFS and LEMON samples via ran-
dom walk. LOSP [7] strengthens the initial seeds by adding
nodes along a shortest path for each pair of seeds if the path
length is no greater than a small value like 3. Both LEMON
and LOSP apply a reseeding iteration to improve the detec-
tion accuracy.

The LOSP++ we proposed is similar in spirit to LOSP.
LOSP++ adopts a more effective local sampling method,
and extracts the local community structure from a Krylov
subspace which is much more efficient for the subspace cal-
culation. We thoroughly evaluate different local spectral
diffusion methods, do the parameter study on the diffusion
degrees, and provide theoretical analysis for the local spec-
tral method basing on the Rayleigh quotients and quadrat-
ic forms. We also remove the pre-processing procedure of
strengthening the initial seeds and the post-processing pro-
cedure of the reseeding iterations. These slimming strategies
makes LOSP++ at least three times quicker, as LOSP usu-
ally takes at least several rounds of reseeding. Nevertheless,
on the five SNAP real datasets that LOSP reported its re-
sults, we obtain considerably higher accuracy.

Metrics for bounding the community. All seed set
expansion methods need a stopping criterion for defining the
community boundary unless the size of the target communi-
ty is known as a budget. Conductance is commonly recog-
nized as the best stopping criterion due to its intrinsic local
properties [10, 20, 22]. Yang and Leskovec provide widely-
used real world datasets with labeled ground truth[22], and
find that conductance and triad-partition-ratio (TPR) are
the two stopping rules yielding the highest detection accu-
racy. The Heat Kernel method also adopts conductance as
the stopping rule for the local community [10]. He et al. [7]
propose two new metrics, TPN and nMod, and compare
them with conductance, modularity and TPR. They find
conductance and TPN consistently outperforms other met-
rics including modularity, TPR and nMod.

Seeding strategies. The seeding strategy is a key com-
ponent for seed set expansion algorithms. Local community
detection tasks provide some known members as the prior for
the semi-supervised learning. Kloumann and Kleinberg[11]
compare random seeds with high degree seeds, and discov-
er that random seeds are superior to high degree seeds, and
they suggest domain experts provide seeds with a diverse de-
gree distribution. He et al. [7] compare low degree, random,
high triangle participation (number of triangles the seed in-
volved inside the community) and low escape seeds (judged
by probability reserved after short random walks), and find
all four types of seeds yield almost the same accuracy. They
observe that low degree seeds spread out the probabilities s-
lowly and better preserve the local information, and random
seeds are similar to low degree seeds due to the power law
distribution of the node degrees. High triangle participation
seeds and low escape seeds follow another philosophy in that
they choose seeds more cohesive to the target community.

3. PRELIMINARIES

3.1 Problem formulation



Consider a connected, undirected graph G = (V,E) with
|V | = n nodes and |E| = m edges. Let A ∈ {0, 1}n×n be
the associated adjacency matrix whose ij−entry is aij , I the
identity matrix, and e the vector of all ones. Let d = Ae be
the vector of node degrees, and D = diag(d) the diagonal
matrix of node degrees. Let s ∈ {0, 1}n be a binary indicator
vector representing the exemplary members S ⊂ V .

We formalize the local community finding task as a semi-
supervised learning problem. Let T = (Vt, Et) (S ⊂ Vt ⊂ V ,
|Vt| � |V |) be the labeled ground truth community. We
want to identify the remaining latent members in the target
community T . The identification accuracy is evaluated by
the F1 score for the detected community C = (Vc, Ec).

F1(C, T ) =
2|Vc ∩ Vt|
|Vc|+ |Vt|

.

which is the harmonic mean of precision and recall. See
[7] for details of the definition. Then we could formalize
this semi-supervised learning problem as an optimization
problem:

max F1(C, T )

s.t. (1) S ⊂ Vc ⊂ V
(2) C = (Vc, Ec) is connected

Whether C is connected could be judged by its algebraic
connectivity, the second smallest eigenvalue of its Laplacian
matrix Lc = Dc −Ac.

Further, when the size of the target community is also
known as a budget, which is reasonable as we may want to
extract the target community of a given scale for the seed
members, we could formalize the problem as follows.

max F1(C, T )

s.t. (1) S ⊂ Vc ⊂ V
(2) |Vc| = |Vt|
(3) C = (Vc, Ec) is connected

3.2 Datasets
To thoroughly evaluate the performance of the proposed

algorithm, we consider four groups with a total of 28 synthet-
ic datasets, 5 SNAP datasets in social, product, or collabo-
ration domains, and 3 biology networks for a comprehensive
evaluation on the proposed local spectral algorithm.

