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ABSTRACT 
Anomaly detection in graph streams requires both the discovery 
of normative subgraph patterns in the stream and then the 
identification of subgraphs that are unexpected deviations from 
the normative patterns. Both of these processes are 
computationally complex, and therefore we should only update 
them when necessary. We present an approach based on a change 
detection metric used for graph sampling that selectively updates 
the normative patterns only when significant change has occurred. 
Using a batch processing method on the graph stream, we show 
that the change detection approach significantly reduces running 
times while maintaining the accuracy of more exhaustive 
approaches. 

CCS Concepts 
• Information systems~Data stream mining 
• Computing methodologies~Anomaly detection. 
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Anomaly detection; graph stream; change detection. 

1. INTRODUCTION 
Many real-world data sets in need of analysis for anomalies (e.g., 
network traffic for potential intrusions; credit card transactions for 
fraud; sensor networks for insider threats; etc.), are handled as a 
stream – a continuous sequence of ordered data. Because this data 
is relational, the stream can be represented as a sequence of edges 
added, or modifications made, to a graph. Due to the high volume 
and velocity of these graph streams, current graph-based 
approaches for anomaly detection do not scale. 

In regards to scaling the first step in anomaly detection, which is 
to find the normative patterns in the data, there has been some 
recent research using graph sampling by Ahmed et al. [3]. In their 
work, the concept of change detection is used to determine the 
appropriate sampling of a graph in order to discover patterns. We 
propose that this concept of using a change detection metric can 
also be used to reduce the run-time complexity associated with 

discovering anomalous subgraphs in graph streams, while still 
maintaining similar accuracies. In particular, if we use the 
definition of a graph-based anomaly as one for which anomalous 
subgraphs are small deviations from a normative pattern, much 
like one would find in real-world scenarios such as fraud or 
insider threats, then a sampling approach based upon detecting 
change would reduce the time spent discovering what is 
normative. 

One of the key stumbling blocks to accepting graph-based 
anomaly detection approaches in the real-world is the requirement 
to discover anomalies in real-time (as in the case of fraud 
detection). What we are proposing is applicable to any graph-
based anomaly detection approach that relies on first discovering 
normative patterns. In this work, we present a novel graph-based 
anomaly detection algorithm that handles graph streams presented 
as batches of new edges. For each batch we calculate a graph 
property, and if the value of this property has not significantly 
deviated from previous batches, we do not attempt to rediscover a 
normative pattern, but use the existing normative pattern as the 
basis for finding anomalous subgraphs. We evaluate our approach 
using three diverse data sets, and show that running time can be 
improved without sacrificing accuracy. 

2. RELATED WORK 
In order to process data as a stream, one must be able to process 
elements in a sequential order, restrict the processing space to 
something manageable, process each element in a timely fashion, 
and minimize the number of passes over the data [1]. The key 
issue is that a stream of data is an unbounded sequence of records 
which clearly cannot be captured and processed in total. While 
much of the work dealing with data streams has not involved 
graphs [18], some recent graph streaming research has been 
applied to a variety of problems and domains [11][22]. 

Change detection is the process of identifying differences in the 
state of an object by observing it at different times [28]. 
Variations of change detection methods have been investigated, 
primarily for discovering variances in the data in order to predict 
future data patterns. One approach is the Cumulative Sum 
(CUSUM) method, which attempts to identify abrupt changes in 
the statistics of the data [15]. In graphs, change detection involves 
the discovery of time points at which a graph changes 
significantly. Various metrics involving graph edit distance [14], 
graph similarity [21], scan statistics [23], locality-based scan 
statistics [30], and commute distance [17][4][26], can be used to 
determine if a graph has changed beyond some threshold. 
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While the work of Ahmed et al. [3] successfully dealt with the use 
of graph sampling, using change detection as a means of reducing 
the time complexity for discovering recurring subgraphs (i.e., 
sampling) is not a viable option for discovering anomalous 
subgraphs, as samples may miss potential anomalous subgraphs 
which are rare. While normative patterns should be “recurring” 
(and hence, normative), anomalous patterns are not, as one would 
expect them to occur infrequently. However, the discovery of the 
normative pattern is necessary in order to discover anomalous 
patterns. Therefore, we hypothesize that we can use a sampling-
based change detection approach to discover normative patterns, 
which will then aide us in the detection of anomalies. 

