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ABSTRACT
For a broad range of research, governmental and commercial
applications, it is important to understand the allegiances,
communities and structure of key players in society. One
promising direction towards extracting this information is
to exploit the rich relational data in digital social networks
(the social graph). As social media data sets are very large,
most approaches make use of distributed computing systems
for this purpose. Distributing graph processing requires
solving many difficult engineering problems, which has lead
some researchers to look at single-machine solutions that are
faster and easier to maintain. In this article, we present a
single-machine real-time system for large-scale graph pro-
cessing that allows analysts to interactively explore graph
structures. The key idea is that the aggregate actions of
large numbers of users can be compressed into a data struc-
ture that encapsulates user similarities while being robust
to noise and queryable in real-time. We achieve single ma-
chine real-time performance by compressing the neighbour-
hood graph of each vertex using minhash signatures and
facilitate rapid queries through Locality Sensitive Hashing.
These techniques reduce query times from hours using in-
dustrial desktop machines operating on the full graph to
milliseconds on standard laptops. Our method allows ex-
ploration of strongly associated regions (i.e. communities)
of large graphs in real-time on a laptop. It has been deployed
in software that is actively used by analysts to understand
social network structure.

1. INTRODUCTION
Algorithms to discover groups of associated entities from

relational (networked) data sets are often called community
detection methods. They come in two forms: global meth-
ods, which partition the entire graph, and local methods
that look for vertices that are related to an input vertex
and only work on a small part of the graph. We are con-
cerned with community detection on large graphs that runs
on a single commodity computer. To achieve this we com-
bine the two approaches using local community detection to
identify an interesting region of a graph and then applying
global community detection to help understand that region.

Applications include: security, where analysts explore a
network looking for groups of potential adversaries; social
sciences, where queries can establish the important relation-
ships between individuals of interest; e-commerce, where

queries reveal related products or users; marketing, where
companies seek to optimise advertising channels or celebrity
endorsement portfolios. To meet these emergent needs an-
alysts must explore vast networks. Our work demonstrates
an alternative monetisation channel for Digital Social Net-
works (DSN)s; that social media data can be used in mul-
tiple industries for decision support. Decision support does
not disrupt user experience in the way that sponsored links
or feed advertising do. It offers another channel for social
media providers to monetise their data, helping them to con-
tinue to provide free services that are valued by billions of
people globally.

As a sketch of how the system is used we imagine a com-
pany that wants to enter a new foreign market. To do
this they need to understand the market’s competitors, cus-
tomers and marketing channels. Using our system they
could input the Twitter handles for their existing products,
key people, brands and endorsers and in real-time receive the
most similar accounts to their company in that market. The
output is structured into groups such as magazines, sports-
people, companies in the same industry etc. They could
then examine the results and explore different regions by
changing the input accounts.

Throughout this paper we refer to graphs. In this context
a graph is a collection of vertices (social media accounts) and
edges connecting them. We are particularly interested in the
neighbourhood graph, which is often used to compare ver-
tices and has been shown to have attractive properties in this
regard [24, 23]. The neighbourhood graph of a vertex con-
sists of the set of all vertices that are directly connected to
it, irrespective of the edge direction. We propose that robust
associations between social network accounts can be reached
by considering the similarity of their neighbourhood graphs.
This proposition relies on the existence of homophily in so-
cial networks. The homophily principle states that people
with similar attributes are more likely to form relationships
[16]. Accordingly social media accounts with similar neigh-
bourhood graphs are likely to have similar attributes.

