
Distributed Community Detection on Edge-labeled Graphs
using Spark

San-Chuan Hung
Carnegie Mellon University

Pittsburgh, USA
c2016.tw@gmail.com

Miguel Araujo
Carnegie Mellon University &

INESC TEC
Porto, Portugal

maraujo@cs.cmu.edu

Christos Faloutsos
Carnegie Mellon University

Pittsburgh, USA
christos@cs.cmu.edu

ABSTRACT
How can we detect communities in graphs with edge-labels,
such as time-evolving networks or edge-colored graphs? Un-
like classical graphs, edge-labels contain additional informa-
tion about the type of edges, e.g., when two people got
connected, or which company hosts the air route between
two cities. We model community detection on edge-labeled
graphs as a tensor decomposition problem and propose Ter-
aCom, a distributed system that is able to scale in order to
solve this problem on 10x larger graphs. By carefully design-
ing our algorithm and leveraging the Spark framework, we
show how to achieve better accuracy (in terms of recovering
ground-truth communities) when compared to PARAFAC
methods - up to 30% increase in NMI. We also present in-
teresting clusters discovered by our system in a flights net-
work.

CCS Concepts
•Information systems→Data mining; •Theory of com-
putation → MapReduce algorithms;

Keywords
Community Detection, Tensor Factorization, Tensor Decom-
position, Distributed Computing

1. INTRODUCTION
How can we detect communities in graphs with edge-

labels, such as time-evolving networks or edge-colored graphs?
For example, social network edges connecting two users might
carry information regarding the time at which they became
friends, in which case the edge creation time is the label of
the edge. Airlines also form edge-labeled graphs, as each
air route connecting two cities is hosted by a specific airline
company. Finally, english sentences can also be described as
edge-labeled graphs: a node might represent a subject or an
object phrase, while a subject-verb-object sentence might be

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

represented as an edge between two nodes whose verb is the
edge label.
There are many community detection methods designed

for classical graphs [12, 11, 13], but they do not leverage the
additional information provided by these labels. Detecting
communities in edge-labeled graphs is still a developing re-
search topic [5, 31].
We provide a scalable and fast solution for this problem by

developing TeraCom, a system based on the Spark frame-
work. We carefully design an algorithm that is able to it-
eratively reduce the problem size in order to speed-up each
subsequent iteration and, according to our experiments, our
system is able to find communities in larger graphs while
keeping a competitive accuracy when compared to standard
tensor decomposition methods.
Figure 1 illustrates our method’s ability to find mean-

ingful communities in a real airports dataset. Edge-labels
correspond to airlines and have been omitted for clarity.
Our main contributions can be summarized as follows:

• Scalability. Our system is able to detect communi-
ties in edge-labeled graphs 10X bigger when compared
to existing tools. Furthermore, our system speeds-up
near linearly when enough machines are provided.

• Effective Algorithm. We carefully reorder opera-
tions in order to reduce the problem size after each
iteration, enabling faster computation.

• Discoveries. Our system discovers spatially affine
groups in an airline network, shown in Figure 1. For
example, our system is able to distinguish low-cost air-
lines and standard airlines in Europe.

2. BACKGROUND

2.1 Edge-labeled Graphs and Tensors
Let G = (V,L,E) be an edge-labeled graph, where V is

the set of nodes, L is the set of categorical labels and E is
the set of edges {(v1, v2, l) ∈ E|v1 ∈ V, v2 ∈ V, l ∈ L}. We
can model this edge-labeled graph as a binary three-mode
tensor.
A N-mode tensor X ∈ RI1×I2×I3...×IN is a n-dimensional

array used to describe inter-relational data. A one-mode
tensor is an array, a two-mode tensor is a matrix, etc. We
will be describing three-mode tensors in the rest of the pa-
per.

Figure 1: Communities detected in flights dataset: (1) America, (2) Brazil, (3) India, (4) Latin America.
Each red dot represents an airport.