3. GRAPH-BASED ANOMALY 
DETECTION 
In order to lay the foundation for this effort, we hypothesize that a 
real-world, meaningful definition of a graph-based anomaly is an 
unexpected deviation to a normative pattern. The importance of 
this definition (which we more formally define below) lies in its 
relationship to any deceptive practices that are intended to 
illegally obtain or hide information [20]. 

Definition 3.1. A labeled graph G = (V,E,λ), where V is the 
set of vertices (or nodes), E is the set of edges (or links) between 
the vertices, and the function λ assigns a label to each of the 
elements in V and E.  

Definition 3.2. A subgraph SA is anomalous in graph G if (0 
< d(SA,S) < TD) and (P(SA|S) < TP), where P(SA|S) is the 
probability of an anomalous subgraph SA given the normative 
pattern S in G. TD bounds the maximum distance (d) an anomaly 
SA can be from the normative pattern S, and TP bounds the 
maximum probability of SA.  

Definition 3.3. The anomalous score of an anomalous 
subgraph SA based on the normative subgraph S in graph G is 
d(SA,S) * P(SA|S), where the smaller the score, the more 
anomalous the subgraph. 

The advantage of graph-based anomaly detection is that the 
relationships between entities can be analyzed for structural 
oddities in what could be a rich set of information, as opposed to 
just the entities’ attributes. However, graph-based approaches 
have been prohibitive due to computational constraints, because 
graph-based approaches typically perform subgraph 
isomorphisms, a known NP-complete problem. Yet, in order to 
use graph-based anomaly detection techniques in a real-world 
environment, we need to take advantage of the 
structural/relational aspects found in dynamic, streaming data sets. 

In order to test our approach, we will implement the publicly-
available GBAD test suite1, as defined by Eberle and Holder 
[2007], within our proposed approach. Using a greedy beam 
search and a minimum description length (MDL) heuristic, 
GBAD first discovers the “best” subgraph, or normative pattern, 
in an input graph. The MDL approach is used to determine the 
best subgraph(s) as the one that minimizes the following. 

   
where G is the entire graph, S is the subgraph, DL(G|S) is the 
description length of G after compressing it using S, and DL(S) is 
the description length of the subgraph. The complexity of finding 
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the normative subgraph is constrained to be polynomial by 
employing a bounded search when comparing two graphs. 
Previous results have shown that a quadratic bound is sufficient to 
accurately compare graphs in a variety of domains [19]. 

For more details regarding the GBAD algorithms, the reader can 
refer to [12]. In summary, the key to the GBAD approach is that 
anomalies are discovered based upon small deviations from the 
norm (e.g., insider threat, identity theft, etc.) – not outliers, which 
are based upon significant statistical deviations from the norm. 

4. STREAMING APPROACH TO GRAPH-
BASED ANOMALY DETECTION 
While there has been research that attempts to handle large graphs 
by segmenting the graph into smaller, individual partitions 
[5][27], these approaches do not deal with anomaly detection, and 
the graphs are considered static. Recent research has attempted to 
use a batch-based approach on graph streams for the discovery of 
anomalies [2][13]. In order to evaluate our approach of using 
change detection as a means of reducing the runtime of batch-
based approaches, we will use the general Pattern Learning and 
Anomaly Detection in Streams framework (PLADS) described in 
the work of Eberle and Holder [13], as Aggarwal et al.’s [2] work 
is primarily focused on specific types of undirected graphs. The 
idea behind the PLADS approach is to utilize information from 
previous batches while processing the current batch in order to 
significantly reduce the cost over processing the entire graph, but 
maintain similar accuracy. We include the pseudocode for 
PLADS as Algorithm 1. 

PLADS accepts as input a stream of batches of edges, where the 
batches are generated either by partitioning a static graph (such as 
using a tool like METIS [16]), or fed in over time (where a batch 
represents data over a specified interval).  