We seek to build a system that is robust to failure, does
not require engineering support and is parsimonious with
the time of its users. The first two requirements lead us
to search for a single machine solution and the later re-
quirement prescribes a real-time (or as close as possible)
system. To produce a real-time single-machine system that
operates on large graphs we must solve two problems: (1)
Fit the graph in the memory of a single (commodity) ma-
chine; (2) Calculate the similarity of neighbourhood graphs
containing up to 100m verices in milliseconds. We address



these problems by compressing the neighbourhood graphs
into fixed-length minhash signatures. Minhash signatures
vastly reduce the size of the graph while encoding an effi-
cient estimation of the Jaccard similarity between any two
neighbourhoods. Choosing appropriate length minhash sig-
natures squeezes the graph into memory. To achieve real-
time querying we use the elements of the minhash signatures
to build a Locality Sensitive Hashing (LSH) data structure.
LSH facilitates querying of similar accounts in constant time.
A combination of minhashing and LSH allows analysts to
enter a set of accounts and receive the set of most related
accounts in milliseconds. Our contributions are:

1. We establish that robust associations between social me-
dia users can be determined by means of the Jaccard
similarity of their neighbourhood graphs.

2. We show that the approximations implicit in minhash-
ing and LSH minimally degrade performance and allow
querying of very large graphs in real time.

3. System design and evaluation: We have designed and
evaluated an end-to-end Python system for extracting
data from social media providers, compressing the data
into a form where it can be efficiently queried in real time.

4. We demonstrate how queries can be applied to a range
of problems in graph analysis, e.g., understanding the
structure of industries, allegiances within political parties
and the public image of a brand.

2. DATA
In this article, we focus on Twitter data because Twitter

is the most widely used DSN for academic research. The
Twitter Follower graph consists of roughly one billion ver-
tices and 30 billion edges. To show that our method gener-
alises to other social networks, we also present results using
a Facebook Pages engagement graph containing 450 million
vertices and 700 million edges (see Section 5).

To collect Twitter data we use the REST API to crawl
the network identifying every account with more than 10,000
Followers1 and gather their complete follower lists. To opti-
mize data throughput while remaining within the DSN rate
limits we developed an asynchronous distributed network
crawler using Python’s Twisted library [26]. Our data set
contains 675,000 such accounts with a total of 1.5×1010 Fol-
lowers, of which 7×108 were unique. We restrict the data set
to accounts with greater than 10,000 Followers (though 700
million Twitter accounts are used to build the signatures)
because accounts that are smaller than this are unlikely to
be informative to end users.

To generate data from Facebook we matched the Twitter
accounts with greater than 10,000 Followers to Facebook
Page accounts 2 using a combination of automatic account
name matching and manual verification. Facebook Page
likes are not available retrospectively, but can be collected
through a real-time stream. We collected the stream over a
period of two years from late 2013.

1The number of Followers is contained in the Twitter ac-
count metadata, i.e., it’s available without collecting and
counting all of the edges.
2Facebook pages are the public equivalent of the private
profiles. Many influential users have a Facebook Page.

3. RELATED WORK
Existing approaches to large scale, efficient, community

detection have three flavours: More efficient community de-
tection algorithms, innovative ways to perform processing on
large graphs and data structures for graph compression and
search. Table 1 shows related approaches to this problem
and which constraints they satisfy.

Table 1: Comparison of related work. SCM is Single Com-
modity Machine and MO is Modularity Optimisation

Method Real-time Large graphs SCM
MO [18] 7 7 3
WALKTRAP [20] 7 7 3
INFOMAP [22] 7 7 3
Louvain method [3] 7 3 3
BigClam [27] 7 3 3
Graphci [14] 7 3 3
Twitter WTF [9] 3 3 7
Our Method 3 3 3

There is an enormous community detection literature and
Fortunato [8] provides an excellent overview. Approaches
can be broadly categorised into local and global methods.

Global methods assign every vertex to a community, usu-
ally by partitioning the vertices. Many highly innovative
schemes have been developed to do this [18, 22, 20]. Most
global methods do not easily scale to very large data sets.
The availability of data from the Web, DSNs and services
like Wikipedia led to a focus on methods for large graphs [3,
27]. However, there are no real-time algorithms that could
facilitate interactive exploration of social networks.