2.2 Tensor Decomposition and Community De-
tection

An edge-labeled graph may contain sets of highly inter-
connected nodes, which we typically call communities. For
instance, in an airline graph, the airports in America may
form a community because they are connected by multiple
air routes. Furthermore, these flights are hosted by a subset
of the many airline companies. Therefore, a community in
our edge-labeled airports network would be represented by
two sets of airports (sources and destinations) and one set
of airlines.
When representing edge-labeled graphs as tensors, tensor-

decomposition methods are known to aid in the detection
of communities. PARAFAC [7] is a tensor decomposition
method that approximates the original tensor through a
combination of multiple low-dimensional factors. For exam-
ple, an original tensor X can be decomposed into R factors
(a1,b1, c1, λ1), (a2,b2, c2, λ2)...(aR,bR, cR, λR), where a1,
... aR, b1 ... bR, c1 ... cR are unit vectors, and λ1, λ2...
λR are scalars. The xi,j,k value in the original tensor X can
be reconstructed by summing up all factors:

x̄i,j,k =
∑

r=1...R

λr · ar,i · br,j · cr,k (1)

If a tensor has clustering structure, the decomposed fac-
tors are known to capture different clusters in the tensor.
Figure 2 shows the ideal case: each factor captures a differ-
ent cuboid in the tensor and the decomposed factors can be
used to obtain the edge-labeled communities of our network.
In practice, due to noise and to the non-uniform structure
that communities exhibit [3], factors matrices A,B and C
won’t represent cuboids and different techniques are neces-
sary to obtain binary membership.

Figure 2: Community Detection with PARAFAC, if
elements in the factors could be easily clustered.

3. RELATED WORK
Community Detection on Graphs Classical algorithms

find communities in unlabeled graphs through the analysis
of the network topology. In general, they look for groups of
nodes which achieve high internal connectivity while having
few connections to the rest of the graph. There are multi-
ple approaches which can be classified in different categories.
The assumption behind graph-partition methods [13] is that
groups are connected by bridge edges which will emerge if we
cut them; therefore, these methods first define edge central-
ity and then remove edges repeatedly to form clusters. On
the other hand, cluster optimization approaches transform
community detection into optimization problems; they de-
fine what a "good" cluster is and then apply a strategy to op-
timize the goodness metric. Modularity-based methods [25,
24, 11], Weighted Community Clustering methods [29, 30],
propinquity methods [10] can be classified in this approach.
RWR-based methods [8] group nodes by RWR score, i.e. the
probability of landing on a node given random walks from a
set of seed nodes. Label propagation methods [15] assume
that each node has a label which indicates to which group
it belongs and continuously update each node’s label based

Symbol Definition
G a edge-labeled graph
V set of nodes
L set of labels
E set of labeled edges
a, b, c column vectors
A, B, C factor matrices
λ scalar weight
m a community
M set of communities
R the rank of the decomposition
T the number of inner-round of

the rank-1 decomposition

Table 1: Symbol Table

on the majority label of neighboring nodes.
Community Detection on Edge-labeled Graphs
Aforementioned methods rely on network topology infor-

mation to detect communities, ignoring the information car-
ried by edge-labels.
Com2 [4, 5] and TimeCrunch [31] are community detec-

tion algorithms for edge-labeled graphs. The basic ideas are
similar: they find patterns that minimize the description
length (MDL) of the tensor, i.e. a cost for encoding both
patterns and errors. The assumption is that patterns iden-
tified in this minimization correspond to communities and
can be easily interpretable: the patterns are simple, and the
errors are identified. Com2 starts by performing candidate
selection through a rank-1 approximation to decompose the
tensor in 3 vectors that a hill-climbing algorithm optimiz-
ing MDL will use to guide the search. TimeCrunch also
finds patterns by minimizing the MDL, but it focuses on ex-
plainable time-evolving patterns instead. It first slices the
time-evolving graph into static graphs with different time
stamps and then uses VoG [21] to mine patterns in these
static graphs. It then stitch the patterns in different time
periods, building a pattern-node matrix, and uses matrix
factorization to cluster the patterns in different time steps.
Probabilistic Approach for Dynamic Graphs Many

models [32, 35, 33, 14, 28] detect hidden structures (e.g.
community assignment [32], group evolving paths [35], or
hidden class interactions in different time periods [33]) inside
dynamic graphs through variations of the Dynamic Stochas-
tic Block Model: they extend it by adding different hid-
den structural assumptions with varying probability distri-
butions, and then use the available data to infer the most
likely parameters. In our work, the hidden class assignment
are captured as factor vectors and computed by tensor de-
composition. Besides, our work does not assume the input
graphs should be temporal, but it can be applied to graphs
with any categorical labels on the edges.
Tensor Analysis and Tools Multiple tensor analysis