3.2.1 LFR Benchmark Graphs
Lancichinetti, Fortunato, and Radicchi [13, 12] proposed

an algorithm for generating LFR1 benchmark graphs with a
built-in community structure, and simulate properties of real
networks accounting for heterogeneity of node degree and
community size distributions. In a recent survey paper, Xie
et al. [21] performed a thorough performance comparison of
different global overlapping community detection algorithms
on LFR benchmark datasets.

We adopt the same set of parameter settings used in the
survey paper for evaluating different community detection
algorithms [21] and generate four groups with a total of 28
LFR benchmark graphs. Table 1 summarizes the parame-
ter settings we used for the LFR datasets. Among which
the mixing parameter µ has a big impact on the network
topology, and it controls the average fraction of neighbor-
ing nodes that do not belong to any community for each
node. µ is usually set to be 0.1 or 0.3 and the detection
accuracy usually decays for a larger µ. b and s provide two

1http://santo.fortunato.googlepages.com/inthepress2

Parameter Description
n = 5000 number of nodes in the graph
µ = 0.3 mixing parameter
d̄ = 10 average degree of the nodes
dmax = 50 maximum degree of the nodes
s : [10, 50], b : [20, 100] range of the community size
τ1 = 2 node degree distribution exponent
τ2 = 1 community size distribution exponent
om ∈ {2, 3..., 8} overlapping membership
on ∈ {500, 2500} number of overlapping nodes

Table 1: Parameters for the LFR benchmarks.

ranges of typical community sizes, big and small. Each node
belongs to either one community or om overlapping commu-
nities, and the number of nodes in overlapping communities
is specified by on. A larger om or on indicates more overlaps
that are harder for the community detection tasks.

For four groups of configuration basing on the community
size and on, we vary om from 2 to 8 to get seven networks
in each group. Denote them as:

1) LFR s 0.1 for {s : [10, 50], on = 500};
2) LFR s 0.5 for {s : [10, 50], on = 2500};
3) LFR b 0.1 for {b : [20, 100], on = 500};
4) LFR b 0.5 for {b : [20, 100], on = 2500}.

3.2.2 Real-world Networks
We consider five real-world network datasets with labeled

ground truth from the Stanford Network Analysis Project
(SNAP)2 and three genetic networks with labeled ground
truth from the Isobase website3.

• SNAP: The five SNAP networks, Amazon, DBLP,
LiveJ, YouTube, Orkut, are in the domains of so-
cial, product, and collaboration [22]. We preprocess
the ground truth to remove identical copies of ground
truth communities.
• Isobase: The three genetic networks from the Isobase

website describe the interactions between proteins. H-
S describes these interactions in humans, SC in S.
cerevisiae, a type of yeast, and DM in D. melanogaster,
a type of fruit fly. Such networks are interesting as
communities may correspond to different genetic func-
tions, such as metabolism regulation.

Table 2 summarizes the networks and their ground truth
communities. We calculate the average and standard devi-
ation of the community sizes, and the average conductance.

Network Ground truth communities
Name #Nodes #Edges Avg. ± Std. Size Avg. Cond.
Amazon 334,863 925,872 14 ± 20 0.07
DBLP 317,080 1,049,866 37 ± 356 0.40
LiveJ 3,997,962 34,681,189 29 ± 65 0.36
YouTube 1,134,890 2,987,624 21 ± 58 0.83
Orkut 3,072,441 117,185,083 242 ± 418 0.73
DM 15,326 486,970 215 ± 741 0.88
HS 10,296 54,654 166 ± 258 0.88
SC 5,523 82,656 159 ± 208 0.90

Table 2: Statistics for real-world networks and their
ground truth communities.

2http://snap.stanford.edu
3http://groups.csail.mit.edu/cb/mna/isobase/



4. SPECTRAL DIFFUSION

4.1 Local sampling
In large networks with millions or billions of nodes, we

first apply a heuristic method to sample a subgraph with
thousands of nodes around the seeds and then do member-
ship identification on the small subgraph rather than on the
whole network. We need the subgraph to be large enough
to contain most of the latent members, but not too large to
contain many irrelevant nodes. How to sample plays a key
role in the follow-up step of identifying the latent members
effectively and efficiently.