ALGORITHM 1. Pattern Learning and Anomaly Detection in 
Streams (PLADS) 
Input: batches of new edges, number of batches in window (N), 
number of normative patterns per batch (M)  
Output: normative patterns and anomalous subgraphs in current 
window 
1. Wait for first N batches to arrive; process each in parallel 

a. Discover top M normative patterns in each batch. 
2. Determine best normative pattern P among NM possibilities. 
3. Detect anomalous subgraphs in each of N batches based upon 

P. 
4. Evaluate anomalous subgraphs across N batches in current 

window and report most anomalous subgraph(s). 
5. Upon arrival of new batch, do 

a. Add new batch to window and remove oldest batch from 
window. 

b. Determine top M normative patterns from new batch. 
c. Determine best normative pattern P’ among all batches in 

window. 
d. If (P’ ≠ P), each batch discovers new anomalous 

subgraphs based upon P’. 
e. Else, only new batch discovers anomalous subgraph(s). 
f. Evaluate anomalous subgraphs across batches and report 

most anomalous subgraph(s). 
g. Repeat. 

 
 

Algorithm 1 is a generic algorithm for applying graph-based 
anomaly detection methods to streaming data partitioned into 
graph batches. The user can apply any normative pattern 
discovery techniques and any graph-based anomaly detection 
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algorithms with this approach. To summarize, the PLADS 
approach processes the batches in parallel, each reporting what 
they discover as the best normative pattern. PLADS then 
compares all the choices, and the best normative pattern (i.e., the 
most frequent across all batches) is chosen. Then each batch is 
evaluated for anomalous subgraphs based upon the best normative 
pattern. Finally, a similar comparison to what was performed for 
determining the best normative pattern is executed for reporting 
the most anomalous subgraph. The process is then repeated on the 
next batch, and the oldest batch is removed from the set – thus, 
creating a “sliding window” over the graph batches.   

The parameters to Algorithm 1 are defined as follows: 

N – number of batches in the sliding window. This will be the 
initial number of graph batches processed in parallel, and the 
number of batches considered for determining the normative 
pattern and the anomalous subgraphs as each subsequent batch is 
processed. A sliding window consists of the most recent N 
batches; older batches are discarded. 

M – number of normative patterns to retain. This will be the 
number of normative patterns saved from each batch to compare 
against other batches. 

Z – size of each batch, calculated based upon either the number 
of nodes/edges generated, or the time window for which the data 
is collected. Different values of Z affect the performance of our 
algorithm. Values too small risk missing complex patterns. Values 
too large risk unreasonable run times. We vary the value of Z in 
the experiments depending upon the domain of the data. This 
value is important because our approach assumes that the batches 
will be large enough (and numerous enough) to discover the 
normative pattern. 

For more details regarding the above approach, the reader can 
refer to Eberle and Holder’s work [13]. It is relevant to point out 
that PLADS was implemented in the above work using GBAD for 
evaluating anomalous subgraphs, whereby PLADS provides the 
normative pattern to GBAD for its subsequent anomaly detection. 

5. CHANGE DETECTION FOR ANOMALY 
DETECTION 
Current approaches using graph properties to determine structural 
changes in a graph face two primary issues: (1) the scalability of 
calculating the corresponding metric on a large graph, and (2) the 
inability to isolate the actual structural change associated with the 
metric. However, for our approach, we use these graph property 
metrics on considerably smaller graphs, i.e., batches. Also, we do 
not need to know what the actual structural changes are, only that 
a graph has structurally changed. We then use this knowledge to 
determine if we need to re-calculate the normative pattern. Using 
this knowledge, the calculation of a normative pattern will be 
infrequent, and computation time will be greatly reduced. 

5.1 Graph Properties 
In order to test the effectiveness of this approach, we experiment 
with different types of graph metrics commonly used when 
studying graph properties. Each of these graph property metrics 
represent some measure of the overall structure of a graph, and as 
such, will enable us to determine whether or not normative 
structure has potentially changed. Other graph property metrics, 
and their combinations, will be explored in the future. 