toolboxes implementing PARAFAC have been developed.
While these systems implement the standard PARAFAC [7]
decomposition, our work is focused on binary tensors and
we use iterated rank-1 decompositions to speed-up the algo-
rithm. Besides, while some of these systems are distributed
on Hadoop, our system is based on Spark [36] which allows
efficient memory-based operations, not requiring data to be
spilled to disk.
Tensor Toolbox [6] is a well-known MATLAB implementa-

tion of many tensor decomposition algorithms, such as non-
negative PARAFAC with alternative Poisson regression [16]
and PARAFAC via optimization [2]. ParCube [26] intro-
duced a sampling process before the tensor decomposition
algorithm so that bigger problems could be tackled.
The difference between our system and these two tools

is that (1) these tools are designed for single machine use,
while our system runs on a distributed framework and (2)
our system is able to cluster the most relevant elements on
each mode, instead of scoring elements individually.
GigaTensor [18] developed a large-scale PARAFAC [19] al-

gorithm for tensor decomposition based on Hadoop. Their
idea is that by decoupling the product terms they are able
to avoid the data explosion known to be generated by in-
termediate matrices, and by storing the small matrices in
the distributed cache they are able to speedup matrix mul-
tiplication. HaTen2 [17] is also a Hadoop-based PARAFAC
system from the same authors. Similar to GigaTensor, they
both aim to avoid the intermediate data explosion problem.
The authors claims that HaTen2 is an improvement over
GigaTensor.
Apache Spark Spark [36] is an in-memory MapReduce-

like general-purpose distributed computation platform which
provide a high-level interface for users to build applications.
Unlike previous MapReduce frameworks like Hadoop, Spark
mainly stores intermediate data in memory, effectively re-
ducing the number of disk Input/Output operations. The
main abstraction in Spark is called a Resilient Distributed
Dataset (RDD), which represents a collection of read-only
objects. RDDs can be constructed from files, vectors or de-
rived from other RDDs, in which case the operation is called
a transformation (typical transformations are map, reduce,
flatmap of filter). RDDs aren’t always saved to disk and
they are computed only when needed.
Spark allows us to use multiple machines and multiple

cores. Perhaps more importantly, our algorithms are able
to manipulate more memory, which means that our system
can be applied to larger datasets.

4. PROPOSED SYSTEM

4.1 Rank-1 Tensor Decomposition
Given a three mode tensor X, we want to find vectors a,

b, c which approximate tensor X with minimal error.

Er =
∑

i

∑
j

∑
k

(xi,j,k − λ · ai · bj · ck)2 (2)

a,b, c = min
a,b,c

Er (3)

a, b, c can be solved by Alternative Least Squares (ALS):
we start by randomly initializing a, b, c, and then alter-
natingly update one of the vectors while assuming that the
others are fixed. T

lemma 1. Using Alternating Least Squares (ALS), the
updates of vectors a, b, c are given by:

ai = 1
Za

∑
j

∑
k

bj · ck · xi,j,k (4)

bj = 1
Zb

∑
j

∑
k

ai · ck · xi,j,k (5)

Figure 3: Community detection with our system

ck = 1
Zc

∑
j

∑
k

ai · bj · xi,j,k (6)

where Za, Zb and Zc are normalization constants that guar-
antee unit-norm, and λ = Za · Zb · Zc.

A sketch of the proof can be found in the appendix, it
follows from the general ALS method [9].