According to the small world phenomenon and “six de-
grees of separation”, most members should be at most two
or three steps far away from the seed members if we want
to identify a small community of size hundreds. If we apply
a short random walk to expand the subgraph, the subgraph
will be much larger than we expected due to some very pop-
ular nodes with thousands of neighbors in the large network.
Thus, we mainly use BFS and filter some very popular n-
odes during the BFS expansion, then consider a short ran-
dom walk as the post processing if the sampled subgraph
surpasses our upper bound threshold.

Starting from each seed sk, at each round we do a one-step
BFS and use a Filter procedure on the frontiers to choose
high inward ratio nodes (evaluated by the fraction of inward
edges to the BFS subgraph) until the total out-degree is
greater than 3000. We do two rounds of such BFS and
Filter, and add one more round BFS and Filter if we have
fewer than N1 nodes. N1 is set to 300 for Orkut and 30
for other real world datasets. Then we conduct one more
step of BFS on the selected nodes, some very popular nodes
filtered by previous expansion may still be included by this
step. In the end, we union all BFS subgraphs obtained from
each seed, and use k = 3 steps of random walk to filter some
low probability nodes if the amalgamated subgraph contains
more than N2 = 5000 nodes. All parameters are determined
experimentally by considering the statistics of the networks
and the ground truth shown in Table 2.

For simplicity of notation, we denote the sampled sub-
graph as G = (V,E) in the following discussion, and extract
the community from this comparatively small subgraph in-
stead of the original large network. Experiments in Section 5
will show that the above sampling method yields a subgraph
which is only a 0.09% fraction of the original network but
covers 96% of the nodes in the ground truth communities
on average. This pre-processing procedure largely reduces
the computation load for the follow-up community detection
and guarantees the detection accuracy.

4.2 Spectra and quadratic forms
Let L = D − A be the Laplacian matrix of G, and the

two normalized graph Laplacian matrices are
Lrw = I−Nrw = D−1L,

Lsym = I−Nsym = D− 1
2 LD− 1

2 ,
where Nrw = D−1A is the transition matrix, and Nsym =

D− 1
2 AD− 1

2 is the normalized adjacency matrix. The eigen-
value decompositions of the Laplacian matrices are closely
related to minimum cuts related to conductance optimiza-
tion, and give rise to the success of spectral clustering.

Let y ∈ {0, 1}n be a binary indicator vector representing
a community C. We can express some properties of C via
quadratic forms [3]:

• number of nodes in C: yTy
• number of edges in C: 1

2
yTAy

• total degree of nodes in C: Vol(Ac) = yTDy
• number of cutting edges from C to the remainder of

the graph: yTLy = 1
2

∑n
i,j=1 aij(yi − yj)

2

If we are looking for a minimum cut subgraph contain-
ing the seeds in the scale of the ground truth community
T = (Vt, Et), the problem could be written in a quadratic
optimization form:

min yTLy

s.t. (1) yTy = |Vt|, (2) yi ∈ {0, 1}, (3) yi = 1, i ∈ S.
The Rayleigh quotients related to the Laplacian matrices

and the indicator vector y are intimately tied to the com-
munity finding task and the spectra of the corresponding
matrix [3].

1) Local RatioCut. The Rayleigh quotient R(L,y) =
yTLy
yTy

indicates the fraction of cutting edges to the com-

munity size, which is related to the RatioCut for spectral
clustering [6]. Let L = QΛQT be the eigen decomposition,
where Q is an orthonormal matrix and Λ = diag(λ1, ...λn),
λ1 ≤ ... ≤ λn. R(L,y) is the weighted average of the eigen-
values

R(L,y) =
yTLy

yTy
=

∑n
i=1 λix

2
i∑n

i=1 x
2
i

, (1)

where xi = vT
i y is the projection coordinate of y on the ith

eigenvector vi. Thus R(L,y) ∈ [λmin, λmax]. If we want
to minimize the cut as compared with the internal nodes
in community C, i.e. to minimize R(L,y), the indicator
vector y should be very close to the dominant eigenvectors
having smaller eigenvalues. This leads to our idea of finding
a sparse indicator vector containing the seeds in the span of
the dominant eigenvectors with smaller eigenvalues of L.

2) Local NCut. The conductance Φc of community C =
(Vc, Ec) could be written as a generalized Rayleigh quotient,
which is related to the normalized cut, Ncut, for spectral
clustering [17].