Unlike global community detection methods, local algo-
rithms do not assign every vertex to a community. Instead
they find vertices in the same community as a set of input
vertices (seeds). For this reason they are normally faster
than global methods. Kloumann et al. [13] conducted a
comprehensive assessment of local community detection al-
gorithms on large graphs and identified Personal PageRank
(PPR) [11] as the clear winner. Recent advances have shown
that seeding PPR with the neighbourhood graph can im-
prove performance [24] and that PPR can be used to initi-
ate local spectral methods with good results [25]. Random
walk methods are usually evaluated on distributed comput-
ing resources (e.g., Hadoop). While distributed systems are
continually improving, they are not always available to an-
alysts, require skilled operators and have a typical overhead
of several minutes per query.

A complimentary approach to efficient community detec-
tion is to develop more efficient and robust graph process-
ing systems. Graphci is a single-machine system that of-
fers a powerful and efficient alternative to processing large
graphs [14]. Twitter also use a single-machine recommenda-
tion system that serves “Who To Follow (WTF)” recommen-
dations across their entire user base [9]. WTF achieves this
by loading the entire Twitter graph into memory. Following
their design specification of 5 bytes per edge 5× 30× 109 =
150 GB of RAM would be required to load the current graph,
which is an order of magnitude more than available on our
target platforms.

The alternative to using large servers, clusters or disk stor-
age for processing on large graphs is to compress the graph.
Graph compression techniques were originally motivated by
the desire for single machine processing on the Web Graph
[1, 4] and have been adapted for social networks [7]. Such



system runtime (s) space (GB)

naive edge list 8000 240
minhash signatures 1 4
LSH with minhash 0.25 5

Table 2: Typical runtimes and space requirements for sys-
tems performing local community detection on the Twitter
Follower network of 700m vertices and 20 billion edges and
producing 100 vertex output communities

techniques achieve remarkable compression factors, but at
the cost of slower access [9]. Minhashing is a technique for
representing large sets with fixed length signatures that en-
code an estimate of the similarity between the original sets.
When the sets are sub-graphs minhashing can be used for
lossy graph compression. The pioneering work on minhash-
ing was by [5]. Minhashing has been applied to clustering
the Web by modelling each web page as a bag of words and
building hashes from the count vectors [10]. Two impor-
tant innovations that improve upon minhashing are b-Bit
minhashing [15] and Odd Sketches [17]. Locality Sensitive
Hashing (LSH) is a technique introduced by Indyk [12] for
rapidly finding approximate near neighbours in high dimen-
sional spaces. Recent LSH research improves on the original
implementation by using the structure of the data to design
better hash functions at the expense of being able to handle
new data points [2].

4. REAL-TIME ASSOCIATION MINING
In this section, we detail our approach to real-time associ-

ation mining in large social networks. Our method consists
of two main stages: In stage one, we take a set of seed ac-
counts and expand this set to a larger group containing the
most related accounts to the seeds. Stage one uses a very
fast nearest neighbour search. In stage two, we embed the
results of stage one into a weighted graph where each edge
is weighted by the Jaccard similarity of the two accounts it
connects. We apply a global community detection algorithm
to the weighted graph and visualise the results.

In the remainder of the paper we use the following no-
tation: The ith user account (or interchangeably, vertex of
the network) is denoted by Ai and N(Ai) gives the set of
all accounts directly connected to Ai (the neighbours of Ai).
The set of accounts that are input by a user into the sys-
tem are called seeds and denoted by S = {A1, A2, ..., Am}
while C = {A1, A2, ..., An} (community) is used for the set
of accounts that are returned by stage one of the process.

4.1 Stage 1: Seed Expansion
The first stage of the process takes a set of seed accounts

as input, orders all other accounts by similarity to the seeds
and outputs an expanded set of similar accounts. We require
three ingredients:

1. A similarity metric between accounts

2. An efficient system for finding similar accounts

3. A stopping criterion to determine the number of accounts
to return

4.1.1 Similarity Metric

To compare the similarity of any two vertices we use the
neighbourhood graph. The neighbourhood graph of a vertex
consists of the set of all vertices that are directly connected
to it, irrespective of the edge direction. We propose that
robust associations between social network accounts can be
reached by considering the similarity of their neighbourhood
graphs. As a similarity metric we choose the Jaccard similar-
ity of neighbourhood graphs. We use the Jaccard similarity
because it is a widely used metric to compare two sets and
minhashing can be used to provide an unbiased estimator of
the Jaccard similarity that is both time and space efficient.
The Jaccard similarity is given by

J(Ai, Aj) =
|N(Ai) ∩N(Aj)|
|N(Ai) ∪N(Aj)|

, (1)

where N(Ai) is the set of neighbours of ith account.