Connectedness. Broder et al. [7] define the “connectedness” C 
of a graph based on the set P, that contains all pairs (u,v) such that 

there is a path from u to v in G, where the cardinality of P is 
divided by the number of possible pairs: C = |P| / |V|2. 

Density. Scott [24] defines density D as the ratio of the number 
of actual edges E to the maximum possible number of edges: D = 
|E| / |V|2. 

Clustering Coefficient. Boykin and Roychowdhury [7] identify 
the graph clustering coefficient CC to be the average of the 
clustering coefficients of each vertex: 

𝐶𝐶 =  
1
|𝑉!|

2|𝐸!|
𝑘!(𝑘! − 1)
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where |V’|  is the total number of vertices of degree greater than 1, 
|Ei|  is the number of edges connected to i, and ki is the degree of 
vertex i. 

Eigenvalue. The maximum eigenvalue of the graph’s 
adjacency matrix provides a useful graph property, as also noted by 
Chung et al. in their study of eigenvalues as it relates to graphs [9]. 

Community Modularity. In general, community modularity is 
the difference between the fraction of edges inside the community 
(in our case, a graph batch) and the fraction of edges expected by a 
random version of the network, preserving the degree distribution 
of the nodes [29]. Using the Clauset-Newman-Moore community 
modularity detection method for large graph networks [10], we 
iteratively compare two communities that contribute maximum 
positive value to global modularity, and merge them, until all 
communities are detected, returning the community modularity of 
the graph. 

Number of Triangles. In social sciences and related fields, 
triads, or subgraphs of three nodes, have shown to aide in the 
understanding of social groups [8]. For this metric, we will simply 
count the number of triangles in the corresponding graph. 

Entropy. We use the Sole and Valverde [25] definition of 
entropy whereby instead of just analyzing the degree distribution, 
Pk, in a graph, they use the remaining degree, which is the number 
of edges leaving a vertex and not arriving to a vertex. This new 
distribution, q(k), is defined as: 

𝑞 𝑘 =
𝑘 + 1 𝑃!!!

𝑘
 

They then use this distribution to calculate the following entropy 
measure: 

𝐻 𝑞 =  − 𝑞 𝑘 log (𝑞 𝑘 )
!

!!!

 

The entropy of the graph is a measure of uncertainty. A higher 
degree of entropy implies a wider range of unique patterns. 

Each of the above metrics measures some aspect of the structure 
of a targeted graph. The graph property values calculated, which 
we call GP, indicate some measure of structure. Thus, the 
difference between a graph G1’s graph property GP1, and a graph 
G2’s graph property GP2, is an indicator that there is a structural 
difference between graphs G1 and G2. We will use the knowledge 
of that difference using a form of cumulative summation to 
determine when the normative pattern in a stream needs to be re-
evaluated. 

5.2 Change Detection Algorithm 
In order to evaluate the effectiveness of each of the previously 
discussed graph properties, we modify Algorithm 1 to include the 



calculation and evaluation of a specified graph property metric. 
Algorithm 2 shows our proposed algorithm with modifications 
and additions in bold. 

The use of µ and σ allows a cumulative summation to determine 
when a new normative pattern needs to be discovered due to a 
change beyond a standard deviation, without having to resort to a 
user-defined threshold. Even though we are currently only 
determining a single best normative pattern (Steps 2 and 5d), we 
can modify the algorithm to consider multiple normative patterns, 
and anomalies to them. However, we have only focused on the top 
normative pattern here, mainly to reduce the sources of variance 
in the comparison of the different metrics for change detection. 