R(L,D,y) =
yTLy

yTDy
. (2)

As R(L,D,y) = R(Lsym,D
1
2 y), conductance Φc is in

the range of the eigenvalues of Lsym. Similarly, if we want
to minimize the conductance of community C, the scaled

indicator vector D
1
2 y should be very close to the dominant

eigenvectors with smaller eigenvalues of Lsym.
According to the spectral clustering theory [19], λ is an

eigenvalue of Lrw with eigenvector v if and only if λ is an
eigenvalue of Lsym with eigenvector D1/2v:

Lrwv = λv iff Lsym(D
1
2 v) = λ(D

1
2 v).

So the indicator vector y should be very close to the domi-
nant eigenvectors of Lrw. This leads to our idea of finding
a sparse indicator vector containing the seeds in the span of
the dominant eigenvectors with smaller eigenvalues of Lrw.

min |y|0 = |y|1 = eT y

s.t. (1) ∃x,y = Vdx, (2) yi ∈ {0, 1}, (3) yi = 1, i ∈ S.
Vd is formed by the dominant eigenvectors of Lrw and e

the vector of all ones. The objective is in `0 norm for mini-
mizing the number of nonzero elements, which is equivalent
to the `1 norm when elements of y are restricted to 0 or 1.

4.3 Spectral diffusion
As Lrw = I−Nrw, the eigenvalue decompositions of the



Laplacian matrices are also closely related to expansion of
rapid mixing of random walks. As

Lrwv = (I−Nrw)v = λv ⇔ Nrwv = (1− λ)v,
Lrw and Nrw share the same set of eigenvectors and the
corresponding eigenvalue of Nrw is 1 − λ where λ is the
eigenvalue of Lrw. Equivalently, we could find a sparse indi-
cator vector containing the seeds in the span of the dominant
eigenvectors with larger eigenvalues of Nrw.

Further, instead of using the eigenvalue decomposition,
we consider short random walks for the probability diffu-
sion starting from the seed set to get the “local spectra”.
We define several variants of the spectral diffusion based on
different transition matrices for the random walks.

1) Standard Random Walk. The standard random
walk uses the transition matrix Nrw for the probability dif-
fusion.

Nrw = D−1A (3)
2) Light Lazy Random Walk. Light lazy random walk

keeps some probability at the current node for the random
walks.

Nrw = (D + αI)−1(αI + A) (4)
where α ∈ N0+. α = 0 degenerates to the standard random
walk and α = 1, 2, 3, ... corresponds to a random walk in the
modified graph with 1, 2, 3, ... loops at each node.

3) Lazy Random Walk.

Nrw = (D + αD)−1(αD+A) =
α

1 + α
I+

1

1 + α
D−1A (5)

where α ∈ [0, 1]. E.g. α = 0.1 corresponds to a random
walk that always retains 0.1

1+0.1
probability on the current

nodes during the diffusion process. α = 0 degenerates to
the standard random walk.

4) Personalized PageRank.
Nrw = αS + (1− α)D−1A (6)

where α ∈ [0, 1] and S the diagonal matrix with binary in-
dicators for the seed set S. E.g. α = 0.1 corresponds to a
random walk that always retains 10 percent of the proba-
bility on the seed set. α = 0 degenerates to the standard
random walk.

One step of random walk is defined as NT
rwp for a prob-

ability vector p, and the probability density for a random
walk of length k is given by a Markov chain

pk = NT
rwpk−1 = (NT

rw)kp0

where p0 is the initial probability density evenly assigned on
the seeds. Instead of using the eigenvalues and eigenvectors
as the “global spectra”, we conduct short random walks for
the “local spectra” representing the local structure around
the seeds. Different random walks yield different local spec-
tral diffusions.

4.4 Local spectral clustering
Local Spectral Subspace. Instead of using the invari-

ant subspace spanned by the leading eigenvectors of Nrw, we
define the invariant subspace approximation on an order-d
Krylov subspace.

V
(k)
d = [pk,pk+1, ...,pk+d−1] (7)

Here k and d are some modest numbers. This local spectral
subspace is essentially the same as the definition of LOSP [7],
which is defined based on subspace iterations. But our def-
inition is simplified and also more efficient for the subspace
calculation.

We define variants of the local spectral subspaces based on
different local spectral diffusions as defined in Section 4.3. A
thorough investigation on different local spectral diffusions

is provided in Section 5.