4.1.2 Efficient Account Search
To efficiently search for accounts that are similar to a set

of seeds we represent every account as a minhash signature
and use a Locality Sensitive Hashing (LSH) data structure
based on the minhash signatures for approximate nearest
neighbour search.

Rapid Jaccard Estimation via Minhash Signatures
Computing the Jaccard similarities in (1) is very expen-
sive as each set can have up to 108 members and calculat-
ing intersections is super-linear. Multiple large intersection
calculations can not be processed in real-time. There are
two alternatives: either the Jaccard similarities can be pre-
computed for all possible pairs of vertices, or they can be es-
timated. Using pre-computed values for n = 675, 000 would
require caching 1

2
n(n − 1) ≈ 2.5 × 1011 floating point val-

ues, which is approximately 1TB and so not possible using
commodity hardware. Therefore an estimation procedure is
required.

The minhashing compression technique of [6] generates

unbiased estimates of the Jaccard similarity Ĵ in O(K),
where K is the number of hash functions in the signature.

Ĵ(Ai, Aj) = I/K, (2)

where we define

I =

K∑
k=1

δ(hk(Ai), hk(Aj)) , (3)

δ(hk(Ai), hk(Aj)) =

{
1 if hk(Ai) = hk(Aj)

0 if hk(Ai) 6= hk(Aj)
. (4)

with each hk an independent minwise hash function (See [6]).
The estimator is fully efficient, i.e., the variance is given by
the Cramér-Rao lower bound

var(Ĵ) = J(1− J)/K, (5)

where we have dropped the Jaccard arguments for brevity.
Equation 5 shows that Jaccard coefficients can be approxi-
mated to arbitrary precision using minhash signatures with
an estimation error that scales as O(1/

√
K).

The memory requirement of minhash signatures is Kn in-
tegers, and so can be configured to fit into memory and for
K = 1000 and n = 675, 000 is only ≈ 4GB. In compari-
son to calculating Jaccard similarities of the largest 675,000



Twitter accounts with ≈ 4 × 1010 neighbours minhashing
reduces expected processing times by a factor of 10, 000 and
storage space by a factor of 1000.

Locality Sensitive Hashing (LSH)
Minhashing dramatically improves comparison times between
two accounts, but for large numbers of accounts, finding
near-neighbours is expensive. Locality Sensitive Hashing
(LSH) is an efficient system for finding approximate near
neighbours. LSH has an elegant formulation when com-
bined with minhashing for queries near neighbours in Jac-
card space. The minhash signatures are divided into bands
containing fixed numbers of hash values and LSH exploits
that similar signatures are likely to have identical bands.
An LSH table can be constructed that points from each ac-
count to all accounts that have at least one identical band.
We apply LSH to every input seed independently to find all
candidates that are ’near’ to at least one seed. In our imple-
mentation, we use 500 bands, each containing two hashes.
As most accounts share no neighbours, the LSH step dra-
matically reduces the number of candidate accounts and the
algorithm runtime by a factor of roughly 100. Without LSH
our algorithm would not run in real-time.