ALGORITHM 2.  Pattern Learning and Anomaly Detection in 
Streams using Change Detection (PLADS-CD) 
Input: batches of new edges, number of batches in window (N), 
number of normative patterns per batch (M) 
Output: normative patterns and anomalous subgraphs in current 
window 
1. Wait for first N batches to arrive; process each in parallel 

a. Discover top M normative patterns in each batch. 
b. Calculate and store graph property GP metric for 

each batch. 
2. Determine best normative pattern P among NM possibilities. 
3. Detect anomalous subgraphs in each of N batches based upon 

P. 
4. Evaluate anomalous subgraphs across N batches in current 

window and report most anomalous subgraph(s). 
5. Upon arrival of new batch, do 

a. Add new batch to window and remove oldest batch 
from window. 

b. Calculate and store graph property metric GP’ for 
new batch. 

c. Calculate mean µ  and standard deviation σ  based 
on graph property metrics in current window. 

d. If |GP’ - µ | > σ   
i.  Determine top M normative patterns from new 

batch. 
ii.  Determine best normative pattern P’ among all 

batches in window. 
iii.  if (P’ ≠ P), each batch discovers new anomalous 

subgraphs based upon P’. 
iv.  Else, only new batch discovers anomalous 

subgraph(s). 
e. Else, new batch discovers anomalous subgraph(s) 

using P from previous batches. 
f. Evaluate anomalous subgraphs across batches and 

report most anomalous subgraph(s). 
g. Repeat. 

 
 

It is important to note that we never assume that the normative 
pattern is the same between each evaluation of patterns, i.e., the 
sliding window. The PLADS approach (Algorithm 1) recalculates 
the normative pattern each time a new batch of data is introduced 
into the window. With our proposed approach (Algorithm 2), we 
use graph property metrics to determine whether or not the graph 
structure has changed enough to warrant a recalculation of the 
normative pattern, and the amount of change is immaterial (i.e., it 
can be a completely new normative pattern).  

6. EVALUATION DATA SETS 
Three different data sources are used to evaluate our approach:  e-
commerce review data, social network data, and network traffic. 

Each source varies in graph structure, and will be used to generate 
graph stream batches of various sizes. 

6.1 Berlin 
The Berlin SPARQL Benchmark2 is a synthetic generator built 
around an e-commerce use case in which a set of products is 
offered by different vendors and consumers post reviews about 
the products. The Berlin data model contains the following 
classes: Product, ProductType, ProductFeature, Producer, 
Vendor, Offer, Review, and Person. We chose to represent this 
data as a graph where classes are nodes, associations are edges, 
and attributes are linked to their corresponding class (node). 
Figure 1 shows our graph representation, where every class vertex 
has an associated month, day, and year (shown only for the 
Review class in the figure). 

The Berlin data generator creates an XML file of products along 
with associated information, offers, and reviews. The user 
specifies the number of products generated, and all products, 
offers, and reviews are generated between the dates of March 15, 
2008 and June 19, 2008. We create batches based upon offer and 
review times, where each batch consists of all offers and reviews 
for products in a specified “time window” (e.g., batch 1 contains 
all product offers and reviews made on March 15, batch 2 
contains all product offers and reviews made on March 16, etc.). 
In order to evaluate our approach on a volume that is more 
representative of a graph stream, we specify increasing amounts 
of products and batches. Also, given that “anomalies” inherent in 
the Berlin data are uninteresting, and do not represent the types of 
anomalies that one might find in real data of this type (i.e., 
products being sold and associated reviews), we seeded the data 
with unusual years (i.e., publication dates that would appear 
suspicious), and unusual publishers (i.e., people that normally do 
not publish in the associated venue). 
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Figure 1. Graph representation of Berlin data. 

                                                                    
2 http://wifo5-03.informatik.uni-

mannheim.de/bizer/berlinsparqlbenchmark/  



6.2 LSBench 
The Linked Stream Benchmark (LSBench)3 data generator 
generates data that represents users as the static data, and their 
actions as a data stream, including GPS locations, posts, and 
photo albums, as well as “like”s and “know”s. We generate RDF 
triples of varying sizes and time periods, that contain user 
information, and their associated locations, devices used, postings, 
photos, likes, and whom they know. 

We represent the LSBench objects as vertices, and actions as 
edges. Figure 2 presents the graph topology of the streaming data. 
Varying the number of users between 1000 and 4000 results in 1-
2M edges per batch, depending on the time period of the captured 
data, which varies from every day to every minute. In order to 
evaluate our approach on a volume that is more representative of a 
graph stream, we specify increasing numbers of users. And, 
similar to the Berlin data, as there are no intrinsic anomalies 
created by the LSBench generator, we will seed various types of 
anomalies, including unusual likes (e.g., a person liking a group 
that does not fit their usual profile) and unusual follows (e.g., a 
person joining a forum that is different from the forums they 
typically follow). 