Local Community Detection. We relax the indicator
vector y to be in [0, 1] and look for a vector in the local
spectral subspace by solving a linear programming problem:

min |y|1 = eT y

s.t. (1) ∃x,y = V
(k)
d x, (2) y ≥ 0, (3) yi ≥

1

|S| , i ∈ S.

where e is the vector of all ones. This is an `1 norm ap-
proximation for finding a sparse vector indicating a small

community containing the seeds with y in the span of V
(k)
d .

y ≤ 1 is not required for the minimization on y. yi indicates
the belonging likelihood of node i in the target community.
We then sort the values in y in the non-descending order
and select the corresponding |Vt| nodes with the higher be-
longing likelihood as the output community.

A relaxed version of the `1 norm [7] requires the indicator
vector to contain at least some seeds, and relaxes constraint
(3) to be sTy ≥ 1 where s is the binary indicator vector
representing the seeds. Another alternative is to solve a
quadratic programming problem and replace the objective

by yTLy or (D
1
2 y)TLsym(D

1
2 y) but this involves compu-

tations with the Laplacian matrices.

5. EXPERIMENTAL RESULTS
We implement LOSP++ in Matlab and thoroughly com-

pare LOSP++ with state-of-the-art localized community find-
ing algorithms on the 28 LFR datasets as well as the eight
real world networks across multiple domains. For the five S-
NAP datasets, we randomly locate 500 labeled ground truth
communities on each dataset, and randomly pick three ex-
emplary seeds from each target community. For the 28 L-
FR datasets and the three Biology datasets, we deal with
every ground truth community and randomly pick three ex-
emplary seeds from each ground truth community. We do
sampling as a preprocessing for the real data, and directly
apply the local spectral method without sampling on the 28
LFR benchmarks as there are only n = 5000 nodes for each
network.

5.1 Parameter setup
Some modest values for the number of random walk steps

k and the subspace dimension d are needed such that the
probability spreads out to all members in the local commu-
nity but doesn’t reach the global stationary probability. We
did parameter study on all datasets, and found that d = 2
and k = 2 perform the best in general. Figure 1 illustrates
the F1 scores for different (k, d) combinations on Amazon.
By fixing the random walk steps to 2, Figure 2 shows that
d = 2 yields the best for all real networks.

5.2 Compare with local spectral methods
For related works in finding localized community from the

local spectral subspace, we show the progress of LOSP++
as compared with LEMON [15] and LOSP [7].

Sampling. LEMON and LOSP also perform sampling as
a preprocessing on large networks. LEMON samples based
on random walks while LOSP samples based on BFS search.
Table 3 provides statistics after applying sampling method
on the SNAP networks and compares the sampling quality
with LEMON and LOSP. Coverage ratio indicates the av-
erage fraction of ground truth covered by the sampled sub-
graph, and sampling rate indicates the average fraction of



subgraph size as compared with the original network scale.
Results show that LOSP++ has a higher coverage ratio with
reasonable sample size, covering about 96% ground truth
with a small sampling rate (the fraction of sampled subgraph
as compared with the original network) of less than one in
thousand on average. As compared with LOSP, LOSP++
covers considerably more nodes and increase the coverage
ratio significantly by 10 percent.

Local community detection. Figure 3 shows the de-
tection accuracy on SNAP datasets. In order to remove
the impact of different methods in finding a local minimum,
we use the ground truth size as a budget for three algo-
rithms. LOSP++ improves the detection accuracy as com-
pared with the labeled ground truth, especially on LiveJ and
Orkut. Note that LOSP++ hasn’t added the reseeding pro-
cess, while LEMON and LOSP both use reseeding to further
improve the detection quality.

5.3 Evaluation on spectral diffusions
We thoroughly evaluate different spectral diffusion meth-

ods: light lazy, lazy and personalized random walks (RW)
with different α parameters on all datasets. Note that the
three variants all degenerates to the standard RW when
α = 0. Figure 4 shows the average F1 scores on the sampled
500 ground truth for each SNAP network. Results show
that:

• LOSP++ is robust for different spectral diffusion meth-
ods using different α parameters.
• Light lazy RW and lazy RW perform better than the

standard RW, and the standard RW performs better
than the personalized RW.
• Parameter α has very little impact for light lazy, be-

ing stable at the F1 score for each of the five SNAP
datasets.
• For the light lazy RW and lazy RW, the average F1

score increases slightly with a higher α. The rising
trend is more apparent for YouTube.
• The detection accuracy decays with a higher α for the

personalized RW. α = 0.1 or 0.15 performs the best,
which achieves the same score as that of standard RW.
One exception is on YouTube.