4.2 Algorithm Design

4.2.1 Community Detection

Algorithm 1 TeraCom
Input: E, R
Output: M
1: for r in 1...R do
2: // factorization step
3: a,b, c = rank1Decomposition(E)
4: for e in E do
5: // thresholding step
6: if ae.i ≥ 1/|a| and be.j ≥ 1/|b| and ce.k ≥ 1/|c|

then
7: // tensor deflation step
8: Add e into mr

9: Remove e from E
10: end if
11: end for
12: end for
13: return M = {m1,m2,m3, ...,mk }

Instead of simultaneously decomposing the tensor into R
factors like PARAFAC, we propose a distributed algorithm
based on consecutive rank-1 decompositions that extracts
communities one by one.
As shown in Figure 3 and Algorithm 1, one round of our

method is composed of three steps:

1. The Factorization step uses a rank-1 decomposition
to extract one set of factor vectors a, b, and c.

2. The Thresholding step will establish which elements
belong to the current community. It marks an entry

ei,j,k to be part of the r-th community if its corre-
sponding factor scores ai, bj , and ck are larger than
the average score of the respective factor vectors.

3. The Tensor deflation step saves the marked entries
as a community and then removes the non-zero ele-
ments corresponding to this community from the ten-
sor. After running the process R times, it will generate
R distinct communities.

The advantage of this detection-removal process is that
its shrinks the tensor after each iteration, speeding up sub-
sequent rounds. As the tensor is sparsely encoded (only
the non-zero elements take physical memory), after each it-
eration some non-zero elements are marked as part of the
currently detected community and removed. Therefore, the
number of non-zeros of the tensor decreases after each iter-
ation and less data needs to be processed in later stages.
Algorithm 2 shows the rank-1 decomposition process. Vec-

tors a, b, c are first randomly initialized and normalized. In
each inner-round, we update a, b, and c individually, con-
sidering that the other vectors are fixed, using their most
up-to-date version.
This process runs multiple times until we achieve conver-

gence. Parameter T decides the number of inner-rounds of
the rank-1 decomposition: more inner-rounds provide higher
precision at the cost of a longer execution time.

Algorithm 2 Rank-1 Decomposition
Input: E
Output: a, b, c
1: randomly initialize normalized vectors: a, b, c
2: for r in 1...T do
3: for i in 1 ... |a| − 1 do
4: ai =

∑
ei,j,k∈E bj ∗ ck

5: end for
6: a = Normalize(a)
7: for j in 1 ... |b| − 1 do
8: bj =

∑
ei,j,k∈E ai ∗ ck

9: end for
10: b = Normalize(b)
11: for k in 1 ... |c| − 1 do
12: ck =

∑
ei,j,k∈E ai ∗ bj

13: end for
14: c = Normalize(c)
15: end for
16: return a,b, c

4.3 Implementation Design
Our implementation is carefully designed to obtain the

best speed-up and scalability:
We limit the number of groupBy operations by par-

titioning the data among machines so that edges of the same
element are available at the same physical location, minimiz-
ing data shuffling.
We cache reused RDD in memory, minimizing disk

accesses between consecutive iterations, which would not be
possible if using a system like Hadoop to distribute the
computation.
Finally, we encode shared state using broadcast vari-

ables. For each inner-iteration, we broadcast the latest ver-
sion of vectors a, b and c (which are small) to all machines.

For each dimension, non-zeros are then mapped to the re-
spective product of equation 4, aggregated and normalized.

5. EXPERIMENTS
Our system is evaluated by answering the following ques-

tions:
Q1: How accurately does our system detect communities

in edge-labeled graph comparing to other tensor decompo-
sition methods?
Q2: How does our system scale with graph size? Can we

solve larger problems than other tools?
Q3: How does our system scale with the number of ma-

chines? Does it scale linearly?
Q4: What can our system discover in real world edge-

labeled graphs?

5.1 Precision
We are interested in analyzing precision in a community

detection setting where hard membership constraints are
in place: an element either belongs to a community or it
doesn’t. Therefore, we compare our system with modified
versions of standard [7] and non-negative [22] PARAFAC.

5.1.1 Baseline Methods
We consider three distinct baseline approaches which we

call thresholded PARAFAC (PARAFAC-thresh), absolute-
valued PARAFAC (PARAFAC-abs) and thresholded Non-
Negative PARAFAC (NN-PARAFAC-thresh). In all base-
lines, we start by apply the respective standard PARAFAC
or Non-Negative PARAFAC decompositions and then select
elements as being part of the community if their score in
the factor vector is greater than the average value of the
vector. In absolute-valued PARAFAC, we take the absolute
value of the score before thresholding instead, as it is pos-
sible that negative scores in standard PARAFAC affect the
community definitions.
We use Matlab’s Tensor Toolbox [6] as the default imple-

mentation of PARAFAC and Non-Negative PARAFAC.