 

Figure 2. Graph topology of streaming LSBench data. 

6.3 CAIDA 
The CAIDA (Center for Applied Internet Data Analysis) AS data 
set4 represents the topology of the internet as the composition of 
various Autonomous Systems. Each of the AS units represents 
routing points through the internet. 

One example of network traffic collected by CAIDA represents a 
dynamic denial-of-service (DDOS) attack at a single location. We 
represent this data as a graph composed of ~25K vertices and 
~100K edges, with each AS depicted as a vertex and an edge 
indicating a peering relationship between the AS nodes. Figure 3 
shows a portion of the AS graph, where the rectangle indicates the 
normative pattern and the emboldened edge indicates the 
anomalous structure found by GBAD. However, even if we 
                                                                    
3 https://code.google.com/archive/p/lsbench/  
4 www.caida.org/data/active/as-relationships  

represent the data as a graph stream, we are only processing a 
total of ~100K edges. In order to evaluate our approach, we need 
to scale up to graph streams that may produce millions, if not 
billions, of edges. For this particular data set, we accomplish this 
by replicating the data. Then, to experiment using the approach 
identified in Algorithm 1, we use the METIS tool in order to 
partition the graph into smaller, roughly equal-sized subgraphs 
[16]. These subgraphs are then streamed in to our approach as 
batches of edges. 

 
Figure 3. Normative pattern (square) and anomaly (bold) discovered in the 
CAIDA dataset. 

7. EXPERIMENT RESULTS 
First, we will present summarized results across the different data 
sets, and then we will present some detailed results where we vary 
the values for N, M, and Z, as well as the hardware, to gain some 
further insights into our proposed approach. 

Table 1 shows a summary of the results from Algorithm 1 (shown 
as “baseline”) versus the different change detection approaches 
using Algorithm 2, for stream rate (edges per second), recall, and 
false-positive-rate, with best approach in bold. In these results we 
calculate “Recall” as the percentage of targeted anomalous 
subgraphs that are discovered (i.e., accuracy), and “False Positive 
Rate” (FP Rate) as the number of reported anomalies minus the 
true positives, divided by the number of reported anomalies, 
multiplied by 100 (i.e., the inverse of precision). In addition, it 
should be noted that we chose a TD value of 0.2 and TP is bound 
by the number of instances of the SA as compared to instances of 
other subgraphs (per Definition 3.2). Again, the choice of TD is 
important because a value too small may miss the anomalous 
substructures, and a value too large may result in too many false 
positives. All of the results shown in Table 1 were performed 
using a Debian 6.0, 64-bit server with 24GB of RAM and 8 cores 
@ 2.27 GHz. 

First, one notices that all of the change detection approaches 
implemented in Algorithm 2 are faster than the baseline approach 
(i.e., able to process more edges per second), which was to be 
expected as fewer re-evaluations of the normative pattern occur. 
In some instances, we realize over a 96% speedup. However, for 
the Berlin data set, while the clustering coefficient and triangles 
approaches are faster than the baseline, this is because there are 
never any future normative pattern evaluations beyond the initial 
set of N batches. The clustering coefficient never deviates enough 
to warrant a re-evaluation of the normative pattern, and there are 
no triangles in the data. This could be addressed by a re-
evaluation of the normative pattern after X iterations (or X 
amount of time) even if the change detection approach is not 
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detecting any change. (It should also be noted that the overhead of 
calculating the graph properties is included within the overall 
edges/second rate – but will be further reported shortly in a more 
detailed analysis.) Second, none of the change detection 
approaches used in Algorithm 2 achieve 100% recall across all of 
the data sets. While none achieve 100% recall in the Berlin data, 
density and entropy discover all of the anomalous subgraphs with 
the LSBench data, and connectedness, density, and community 
have 100% recall with the CAIDA data. Third, no change 
detection approach has the lowest FP Rate across all of the data 
sets. The clustering coefficient and triangles approaches have 
lower FP Rate than the baseline on the Berlin data. In fact, all but 
community achieve a 0% FP Rate on the CAIDA data. 