Sorting Similarities
LSH produces a set of candidate accounts that are related
to one or more of the input seeds. In general we do not want
every candidate returned by LSH and so we must select the
subset that are most associated with the whole seed set. We
experimented with two sequential ranking schemes: Min-
hash Similarity (MS) and Agglomerative Clustering (AC).
The rankings can best be understood through the Jaccard
distance D = 1 − J , which is used to define the centre
X ∈ [0, 1]M of any set of M vertices. At each step AC
and MS augment the results set C with A∗ the closest ac-
count to X : A∗ /∈ C. However MS uses a constant value of
X based on the input seeds while AC updates X after each
step. Formally, the centre of the input vertices used for MS
is defined by

Xj(Aj , S) =
1

n

∑n

i=1
D(Aj , Si) , j = 0, 1, ...,M. (6)

At each iteration C and X are updated by first setting
C = S and then adding the closest account given by

A∗ = arg miniX(Ai, C) ∀Ai /∈ C (7)

leading to

Ct+1 = Ct ∪A∗.
The new centre Xn+1 is most efficiently calculated using the
recursive online update equation

Xt+1(A,Ct+1) =
nX(A,Ct) +D(A∗, Ct)

n+ 1
. (8)

where n is the size of Ct.

4.1.3 Stopping Criterion
Both AC and MS are sequential processes and will re-

turn every candidate account unless stopped. The simplest
criteria is to stop after a fixed number of iterations. One ap-
plication of our work is to help define optimal endorsement
strategies. In this context we want to answer questions like:
“What is the smallest set of closely related athletes that

have influence on over half of the users of Twitter?”. We
refer to the number of unique neighbours of a set of ac-
counts as the coverage. An exact solution to this problem is
combinatorial. However it can be efficiently approximated
using minhash signatures. We exploit two properties of min-
hash signatures to do this: The unbiased Jaccard estimate
through Equation 2 and the minhash signature of the union
of two sets is the elementwise minimum of their respective
minhash signatures. Minhash signatures allow coverage to
be used as a stopping criteria to rank LSH candidates in
real-time.

Efficient Coverage Computation.
The coverage y is given by

y =
∣∣∣⋃n

i=1
N(Ai)

∣∣∣ , (9)

the number of unique neighbours of the output vertices.
Every time a new account A is added we need to calcu-
late |N(C) ∪N(A)| to update the coverage. This is a large
union operation and expensive to perform on each addition.
Lemma 1 allows us to rephrase this expensive computa-
tion equivalently by using the Jaccard coefficient (available
cheaply via the minhash signatures), which we subsequently
use for a real-time iterative algorithm.

Lemma 1. For a community C =
⋃

iAi and a new ac-
count A /∈ C, the number of Neighbours of the union A∗ ∪C
is given as

|N(A ∪ C)| = |N(A)|+ |N(C)|
1 + J (A,C)

. (10)

Proof. Following (1), the Jaccard coefficient of a new
Account A /∈ C and the community C is

J(A,C) =
|A ∩ C|
|A ∪ C| . (11)

By considering the Venn diagram and utilising the inclusion-
exclusion principle, we obtain

|A ∪ C| = |A|+ |C| − |A ∩ C| . (12)

Substituting this expression in the denominator of the Jac-
card coefficient in (11) yields

|A|+ |C|
1 + J(A,C)

(11)
(12)
=

|A|+ |C|
1 + |A∩C|

|A|+|C|−|A∩C|

=
|A|+ |C|
|A|+|C|

|A|+|C|−|A∩C|

= |A|+ |C| − |A ∩ C| (12)= |A ∪ C| ,
which proves (10) and the Lemma.

Once A∗ is determined according to (7), we use Lemma 1
to update the unique neighbour count as

|N(Ct+1)| = |N(Ct)|+ |N(A)|
1 + J(Ct, A)

. (13)

The right hand side of (13) contains three terms: |N(Ct)|
is what we started with, |N(A)| is the neighbour count of
A, which is easily obtained from Twitter or Facebook meta-
data and J(Ct, A) is a Jaccard calculation that can rapidly
be approximated with minhash signatures3. Using this rela-

3using the property that the signature of the union of
two signatures is their elementwise minimum sig(

⋃
iAi)j =

mini(sig(Ai)j)



tionship we are able to calculate the coverage with negligible
additional calculations.