5.1.2 Data Description
We use three datasets with ground-truth communities to

evaluate accuracy: two synthetic datasets with artificial com-
munities and the DBLP dataset [23], where journal names
act as community ground-truth labels.
In the first synthetic dataset (Small Cubes), we gener-

ated 10 disjoint highly dense cubes in a tensor to form an
edge-labeled graph. Each cube represents a trivial commu-
nity with multiple edge-labels connecting its nodes. For the
second dataset, we generated 5 disjoint random-subgraphs
(5-DRS). A 5-DRS graph contains 5 different-size random-
subgraphs, whose nodes are randomly connected. There are
no links between different subgraphs. As each subgraph rep-
resents a community, there are 5 trivial communities in the
data. Each sub-graph contains twice the number of edges as
the previous, with the total numbers of edges of the graphs
ranging from 100K to 100M.
The DBLP dataset is a standard co-authorship network

with edges labeled with the year(s) in which the authors
collaborated. We only use data from the top-100 journals
to form the graph.

Figure 4: Data Scalability Experiment: Tensor Tool-
box (1 machine) v.s. Our System (3 machines)

5.1.3 Experimental Result
We use Normalized Mutual Information (NMI1) [34] in

order to create a confusion matrix between each factor and
each community. We then assign each community to one
factor, and calculate the average NMI score. Table 3 shows
that our system has better accuracy than competing base-
lines, achieving 0.9995 NMI in the small cubes dataset and
0.5908 in the DBLP-100 dataset.

Name Small Cubes DBLP-100
our system 0.9995 0.5908
PARAFAC-thresh 0.9779 0.5209
NN-PARAFAC-thresh 0.8445 0.5404
PARAFAC-abs 0.9893 0.4292

Table 3: Precision Experiment

5.2 Scalability

5.2.1 Data Scalability
We are interested in analyzing the speed-up of our system

compared to single machine tools. As a baseline, we consider
the Matlab’s Tensor Toolbox [6] - a tensor decomposition
tool which is the state of the art tensor computation package
designed for single machine [17].
The numbers of inner-round iterations of the Tensor Tool-

box and of our system affect both their speed and accuracy.
In order to perform a fair comparison, we first fix the preci-
sion of the Tensor Toolbox, then find the required number of
inner-iterations for our system to achieve a lower error, and
finally compare their running time at this precision level.
We run Tensor Toolbox on a single machine with 15GB of

memory and 12 Intel(R) Xeon(R) 3.20GHz CPUs. We build
a Spark cluster on 3 AWS m3.xlarge instances; each instance
has 15GB memory and 4 Intel Xeon E5-2670 2.6GHz CPUs.
We run each experiment three times to compute the average
and the deviation of wall-clock time.
Figure 4 shows the experimental results: our system can

be applied to 10X larger graphs, while still running faster
1NMI values range from 0 to 1 and higher NMI values are
better.

Name |V| |E| |L| |communities|
10-cubes 130 33786 150 10
5-disjointed-subgraph 1K – 1M 100K – 100M 1K – 1M 5
DBLP-top100 2244 5054 45 100
Airline 3162 58443 532 N/A
NELL 74M 144M 26M N/A

Table 2: Dataset description: 2 synthetic and 3 real-world datasets.

Figure 5: Execution time decreases in each outer-
iteration.

in most scenarios. Note that the Tensor Toolbox cannot
be executed on the the fourth graph (108 edges) because
it runs out of memory. Furthermore, please note the loga-
rithmic axis in this figure. For example, in the third graph
(107 edges), Tensor Toolbox requires 1679.89 seconds on av-
erage, but our system only needs 107.40 seconds - a 15.64X
improvement.
The speedup comes from two aspects:

1. The Spark framework contributes to the speedup, as it
dispatch the tasks to multiple machines and executes
the computation in parallel.

2. Our algorithm shrinks the problem size after each outer-
iteration: it saves the detected community into a file
and removes the edges from the graph.

Figure 5 shows the wall-clock time of each outer-iteration
as our system processes the fourth graph (108 edges). Note
the significant decrease in running time. Furthermore, note
that the Tensor Toolbox is faster on small datasets (105

edges) than our system, as the Spark framework adds over-
head of coordinating jobs and resources across machines.