Table 1. Summary of results. 
Data 
Source 

Approach Edges/Sec Recall 
 

FP Rate  

berlin 

baseline 141 100 2.62 
connected 216 93 5.35 
density 221 90 5.05 
clustering 257 46 1.40 
eigenvalue 224 86 5.02 
community 217 83 5.04 
triangles 277 46 1.40 
entropy 220 93 4.25 

lsbench 

baseline 157 100 17.82 
connected 216 96 18.67 
density 196 100 19.31 
clustering 241 96 19.28 
eigenvalue 232 88 21.82 
community 241 96 18.76 
triangles 239 80 21.06 
entropy 191 100 20.39 

caida 

baseline 168 100 1.72 
connected 243 100 0 
density 274 100 0 
clustering 229 75 0 
eigenvalue 243 75 0 
community 227 100 0.03 
triangles 264 75 0 
entropy 235 100 0 

 

In terms of accuracy, we miss some targeted anomalous subgraphs 
because of our definition of an anomaly, which is based upon 
subgraph differences when compared to the normative pattern. In 
this case, sometimes the structure of a graph does not deviate 
enough between batches, leading to an older normative pattern 
being used for anomaly detection, when in reality the normative 
pattern has changed and was needed to discover the targeted 
anomalous subgraph. Across all of the change detection methods, 
we realize an average reduction of normative pattern discoveries 
of ~75% (i.e., only ¼ of the number of normative subgraph 
discoveries takes place). 

In terms of the high false-positive rate when analyzing the 
LSBench data, this can be attributed to the graph structure of that 
particular domain. The CAIDA data set is fairly consistent in 
structure, with only a few unique labels and subgraphs. The Berlin 
data generator produces a consistent structure, with growth of 
vertices and edges linear to the user-specified number of products.  
However, the LSBench data generator is much more random, as 
not every user gets the same number of connections to forums, 
user groups, etc. In addition, the generator is very parametric, 

where the user must specify a level of noise greater than zero (i.e., 
there will always be noise). 

We now take a closer look at more detailed results using just the 
LSBench data. Here we vary the number of batches in the sliding 
window (N) from 3 to 7. The total number of edges processed in a 
complete run range from 3,868,915 up to 13,296,977. The batch 
sizes (Z) are based upon the total number of edges divided by the 
size of an individual window, for which we chose 4 minute 
windows and 6 minute windows, and varied the overlap between 
each window from no overlap to 5 minutes of overlap (for a 6 
minute window). We also varied M (number of normative patterns 
to retain) from 3 to 20, with no perceivable differences. 

Figures 4-8 represent the results of these experiments on the 
LSBench data, averaged over all values of Z. We also used a 
different set of hardware (48 cores from two Intel(R) Xeon(R) 
CPU E5-2680 v3 @ 2.50GHz, and a total of 125GB RAM), so as 
to measure the effect that more memory and faster CPUs would 
have on this approach. 

 
Figure 4. Average run time. 

 
Figure 5. Average number of edges processed per second. 
From these detailed results, we observe the following. First, as 
shown in Figure 4 and Figure 5, when N is small, our approach 
detects anomalous subgraphs in almost half the time. However, as 
N increases, the running times and edge processing rates converge 
(i.e., running times are similar). There are several reasons for this.  
Intuitively, as the number of batches in the window (N) increases, 
more and more of the complete graph is being processed. In 
addition, our implementation of Algorithm 2 is file-based, rather 
than memory-based, and the more batches there are, the more 
normative patterns and anomalous subgraphs need to be compared 



(file I/O overhead). Finally, in addition to implementing a 
memory-based version, we could also add comparison checks 
such that if the normative pattern has not changed between 
batches, a graph match is not performed again, thereby avoiding 
redundant work. 

 
Figure 6. Average % of targeted anomalies discovered. 

 
Figure 7. Average false positive rate. 