Once A∗ is determined according to (7), we use Lemma 1
to update the unique neighbour count as

|Ct+1| = |Ct|+ |A∗|
1 + J(Ct, A∗)

,

where |A∗| is the neighbour count of A∗, which is easily
obtained from Twitter.

Using this relationship we are able to terminate a seed
expansion process based on coverage without the stopping
criteria calculation dominating the processing time.

4.2 Stage 2: Community Detection and Visu-
alisation

Stage one expanded the seed accounts to find the related
region. This was done by first finding a large group of can-
didates using LSH that were related to any one of the seeds
and then filtering down to the accounts most associated to
the whole seed set.

In Stage two, the vertices returned by Stage one are used
to construct a weighted Jaccard similarity graph. Edge
weights are calculated for all pairwise associations from the
minhash signatures through Equation 2. This process effec-
tively embeds the original graph in a metric Jaccard space [5].
Community detection is run on the weighted graph.

The final element of the process is to visualise the com-
munity structure and association strengths in the region of
the input seeds. We experimented with several global com-
munity detection algorithms. These included INFOMAP,
Label Propagation, various spectral methods and Modular-
ity Maximisation [22, 21, 19]. The Jaccard similarity graph
is weighted and almost fully connected and most community
detection algorithms are designed for binary sparse graphs.
As a result, all methods with the exception of label prop-
agation and WALKTRAP were too slow for our use case.
Label Propagation had a tendency to select a single giant
cluster, thus adding no useful information. Thus, we chose
WALKTRAP for community visualisation.

5. EXPERIMENTAL EVALUATION
We assess the affect of LSH and minhash approximations

and demonstrate the quality of our results in three experi-
ments: (1) We measure the sensitivity of the Jaccard simi-
larity estimates with respect to the number of hash functions
used to generate the signatures. This will justify the use of
the minhash approximation for computing approximate Jac-
card similarities. (2) We compare the run time and recall of
our process on ground-truth communities with PPR (state
of the art) on a single laptop. (3) We visualise detected
communities and demonstrate that association maps for so-
cial networks using minhashing and LSH produce intuitively
interpretable maps of the Twitter and Facebook graphs in
real-time on a single machine.

5.1 Experiment 1: Assessing the Quality of
Jaccard Estimates

We empirically evaluate the minhash Jaccard estimation
error by comparing estimates (Equation 2) to exact val-
ues(Equation 1) using a sample of 400,000 pairwise rela-
tionships from the 675 thousand hashed accounts. Figure 1
shows the estimation error (L1 norm) as a function of the

Table 3: Most similar accounts to @Nike. J and R give the
true Jaccard coefficient and Rank, respectively. Ĵ and R̂ give
approximations using Equation (2) where the superscript
determines the number of hashes used. Signatures of length
1,000 largely recover the true Rank.

Twitter handle J R Ĵ100 R̂100 Ĵ1000 R̂1000

adidas 0.261 1 0.22 2 0.265 1
nikestore 0.246 2 0.25 1 0.255 2

adidasoriginals 0.200 3 0.18 3 0.222 3
Jumpman23 0.172 4 0.13 7 0.166 4

nikesportswear 0.147 5 0.18 4 0.137 5
nikebasketball 0.144 6 0.16 5 0.127 7

PUMA 0.132 7 0.13 6 0.132 6
nikefootball 0.127 8 0.08 17 0.110 9

adidasfootball 0.112 9 0.09 16 0.113 8
footlocker 0.096 10 0.08 17 0.096 11

0 200 400 600 800 1000
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Figure 1: Expected error from Jaccard estimation using min-
hash singatures against the number of the hashes used in the
signature. The error bars show twice the standard error us-
ing 400,000 data points.

signature length. Standard error bars are just visible up un-
til 400 hashes. The graph shows an expected error in the
Jaccard of just 0.001 at 1,000 hashes. Due to the high degree
of accuracy and diminishing improvements we select a sig-
nature length of K = 1, 000, which provides an appropriate
balance between accuracy and performance (both runtime
and memory scale linearly with K).