Experiments on the four groups of LFR datasets show
similar results. LOSP++ is very stable for light lazy and
lazy, and the quality decays for personalized RW when α
increases. To save space, we only show in Figure 5 the trends
for the seven networks in group LFR s 0.5, which embed
smaller communities with more overlaps.

Experiments on the three Biology datasets, as shown in
Figure 6, also witness the stabilization of LOSP++ on light
lazy RW and lazy RW, and there is some fluctuation on the
personalized RW.

5.4 Clusters extracted vs. ground-truth
For the final comparison, we thoroughly evaluate LOSP++

on all datasets with two venerable local diffusion algorithms,
HK for hk-relax [10] and PR for pprpush [1]. PR is based
on the PageRank diffusion while HK is based on Heat Kernel
graph diffusion. To make a fair comparison, we run the three
algorithms on the same three seeds randomly chosen from
the ground truth communities. In the following discussion,
LS stands for LOSP++.

Evaluation on LFR benchmarks. Figure 7 illustrates

Figure 1: The k, d combinations for Amazon. k =
2, d = 2 yields the highest F1 score, and the scores
are robust for different k, d combinations.

Figure 2: Parameter study on the subspace dimen-
sion d for steps k = 2 on all real networks. d = 2
yields the highest F1 score, and the scores are ro-
bust for different parameters.

SNAP LEMON LOSP LOSP++
Dataset Cratio Ssize Cratio Ssize Cratio Ssize Srate

Amazon 1.00 2913 0.99 19 0.99 34 0.0001
DBLP 0.98 2409 0.98 171 0.98 198 0.0002
LiveJ 0.63 4398 0.99 293 1.00 629 0.0002
YouTube 0.66 3745 0.90 906 0.95 3237 0.0028
Orkut 0.64 3379 0.45 313 0.87 4035 0.0013
Average 0.78 3369 0.86 340 0.96 1627 0.0009

Table 3: Statistics of the mean values for the sam-
pling method on SNAP datasets. Cratio, Ssize and
Srate correspond to the mean coverage ratio, sam-
pling size and sampling rate.

Figure 3: Comparison with local spectral methods.



Figure 4: Evaluation of different spectral diffusions on SNAP.

Figure 5: Evaluation of different spectral diffusions on LFR s 0.5 group of benchmarks.

Figure 6: Evaluation of different spectral diffusions on Biology networks.

(a) LFR s 0.1 (b) LFR s 0.5 (c) LFR b 0.1 (d) LFR b 0.5

Figure 7: Evaluation on the LFR Benchmark Graphs.



Figure 8: Comparison with heat kernel(HK) and
PageRank(PR).

the comparison on four groups of LFR benchmark graphs.
LOSP++ substantially outperforms HK and PR. It is rea-
sonable that the detection accuracy decays on graphs with
more overlappings indicated by the higher om and on.

Evaluation on real data. Figure 8 illustrates the detec-
tion accuracy of LS (for LOSP++), HK and PR on the five
SNAP networks and the three Biology networks. LOSP++
apparently outperforms HK and PR on accuracy. Especially
on the Biology networks, HK and PR rarely find the protein-
protein-interaction (PPI) communities but LOSP++ detect-
s a considerable fraction.

6. CONCLUSIONS
Based on Rayleigh quotients related to the Laplacian ma-

trices, we provide theoretical justifications for finding com-
munity structure from the local spectral subspace, a local
approximation for the invariant subspace spanned by dom-
inant eigenvectors of the Laplacian matrices. Experimental
results suggest that LOSP++ is a worthy competitor for the
semi-supervised learning task of extracting the target com-
munity from very few seed members in large networks, and
considerably improves the detection accuracy on LOSP.

There are a number of interesting issues for further in-
vestigation. We evaluate several variants for the spectral
diffusions. Light lazy and lazy random walks outperform s-
tandard and personalized random walks among all synthetic
as well as real networks we considered. A theoretical anal-
ysis on different diffusion methods will be very valuable for
the local spectral methods. We also wish to give analysis
on the impact of parameter α, considering the structural
properties of the networks and the communities.
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