5.2.2 Machine Scalability
The machine scalability experiment tests the speed-up of

our system when we increase the number of machines. As
the execution time will be determined by the number of
inner-rounds of the rank-1 decomposition, we focus on mea-
suring the time of a single iteration.
We test our system on the NELL dataset. NELL is a

Subject-Object network: each node represents a subject or
an object, and there is a link between a subject and an ob-
ject if a valid subject-verb-object concept exists. Therefore,
edges are labeled with verbs of the English language.

The size of Spark cluster ranges from 3 to 20 AWS r3.xlarge
instances. One r3.xlarge instance contains 30GB of memory
and 4 Intel Xeon E5-2670 2.60 GHz CPUs. As before, we
execute each experiment three times to acquire the average
and the deviation of the wall-clock time. We consider the
5-machines wall-clock time (T5) as the baseline and show
relative speedup ratios Tm/T5 in figure 6.
We note the following: (1) nearly linear speedup from 5

to 10 machines. Our system is 166.71% faster with 8 ma-
chines and 193.13% faster with 10 machines, compared to a
5 machines cluster. (2) The 3-machines cluster does not per-
forms as well as expected; although it has more than half of
5 machines, its relative speedup is only 30.95%. The reason
is that the small cluster does not have sufficient memory to
store the working set of RDDs, causing the JVM to start the
garbage collection (GC) often - it spends 91.29% of the run-
ning time running the GC. (3) the improvement in speed-up
becomes negligible when the number of machines increases
from 10 to 15 or 20. Although a 10-machines cluster shows
a 193.13% speed-up, it only shows a 209.34% improvement
for 15 machines and 210.02% for 20 machines.
There are three reasons explaining this last result. Firstly,

the default number of tasks assigned by the Spark system is
not large enough to fully leverage parallelism - Spark creates
33 tasks, while the 15 machine cluster has 48 cores avail-
able. Secondly, NELL is a NLP dataset: common words
contain more links compared to unpopular words, leading
the a skewed workload. When we increase the size of the
cluster, although the average execution time of each task
decreases on average, outlier tasks do not have a propor-
tional speed-up to the increased number of cores. Finally,
increasing the number of machines also increases network
overhead.
The result shows that our system can provide nearly linear

speedup if the cluster has enough memory to load working
set RDDs into memory, and if Spark if configured to pro-
vide an adequate number of tasks for machines to utilize
parallelism fully.

5.3 Discoveries
We apply our system to an Airlines dataset [4]. Each

node corresponds to a city and a link represents an air route.
Edge label correspond to airlines hosting these routes. We
set the number of communities to 10, and the number of
inner decomposition rounds to 20.
Our system can find spatially affine communities - the

decomposed groups correspond to countries or regions. For
example, our system detects the airline cluster of the USA,
China, Europe, India, Brazil, Australia, South East Asia,
Russia, and Latin America; some examples are shown in
Figure 1.
More interestingly, our system is able to use the edge la-

bels to distinguish two airline clusters in Europe, EU1 and

Figure 6: Machine Scalability (Base: 5 machines)

EU2 shown in Figure 7. In EU1, we can see air routes mainly
hosted by low-cost airlines, such as Ryanair and easyJet -
74.15% of the flights are hosted by companies on the low-
cost airline list [1]. In contrast, only 16.74% of the routes
in EU2 are hosted by companies on this list. The results
shows that our system fully uses the information of the air-
line network to detect communities: decisions are not only
based on network topology, but also on edge labels.
More results can be found at http://leohung.net/taboo-

decomposition-demo/ for interested readers.

6. CONCLUSION
This paper proposes a Spark-based distributed system for

finding communities in edge-labeled graphs. Our contribu-
tion are summarized as follows:

• Scalability. Our system is able to detect communi-
ties in edge-labeled graphs 10X bigger when compared
to existing tools. Furthermore, our system speeds-up
near linearly when enough machines are provided.

• Effective Algorithm. We carefully reorder opera-
tions in order to reduce the problem size after each
iteration, enabling faster computation.