 
Figure 8. % of total time spent calculating metric. 
Second, in terms of discovering our targeted anomalies (as shown 
in Figure 6), except for when we use eigenvalue and clustering as 
our metric for determining when the normative pattern needs to be 
re-evaluated, accuracy is similar to PLADS. In other words, using 
a graph property metric does not significantly affect our ability to 
discover anomalies. 

Third, except for when the eigenvalue metric is used with small 
values for N, the false positive rate is better than the baseline 
PLADS approach, and fairly consistent, no matter what value for 
N is chosen (Figure 7). This was one of the more surprising 
results. What this tells us is that when we calculate the normative 
pattern with every new batch (as is done with the PLADS 
approach), noise is affecting the normative pattern discovery. The 
result is a “local” normative pattern, leading to the non-discovery 

of the targeted anomalous subgraph. Whereas, using the graph 
metric to determine when to re-evaluate for a normative pattern, 
our approach recognizes that the overall graph structure has not 
really changed, and thus the “global” normative pattern is retained 
for anomaly detection. 

Fourth, Figure 8 shows the percentage of the total time that was 
spent calculating each metric. Obviously, calculating entropy took 
the longest, followed by community. However, the other metrics 
took less than 0.5% of the total time, and calculating density was 
less than 0.02% on average.  So, in general, little overhead is 
needed to achieve a significant speed-up towards the discovery of 
anomalous subgraphs. 

Finally, we did observe a significant speed-up between the two 
platforms – one with 24GB of RAM and 2.27 GHz cores, and one 
with 125 GB of RAM and 2.50 GHz cores. Runs on the latter 
platform were significantly faster, with an average speed-up of 
~20%, and up to 36% faster in the best case. We also notice that 
(regardless of the hardware) more edges are processed per second 
with a larger batch size (i.e., going from a batch size of 4 minutes 
up to 6 minutes). This is probably due to less overhead because 
the number of batches decreases as the size of the batches 
increases. In addition, the more overlap there is between batches, 
the faster it runs, albeit at the sacrifice of accuracy. The speed-up 
is probably due to less volatility in the overall graph structure, 
thus less normative pattern evaluations; while the decrease in 
accuracy could be related to multiple anomalous subgraphs 
appearing in the same batch, making them less anomalous due to 
their repetition. 

In general, using change detection within a parallel, batch 
streaming approach like PLADS allows us to maintain similar 
anomaly detection accuracies with low false positive rates. Based 
upon our results, in order to significantly reduce the run-time and 
thus increase the edge processing throughput, we need to 
minimize the number of batches (N). Whereas, accuracy and 
false-positive rates appear to be unaffected by the choice of N, 
with accuracy results that are linear once N reaches 5 and false 
positive rates that are consistent for any value of N.    

8. CONCLUSIONS AND FUTURE WORK 
Integrating change detection into a streaming approach for graph-
based anomaly detection results in a significant speed-up in 
processing, with most instances resulting in slightly less accuracy, 
and a minor increase in false-positive rates. However, for several 
of the change detection methods, as the size of the data sets 
increase, accuracy reaches baseline levels of 100%, and false-
positive rates are actually better than the baseline. Considering 
that our target is real-world graph streams (i.e., continuous, 
unending data), these results are promising. In the future, we will 
develop an incremental approach that processes only the stream of 
graph changes over time, where normative patterns and anomalies 
are updated only as necessary based on the impact of the changes. 
This will allow us to remove the current “boundary issues” 
associated with anomalous subgraphs that could span graph 
batches. Further speedup is possible by exploiting inherent 
parallelism across batches. We plan to evaluate our algorithms on 
other datasets, including a Nokia mobile data set, and actual 
traffic flows collected from our institution-level network, 
especially in terms of “keeping up” with such high-speed streams. 

Another future objective is to investigate other approaches that 
can better handle noise – i.e., non-targeted anomalies. As 
discussed earlier, if we increase the size of the processing 
window, we can reduce the number of false positives albeit at the 



sacrifice of speed. In addition, since results vary across the 
different data sources, we will also explore additional metrics and 
combination of metrics to ideally identify an indicator that works 
across domains. 
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