A typical top ten list of Jaccard similarities is given in Ta-
ble 3 for Nike (based on the true Jaccard). Possible matches
include sports people, musicians, actors, politicians, edu-
cational institutions, media platforms and businesses from
all sectors of the economy. Of these, our approach identi-
fied four of Nike’s biggest competitors, five Nike sub-brands
and a major retailer of Nike products as the most associ-
ated accounts. This is consistent with our assertion that
the Jaccard similarity of neighbourhood sets provides a ro-
bust similarity measure between accounts. We found similar
trends throughout the data and this is consistent with the
experience of analysts at Starcount using the tool. Table 3
also shows how the size of the minhash signature affects the
Jaccard estimate and the corresponding rank of similar ac-
counts. Local community detection algorithms add accounts
in similarity order. Therefore, approximating the true order-
ing is an important property.

5.2 Experiment 2: Comparison of Commu-
nity Detection with PPR

In experiment 2 we move from assessing a single compo-



Figure 2: Average recall (with standard errors) of Agglom-
erative Clustering (yellow), Personal PageRank (red) and
Minhash Similarity (blue) against the number of additions
to the community expressed as a fraction of the size of the
ground-truth communities. The tight error bars indicate
that the methods are robust to the choice of seeds.

nent (minhashing) to a system wide evaluation. We evalu-
ate the ability of our algorithm to detect related entities by
measuring its performance as a local community detection
algorithm seeded with members of the ground-truth commu-
nities. To generate ground-truth communities we attempted
to match Wikipedia pages to every Twitter account. Where
a match was possible we extracted the Wikipedia tag that
was synonymous with function and placed accounts with the
same tag in the same ground-truth community. As a base-
line for comparison we use the (state of the art) Personal
Page Rank (PPR) algorithm. It is impossible to provide a
fully like-for-like comparison with PPR. Running PPR on
the full graph (700 million vertices and 20 billion edges)
that we extract features from requires cluster computing and
could return results outside of the accounts we hashed. The
alternative is to restrict PPR to run on the directly observed
network of the largest Twitter accounts, which could then
be run on a single machine. We adopt this later approach as
it is the only option that meets our user requirements (single
machine and real-time).

In our experimentation, we randomly sample 30 seeds
from each ground-truth community. To produce MS and AC
results the seeds are input to an LSH query, which produces
a list of candidate near-neighbours. For each candidate the
Jaccard similarity is estimated using minhash signatures and
sorted by either the MS or AC procedures. Our PPR imple-
mentation uses the 30 seeds as the teleport set and runs for
three iterations returning a ranked list of similar accounts.

In all cases, we sequentially select accounts in similarity
order and measure the recall after each selection.

recall =
|C ∩ Ctrue|
|Ctrue| − |Cinit|

(14)

with Cinit as the seeds, Ctrue as the ground truth community
and C as the set of accounts added to the output. For a
community of size |C| we do this for the |C|−30 most similar
accounts so that a perfect system would pass through (1, 1).

Table 4: Area under the recall curves (Figure 2). Bold en-
tries indicate the best performing method. Minhash similar-
ity (MS) is the best method in 8 cases, Agglomerative Clus-
tering (AC) in 8 cases and Personalised PageRank (PPR) in
none. A perfect community detector would score 0.5

tags size PPR MS AC

travel 2038 0.186 0.240 0.230
airline 363 0.040 0.151 0.180

hotel brand 836 0.160 0.294 0.285
cosmetics 332 0.055 0.086 0.143

food and drink 2974 0.072 0.099 0.082
electronics 689 0.035 0.069 0.059
alcohol 388 0.069 0.199 0.229
model 2096 0.078 0.110 0.109

mixed martial arts 751 0.317 0.363 0.386
cycling 371 0.278 0.330 0.445
athletics 530 0.219 0.285 0.365

adult actor 352 0.269 0.347 0.397
american football 1295 0.240 0.371 0.240

baseball 616 0.203 0.379 0.378
basketball 786 0.252 0.380 0.353
football 4111 0.202 0.233 0.212

Table 5: Clustering runtimes averaged over communities.