• Discoveries. Our system discovers spatially affine
groups in an airline network, shown in Figure 1. For
example, our system is able to distinguish low-cost air-
lines and standard airlines in Europe.

Discussion. Performing iterative rank-1 decompositions
that are followed by a tensor deflation is a well known tech-
nique that multiple algorithms rely on [20, 4], as evidence
has been provided that, in sparse settings, it approximates
the full-rank decomposition with very high accuracy [27].
We provide empirical evidence that, by avoiding such inter-
actions, this method enables the identification of the under-
lying structure with less noisy (higher NMI) factors. We
expect further research to better quantify this improvement
and to analyze when can such techniques be more accurate
than the slower full-rank decompositions.

7. ACKNOWLEDGMENTS
Miguel Araujo is partially supported by the COMPETE

2020 program within project POCI-01-0145-FEDER-006961

Figure 7: Two clusters of different European air-
lines. The air routes in EU1 are mainly hosted by
low-cost airlines, while routes in EU2 are hosted by
regular airlines.

and by FCT (Portuguese Foundation for Science and Tech-
nology) through the Carnegie Mellon Portugal Program un-
der Grant SFRH/BD/52362/2013 and as part of project
UID/EEA/50014/2013.

8. REFERENCES
[1] List of low-cost airlines.

https://en.wikipedia.org/wiki/List_of_low-
cost_airlines.

[2] E. Acar, D. M. Dunlavy, and T. G. Kolda. A scalable
optimization approach for fitting canonical tensor
decompositions. Journal of Chemometrics,
25(2):67–86, Jan. 2011.

[3] M. Araujo, S. Günnemann, G. Mateos, and
C. Faloutsos. Beyond blocks: Hyperbolic community
detection. In Machine Learning and Knowledge
Discovery in Databases, pages 50–65. Springer, 2014.

[4] M. Araujo, S. Günnemann, S. Papadimitriou,
C. Faloutsos, P. Basu, A. Swami, E. Papalexakis, and
D. Koutra. Discovery of “comet” communities in
temporal and labeled graphs Com2. Knowledge and
Information Systems, pages 1–21, 2015.

[5] M. Araujo, S. Papadimitriou, S. Günnemann,
C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis,
and D. Koutra. Com2: Fast Automatic Discovery of
Temporal (’Comet’) Communities. PAKDD,
8444(Chapter 23):271–283, 2014.

[6] B. W. Bader, T. G. Kolda, and others. MATLAB
Tensor Toolbox Version 2.6. Feb. 2015.

[7] R. Bro. PARAFAC. Tutorial and applications.
Chemometrics and Intelligent Laboratory Systems,
38(2):149–171, 1997.

[8] B. Cai, H. Wang, H. Zheng, and H. Wang. An
Improved Random Walk based Clustering Algorithm

for Community Detection in Complex Networks. pages
1–6, July 2011.

[9] J. Carroll and J.-J. Chang. Analysis of individual
differences in multidimensional scaling via an n-way
generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319, 1970.

[10] Cosmos. Parallel Community Detection on Large
Networks with Propinquity Dynamics. pages 1–9, Oct.
2015.

[11] J. Duch and A. Arenas. Community detection in
complex networks using Extremal Optimization.
arXiv.org, (2):027104, Jan. 2005.

[12] S. Fortunato. Community detection in graphs.
arXiv.org, (3-5):75–174, June 2009.

[13] S. Fortunato and C. Castellano. Community Structure
in Graphs. arXiv.org, Dec. 2007.

[14] A. Ghasemian, P. Zhang, A. Clauset, C. Moore, and
L. Peel. Detectability thresholds and optimal
algorithms for community structure in dynamic
networks. arXiv.org, June 2015.

[15] S. Gregory. Finding overlapping communities in
networks by label propagation. arXiv.org, (10):103018,
Oct. 2009.

[16] S. Hansen, T. Plantenga, and T. G. Kolda.
Newton-based optimization for Kullback-Leibler
nonnegative tensor factorizations. Optimization
Methods and Software (), 30(5):1002–1029, 2015.

[17] I. Jeon, E. E. Papalexakis, U. Kang, and C. Faloutsos.
HaTen2: Billion-scale tensor decompositions. ICDE,
pages 1047–1058, 2015.

[18] U. Kang, E. E. Papalexakis, A. Harpale, and
C. Faloutsos. GigaTensor: scaling tensor analysis up
by 100 times - algorithms and discoveries. KDD, pages
316–324, 2012.

[19] T. G. Kolda and B. W. Bader. Tensor Decompositions
and Applications. SIAM Review, 51(3):455–500, Aug.
2009.

[20] T. G. Kolda, B. W. Bader, and J. P. Kenny.
Higher-order web link analysis using multilinear
algebra. In Data Mining, Fifth IEEE International
Conference on, pages 8–pp. IEEE, 2005.

[21] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos.
VOG: Summarizing and Understanding Large Graphs.
SDM, pages 91–99, 2014.

[22] D. D. Lee and H. S. Seung. Algorithms for
Non-negative Matrix Factorization. NIPS 2014, pages
556–562, 2000.

[23] M. Ley. The DBLP Computer Science Bibliography:
Evolution, Research Issues, Perspectives. SPIRE,
pages 1–10, 2002.

[24] M. E. J. Newman. Fast algorithm for detecting
community structure in networks. arXiv.org,
(6):066133, Sept. 2003.

[25] M. E. J. Newman. Modularity and community
structure in networks. arXiv.org, (23):8577–8582, Feb.
2006.

[26] E. E. Papalexakis, C. Faloutsos, and N. D.
Sidiropoulos. ParCube: Sparse Parallelizable Tensor
Decompositions. ECML/PKDD, 7523(Chapter
39):521–536, 2012.

[27] E. E. Papalexakis, N. Sidiropoulos, and R. Bro. From

k-means to higher-way co-clustering: Multilinear
decomposition with sparse latent factors. Signal
Processing, IEEE Transactions on, 61(2):493–506,
2013.

[28] T. P. Peixoto. Inferring the mesoscale structure of
layered, edge-valued and time-varying networks.
arXiv.org, (4):042807, Apr. 2015.

[29] A. Prat-Pérez, D. Dominguez-Sal, J. M. Brunat, and
J.-L. Larriba-Pey. Shaping Communities out of
Triangles. arXiv.org, July 2012.

[30] A. Prat-Pérez, D. Dominguez-Sal, and J.-L.
Larriba-Pey. High quality, scalable and parallel
community detection for large real graphs. In the 23rd
international conference, pages 225–236, New York,
New York, USA, 2014. ACM Press.

[31] N. Shah, D. Koutra, T. Zou, B. Gallagher, and
C. Faloutsos. TimeCrunch: Interpretable Dynamic
Graph Summarization. KDD, pages 1055–1064, 2015.

[32] X. Tang and C. C. Yang. Dynamic Community
Detection with Temporal Dirichlet Process. IEEE,
2011.

[33] K. S. Xu and A. O. Hero. Dynamic Stochastic
Blockmodels: Statistical Models for Time-Evolving
Networks. In Social Computing, Behavioral-Cultural
Modeling and Prediction, pages 201–210. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[34] J. Yang and J. Leskovec. Defining and Evaluating
Network Communities Based on Ground-Truth. CoRR
abs/1204.6078, cs.SI:745–754, 2012.

[35] T. Yang, Y. Chi, S. Zhu, Y. Gong, and R. Jin.
Detecting communities and their evolutions in
dynamic social networks–a Bayesian approach.
Machine Learning, 82(2):157–189, Feb. 2011.

[36] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. HotCloud 2010, 2010.

APPENDIX
A. RANK-1 DECOMPOSITION UPDATES

Proof. Take updating a as an example. We want to
solve the following optimization problem

min
a

∑
i

∑
j

∑
k

(xi,j,k − λ · ai · bj · ck)2 (7)

and achieve that by finding the value of a that sets the
gradient to 0.

∂Er

∂ai
= 0 (8)

=
∑

j

∑
k

2 · (xi,j,k − λ · ai · bj · ck)(λ · bj · ck) (9)

ai =
∑

j

∑
k

bj · ck · xi,j,k∑
j

∑
k
λ · b2

j · c2
k

(10)

Note that the denominator of Equation 10 is constant for
all i. Furthermore, as a is a unit vector, it follows that the
denominator must be the normalization constant Za.