PPR MS AC
12.58± 8.83 0.23± 0.08 18.6± 22.0

The results of this experiment for 16 different ground-
truth communities are shown in Figure 2 with the Area Un-
der the Curves (AUC) given in Table 4. Bold entries in
Table 4 indicate the best performing method. In all cases
MS and AC are superior to PPR. Figure 2 shows standard
errors over five randomly chosen input sets of 30 accounts
from Ctrue. The confidence bounds are tight indicating that
the methods are robust to the choice of input seeds.

Table 5 gives the mean and standard deviation of the run
times averaged over the 16 communities. MS is the only
real-time method and is fastest by two orders of magnitude.

5.3 Experiment 3: Real-Time Graph Analysis
and Visualisation

In experiment 3 we provide example applications of our
system to graph analysis. Users need only input a set of
seeds, wait a quarter of a second and the system discov-
ers the structure of the graph in the region of the seeds.
Users can then iterate the input seeds based on what pre-
vious outputs reveal about the graph structure. Figure 3a
shows results on the Facebook Page Engagements network
while Figure 3b uses the Twitter Followers graph. Seeds are
passed to the MS process, which returns the 100 most related
entities. All pairwise Jaccard estimates are then calculated
using the minhash signatures and the resulting weighted ad-
jacency matrix is passed to the WALKTRAP global com-
munity detection algorithm [20]. The result is a weighted
graph with community affiliations for each vertex. In our
visualisations we use the Force Atlas 2 algorithm to lay out
the vertices. The thickness of the edges between vertices
represents the pairwise Jaccard similarity, which has been
thresholded for image clarity. The vertex size represents the
weighted degree of the vertex, but is logarithmically scaled
to be between 1 and 50 pixels. The vertex colours depict
the different communities found by the WALKTRAP com-
munity detection algorithm.



Our work uses the richness of social media data to provide
insights into a broad range of questions. Two examples are:

• Describe the factions and relationships within the
US Republican party? This is a question with a major
temporal component, and so we use the Facebook Pages
graph. We feed “Donald Trump”, “Marco Rubio”, “Ted
Cruz”, “Ben Carson” and “Jeb Bush” as seeds into the
system and wait for 0.25 s for Figure 3a, which shows a
densely connected core group of active politicians with
Donald Trump at the periphery surrounded by a largely
disconnected set of right-wing interest bodies.

• How are the major social networks used? We feed
the seeds “Twitter”, “Facebook”, “YouTube” and “Insta-
gram” into the system loaded with the Twitter Follow-
ers graph and wait for 0.25 s for Figure 3b, which shows
that Google is highly associated with other technology
brands while Instagram is closely related to celebrity and
YouTube and Facebook are linked to sports and politics.

In all cases, the user selects a group of seeds (or a single seed)
and runs the system, which returns a Figure and a table of
community memberships in 0.25 s. Analysts can then use the
results to supplement the seed list with new entities or use
the table of community members from a single WALKTRAP
sub-community to explore higher resolution.

6. CONCLUSION AND FUTURE WORK
We have presented a real-time system to analyse large so-

cial networks on a laptop. The key idea is to compress the
graph into memory using minhash signatures, which can be
used to query Jaccard similarity in real-time through Lo-
cality Sensitive Hashing. We have shown that the qual-
ity of results achieved significantly outperforms the state
of the art operating under the same constraints. Our work
has clear applications for knowledge discovery processes that
currently rely upon slow and expensive manual procedures,
such as focus groups and telephone polling. In general, it
offers a potential for organisations to rapidly acquire knowl-
edge of new territories and supplies an alternative moneti-
sation scheme for data owners.
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(b) The major social networks Twitter Follower graph. Seeds are Twitter, Facebook, YouTube and Instagram.

Figure 3: Visualisations of results using different sets of seeds. The vertex size depicts degree of similarity to the seeds. Edge
widths show pairwise similarities. Colours are used to show different communities.


